
membranes

Article

Effects of 1, 2, 4-Triazole Additive on PEM Fuel
Cell Conditioning

Nana Zhao 1,* , Zhiqing Shi 1,*, Régis Chenitz 2, François Girard 1 and Asmae Mokrini 2,*
1 Energy, Mining & Environment Research Centre, National Research Council Canada, 4250 Wesbrook Mall,

Vancouver, BC V6T 1W5, Canada; francois.girard@nrc-cnrc.gc.ca
2 Automotive and Surface Transportation Research Centre, National Research Council Canada,

75 de Mortagne, Boucherville, Québec, QC J4B 6Y4, Canada; Regis.Chenitz@cnrc-nrc.gc.ca
* Correspondence: Nana.Zhao@nrc-cnrc.gc.ca (N.Z.); Zhiqing.Shi@nrc-cnrc.gc.ca (Z.S.);

Asmae.Mokrini@nrc-cnrc.gc.ca (A.M.)

Received: 14 September 2020; Accepted: 15 October 2020; Published: 22 October 2020
����������
�������

Abstract: Melt processing is one of the essential technologies for the mass production of polymer
electrolyte membranes (PEM) at low cost. Azoles have been widely used in PEM to improve their
conductivity at a relatively low humidity and recently as bifunctional additives in a melt blowing
processing for PEM mass production. In this work, we attempted to assess the effect of 1, 2, 4-triazole
additive in membranes and in catalyst layers on PEM fuel cell conditioning. Various characterization
tools including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and
conditioning with constant current were applied to diagnose the temporary electrochemical reaction
effect and the permanent performance loss caused by the triazole additives. It was found that triazole
additives in membranes could migrate into the catalyst layers and significantly affect the open circuit
voltage (OCV) and the conditioning. The effect could be partially or completely removed/cleaned
either through longer conditioning time or via CV cycling, which depends on the amount of additives
remaining in the membrane. The findings provide valuable scientific insights on the relevance of post
treatment steps during membrane production and overcoming fuel cell contamination issues due
to residual additive in the membranes and understanding the quality control needed for fuel cell
membranes by melt blowing processing.

Keywords: proton exchange membrane (PEM) fuel cell; 1, 2, 4-triazole; additives; contamination;
conditioning; melt blowing processing

1. Introduction

Proton exchange membrane fuel cell (PEMFC) technology has been widely considered as the next
revolution in renewable energy due to its high theoretical energy efficiency and zero carbon emissions
at the point of use [1]. However, two major limiting factors, cost and durability, limit large-scale
implementation of fuel cell technology for use in transportation applications [2]. The proton exchange
membrane (PEM) was identified as one of the most expensive stack components, which is about 8% of the
total stack cost if annual production rates (APR) is 500,000 fuel cell vehicle (FCV)/year [3]. Melt processes
represent one of the most interesting technologies for the mass production of homogeneous thin
polymer films at low cost. The processes could not only provide a mechanical enhancement through
chain orientations following extrusion-stretching, but also reduce the manufacturing cost [4]. The azole
family compounds such as 1, 2, 4-triazole, imidazole and benzimidazole have been widely used as
potential bifunctional additives in a melt blowing processing [5]. They act as sulfonic acid groups
(-SO3H) protection and a melt processing aid to assist proton conduction by Grotthus mechanism
under anhydrous/high temperature conditions [6–8]. However, excess additives in a membrane must
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be washed away in the final manufacturing step because azole family compounds could cause strong
adsorption on the surface of the catalyst, which may lead to losses in electrochemical activity of the
electrodes and decreased fuel cell performance [9]. Extensive research has been done on contamination
caused by fuel-side impurities such as CO, H2S, and NH3; air-side impurities, including NOx, SOx,
and COx; and volatile organic compounds [10]. There has nevertheless been much less research on the
impact of membrane additive contamination on fuel cell performance, especially organic membrane
processing additives. The 1, 2, 4-triazole was selected as a model of imidazole family because it is
commonly used in melt processing [9–13]. Its strong parallel adsorption on metal has been proven as a
well-known steel corrosion inhibitor [14]. In this work, we attempted to understand the factor of 1, 2,
4-triazole additive migrating from membrane to catalyst layers and how the additive in catalyst layers
affects fuel cell performance.

