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Section S1 

The molecular structure of the copolymers m-p-Pip-y and m-p-MP-y was confirmed via 1H NMR 

spectra using an Agilent 400-MR (400 MHz) instrument using tetramethylsilane (TMS) and dimethyl 

sulfoxide-d6/TFA as the internal standard and deuterated solvent respectively. The chemical shifts 

were listed in parts per million (ppm). 

The surface morphology of the copolymer membranes was developed by an Atomic Force 

Microscope in a tapping mode by using a Bruker MultiMode instrument. A silicone cantilever having 

an end radius <10 nm, and a force constant of 40 N/m (NCHR, nanosensors, f=300 kHz) were used to 

image the AEM samples at ambient temperature. All the membrane samples were equilibrated with 

50% RH for at least 24 h prior to the imaging. Each AFM sample was analyzed under the same 

conditions for maintaining consistency. AFM phase/height/3D images are provided as recorded 

without further image processing. 

The small angle X-ray diffraction patterns (SAXS) of the dry membranes (dried well in room 

temperature prior to measurement) were obtained using a Rigaku HR-XRD smartlab diffractometer. 

SAXS plot was recorded at a scanning rate of 0.1o/min in a 2θ range from 0° to 6° with a Cu-Kα X-ray 

(λ = 1.54Å). 

The mechanical properties of all the AEMs were determined by using a benchtop tensile tester 

(Shimadzu EZ-TEST E2-L instrument) with a crosshead speed of 5 mm/min at 25 °C under RH 50%. 

The m-p-MP-y membranes have a thickness between 30 and 40 µm. Engineering stress was calculated 

from the initial cross-sectional area of the sample. The AEM samples were cut into a rectangular shape 

with 40 mm 10 mm (total area) and 20 mm 10 mm (test area). 

Thermal stability of the casted membranes was analyzed by the thermogravimetric analysis 

(TGA) measurements on a Shimadzu TGA-2950 instrument. TGA was operated in a temperature 

range of 30 °C to 600 °C at a heating rate of 10 °C min-1 under the nitrogen atmosphere. The glass 

transition temperature (Tg) profiles of the membranes were recorded by differential scanning 

calorimetry (DSC) in a dry state membranes with PerkinElmer DSC 4000. 

For measuring the membrane density, membrane samples were weighed in air and in high-

purity heptane (HPLC grade) at room temperature, using the buoyancy method based on the 

Archimedes principle. For measuring density of dried membranes, the samples were dried at 40 ℃ 

for at least 24h. The corresponding membrane density was calculated by the following equation, 

𝜌 =
Wair

Wair − Wheptane

× 𝜌heptane 

where Wair is the weight of the sample membrane in air, Wheptane is the weight of the sample membrane 

in heptane and ρheptane is the density of heptane, respectively. 
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The ion exchange capacity (IEC) of all the membranes was determined by the common back 

titration method. Prior to the measurement, the membranes in OH- form were equilibrated with 0.01 

M HCl standard solution (10 cm3) for 24 h to neutralize the OH- ions. Then the residual HCl has 

undergone back titration with 0.01 M NaOH standard solution by using phenolphthalein as an 

indicator. The membranes were then dried to measure the corresponding dry weights (Wdry, g). IEC 

(in meq g-1) was calculated as the moles of exchangeable hydroxide ions per gram of the dry weight 

according to the equation given below, 

IEC (meq g-1) = (V0NaOHCNaOH _ VxNaOHCNaOH)/Wdry 

where V0NaOH and VxNaOH are the volumes of the NaOH consumed during the titration (without and 

with membranes respectively) and CNaOH is the mole concentration of NaOH. 