This work is an investigation of the effects of the contamination of 1, 2, 4-triazole in membranes
or cathode electrodes on fuel cell conditioning. Electrochemical impedance spectroscopy (EIS),
cyclic voltammetry (CV), and conditioning with constant current were applied to diagnosis the
temporary electrochemical reaction effect and the permanent performance loss by additives. X-ray
photoelectron spectroscopy (XPS) and UV-Vis were carried out for post analysis to identify additive
migration. All of these characterization results were combined to understand the effects of 1, 2,
4-triazole on PEMFC performance, which is an effort toward assessing the relevance of post-processing
additive removal step, overcoming fuel cell contamination problems in the case of residual additive
and understanding the quality control needs for melt blown membrane fabrication.

2. Materials and Methods

2.1. Membrane−Electrode−Assemblies (MEAs) and Single Cell

Membrane: Membrane samples of Nafion® NRE-211 (NRE-211, DuPont, Wilmington, DE, USA)
were manufactured by DuPont and purchased from Fuel Cell Store, USA. NRE-211 is a single layer
and its thickness is 25.4 µm, with ~1.0 mmol g−1 of ion exchange capacity (IEC). NRE-211 contains
no additives. The membrane with 1, 2, 4-triazole was fabricated via a melt blowing process using
Nafion®NR40 (1000EW) as ionomer and 1, 2, 4-triazole as additive without an acid washing step [13].
10 wt% of additive in ionomers pellets-additive blends was incorporated before processing. The melt
blown fabricated membrane’s thickness is ~25 µm, with ~1.0 mmol g−1 of IEC.

Gas diffusion electrode (GDE): Carbon paper based GDE with 0.3 mg cm−2 of platinum on carbon
(40%) was purchased from Fuel Cell Store, USA.

Introducing Triazole into GDE: GDE was treated by soaking a piece of 5 × 5 (cm × cm) standard
GDE in 30 mL of either 1 ppm or 50 ppm of 1, 2, 4-triazole additive aqueous solution for 48 h before
being dried by air blowing at room temperature (RT). The standard GDE without any pre-treatment
was set as baseline GDE.

MEAs: Membranes were inserted between two GDEs (either standard GDEs or triazole-introduced
GDEs) and assembled directly into a fuel cell test fixture from Scribner Associates Inc. (straight flow
channels and an active area of 25 cm2) without hot-pressing. The uniformity of the cell compression was
tested using pressure-sensitive films (PRESSUREX®FILM, Ultra low film, 28-85psi, Sensor Products
Inc., Madison, NJ, USA). The single cells were conditioned in a 100W fuel cell test station (Scribner
850C, Scribner Associates Inc., Southern Pines, NC, USA).

2.2. Fuel Cell Conditioning Protocol

The MEAs were preheated for 40 min at 68 ◦C under 100% humidity on both sides, with H2

(purity 99.999%) flow rate of 2 standard liters per minute (SLPM) at the anode, N2 (purity 99.999%) flow
rate of 5 SLPM at the cathode, and without back pressure on both sides. After preheating, the MEAs
were conditioned at either 10A or 20A, 100% RH, and 68 ◦C for 16 h, which the load current depends



Membranes 2020, 10, 301 3 of 14

on fuel cell performance. H2 (purity 99.999%) flow at 2 SLPM and ambient air flow at 5 SLPM were
used for the cathode and anode without back pressure, respectively, during conditioning.

2.3. In-Situ Electrochemical Impedance Spectroscopy (EIS)

To monitor the 1, 2, 4-triazole additive migration, in-situ EIS was conducted during conditioning
(under direct current, 20A) by imposing a small amplitude alternating current (AC) signal to the fuel
cell via the load. The frequency range is from 10 kHz to 0.1Hz. The voltage responses were recorded
and decoupled by a built-in frequency response analyzer (FRA, Scribner 880).

2.4. Electrochemical Surface Area (ECSA)

ECSAs of the cathodes were measured by CV using a potentiostat (1287A, Solartron Analytical,
Farnborough, UK). The anode and cathode were purged for 20 min with humidified H2 (0.5 SLPM) and
N2 (0.5 SLPM), respectively. Voltammograms were then recorded using a 50 mV s−1 scan rate between
0.1 V and 1.2 V versus the anode under H2 (0.5 SLPM) and N2 (0.5 SLPM), respectively. The anode has
been considered as a reference hydrogen electrode by deliberately neglecting its contamination to 1, 2,
4-triazole and resulting effect on electrochemistry of Pt nanoparticles toward H2/H2O.

2.5. Ex-Situ Characterization

UV-vis absorption spectra were recorded on a Varian 50 Conc UV-Visible Spectrophotometer
(Agilent Technologies, Santa Clara, CA, USA). The film holder was used for membrane samples to
record the spectra ranging from 200 nm to 800 nm.

X-ray photoelectron spectroscopy (XPS) was performed by an Omicron XPS System (Scienta Omicron,
Taunusstein, Germany) using monochromatic (Al K alpha) X-ray source at 150 W in the pass energy
(PE) mode (PE = 20 eV). All of the spectra were obtained under identical conditions. The pressure of the
spectrometer was 5 × 10−10 and 5 × 10−9 mbar during the measurements.

3. Results and Discussion

3.1. Open Circuit Voltage (OCV) for Membranes with 1, 2, 4-Triazole Additive

The melt blown membrane with 1, 2, 4-triazole additive was fabricated and assembled without
any further post-treatment into a single cell to evaluate its fuel cell performance. Conditioning curve
for this sample was not able to be collected since the cell performance was too low to draw any
load. Alternatively, OCV hold testing was performed. Figure 1 shows a comparison of a single cell
OCV profile between the melt blown membrane and the baseline NRE-211 at 68 ◦C and 100% RH.
The OCV curve for the baseline sample was flat with only 1% variation in cell voltage compared to the
initial voltage. In contrast, the OCV for the melt blown sample decreased during the first few hours,
then slightly increased, and next kept constant over time. The lowest OCV points for the melt blown
sample was at ~ 3.5 h with OCV of 665 mV. Compared to the OCV of the baseline in the same range of
time (~970 mV), the OCV of this sample was ~300 mV lower, implying that the 1, 2, 4-triazole additive
has a considerable impact on the cell performance. Generally, the OCV depends on the hydrogen
permeation rate across the membrane as well as the mixed potential of the electrochemical reactions
of Pt surface oxidation and the oxygen reduction reaction (ORR). Lower OCV value indicates either
high reactant crossover and/or electronic short through the membrane, or poisoning of the catalyst or
electrolyte [15]. In our case, the lower OCV phenomena could be explained by the contamination of
the catalyst layers by the 1, 2, 4-triazole additive, as it likely migrated from the membrane into the
catalyst layers, leading to a decrease in OCV in the first few hours. While the accumulated additive in
the catalyst layers achieved its maximum value, the OCV started to slightly increase probably due to
partial contaminant removal from the cell via convection. However, the real mechanism of additive
migration is not clear. It is hypothesized that at the beginning of the MEA assembly, 1, 2, 4-triazole
additive might migrate from the membrane into the catalyst layer and be retained at the Pt surface
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by forming covalent bonds between the nitrogen (N) in 1, 2, 4-triazole and the Pt atom causing the
initial relatively low OCV [16]. MEA humidification during OCV test exacerbated the catalyst layers
contamination afterwards because the additives could keep migrating along with the water from
humidified gas streams. Meanwhile, a portion of retained 1, 2, 4-triazole could be washed out from the
catalyst layer into the GDLs or released from the MEA by water. The amount of triazole remaining in
the catalyst layer relies on the dynamic balance between the amount of additive migrated from the
membrane and the amount of additive moved away from the catalyst layer.