The % water uptake of the membrane sample was measured after soaking the membranes in 

distilled water for more than 24 h. They were wiped with a filter paper and then weighed 

immediately for taking the weight of wet membrane (Wwet). The weight of dry membrane (Wdry) was 

taken after drying the wet membrane under a vacuum condition for at least 24 h. The water uptake 

(%) value was then calculated using the following equation, 

WU (%) = [(Wwet-Wdry)/Wdry]  100 

Dimensional change (% swelling ratio) of the membranes was evaluated by immersing the 

round-shaped membranes in deionized water at 20 °C and 80 °C, respectively, and the swelling ratios 

were found from both in-plane and through-plane swelling and were calculated using the following 

equations, 

∆l =  
𝑙𝑤𝑒𝑡 − 𝑙𝑑𝑟𝑦

𝑙𝑑𝑟𝑦

× 100 , ∆t =  
𝑡𝑤𝑒𝑡 −  𝑡𝑑𝑟𝑦

𝑡𝑑𝑟𝑦

× 100 

where ldry and tdry are the diameter and thickness of the dried membranes, respectively, and lwet and 

twet refer to those of the membranes after soaking in water for 24 h. The membranes were dried by 

placing those under vacuum at 40 °C for 4 h prior to the measurement. 

Hydroxide conductivity (σ) of each AEM sample (size: 1 cm 4 cm) was calculated using the 

equation, σ = l/RA; where, l refers to the distance between reference electrodes and A is the cross-

sectional area of a membrane coupon. The ohmic resistance (R) was recorded by four-point probe 

alternating current (AC) impedance spectroscopy. The electrode systems were connected with an 

impedance/gain-phase analyzer (SI-1260) and an electrochemical interface (SI-1287) over the 

frequency range from 100 mHz to 2 MHz. The conductivity measurements were performed from 20 
oC to 80 oC. The membrane sample in a cell was immersed in deionized water in a chamber to keep 

the relative humidity at 100%. The conductivity value was then obtained by the average of at least 3 

trials with same time intervals. 

The durability of the membranes was evaluated by monitoring the changes in hydroxide ion 

conductivity by soaking the m-p-MP-50 copolymer membrane (OH- form) into 1 M KOH solution at 

80 °C for 500 h. In every interval of time, each sample was taken out and washed with deionized 

water for several times to wash out the residual KOH inside the membrane, and then soaked in 

deionized water for at least 4 h at room temperature until neutralization. Then conductivity of each 

membrane was measured at room temperature in pure deionized water, using the same method 

mentioned above. 

Single cell test was carried out using the best performed m-p-MP-50 membrane. For the 

measurement, the catalyst inks were prepared by mixing Pt/C catalysts (Tanaka, 46.2 wt%), deionized 

water, n-propanol and 10 wt% ionomer solution  (Fumatech FAA ionomer). As prepared inks were 

coated the membrane with an air spray gun to prepare the Catalyst-Coated Membranes (CCMs). The 

Membrane Electrode Assemblies (MEAs) were sandwiched between gas diffusion layers (Sigracet 

39BC) and gaskets (Teflon® ) with an effective electrode area of 5 cm2. Fuel cell tests were operated at 

60 °C and 95% RH and H2/O2 were fed into the cell at flow rates 200 cc min−1 and 400 cc min−1, 

respectively. The MEA activation time was 3 h to ensure the steady state. 
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Figure S1. 1H NMR spectra of the m-p-Pip-20 (a), m-p-Pip-50 (b), and m-p-Pip-60 (c) copolymers. 
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Figure S2. 1H NMR spectra of the m-p-MP-20 (a), m-p-MP-50 (b), and m-p-MP-60 (c) copolymers. 
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Figure S3. AFM height images of the m-p-MP-20, m-p-MP-50, and m-p-MP-60 copolymer membranes. 

 

Figure S4. AFM 3D images (top view) of the m-p-MP-20, m-p-MP-50, and m-p-MP-60 copolymer 

membranes. 
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Figure S5. AFM 3D image (side view) of the m-p-MP-60 copolymer membrane.. 

 

Figure S6. Comparison of the conductivity of the m-p-MP-y membranes with other polyphenylene-

type AEMs at room temperature as a function of IEC. 
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Figure S7. DSC plots of the m-p-MP-20, m-p-MP-50, and m-p-MP-60 membranes. 