Figure 1. Open circuit voltage (OCV) profile of the melt-blown membrane as processed with 1, 2,
4-triazole additive and the baseline NRE-211 at 68 ◦C and 100% RH.

The hypothesis can be supported by UV-vis spectra of the tested membranes and GDEs. 1, 2,
4-triazole is one type of heterocyclic compounds with the molecular formula C2H3N3, which has a
five-membered ring containing two carbon and three nitrogen atoms and can easily be detected by
UV spectra. Figure 2a shows the UV spectra of the membrane with 1, 2, 4-triazole before and after
OCV hold test. There was one absorption peak at ~230 nm associated with 1, 2, 4-triazole before OCV
hold test. However, the absorption peak at ~230 nm completely disappeared after 16 hours’ OCV hold
test. The changes in UV spectra could be explained by the fact that 1, 2, 4-triazole moved away from
the membrane during fuel cell testing. Although the absorption peak at ~230 nm disappeared after
fuel cell testing, there might be some leftover species which were undetectable by the spectrometer.
In order to further prove our hypothesis, the tested GDE on the cathode side and a standard GDE
before testing were immersed in ethanol/water solvents (7: 3) for 12 h, and then their solution samples
were examined by UV-vis. Figure 2b displays one weak absorption peaks at ~230 nm associated with 1,
2, 4-triazole diffusion to the soaking solution from the tested GDE, confirming that additive migration
from the membrane into the catalyst layer occurs via convection of either humidified gas or water.
For the soaking solutions with the un-tested GDE, the peak at ~230 nm could not be detected indicating
the amount of triazole in catalyst layer is insignificant. However, trace amount of triazole could cause
a significant impact on the OCV.
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Figure 2. UV spectra of (a) melt blown membrane sample before and after OCV hold test; (b) UV
spectra of the soaking solutions (ethanol/water mixed solvent) for un-tested and tested GDE.

After a 16 h OCV hold test, CV scans were performed to compare the cathode side GDE against
the baseline to determine if the additive had contaminated the cathodic catalyst layer. All of the
GDEs before MEA assembly is assumed to have an identical CV (commercial standard GDEs from the
same batch). Figure 3 presents the CVs obtained at a scan rate of 50 mV s−1 after the OCV hold test.
The baseline CV (black dashed line) shows characteristic CV peaks for hydrogen adsorption/desorption
of Pt electrode. The initial baseline ECSA (H-des) was about 26 m2 g−1, calculated from hydrogen
desorption peak. In contrast, there are no obvious features of hydrogen adsorption/desorption for the
cathode electrode of the melt blown membrane, assuming the 1, 2, 4-triazole additive migrated from
the membrane to the surface of the catalyst where it was absorbed. This proves that the catalyst layer
was contaminated, leading to ECSA losses and inferior fuel cell performance.

Figure 3. Cyclic voltammetry (CV) curves for the MEAs with the membrane sample and baseline at a
scan rate of 50 mV s−1 and potentials of 0.1 to 1.2 V.

It is worthwhile to mention that the contaminated catalyst layers can be partially cleaned by CV
cycling to remove the additives from the surface of catalyst. The clean-up efficacy depends on the amount
of 1, 2, 4-triazole initially present in the membrane. As reported, some organic additive contaminants
could be effectively removed by oxidation under higher potentials [17]. However, the CV cycling
process may also cause the formation of Pt oxide, Pt particle sintering, Pt dissolution/re-deposition,
and carbon support corrosion [18]. In this work, 3000 CV cycles under a wide potential window (0.1 to
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1.2 V) were used as one of the approaches for triazole additive removal. Figure 4 and Table 1 show the
OCV changes after 500, 1000, 1500, 2500, and 3000 CV cycles for the 1, 2, 4-triazole contaminated GDE.
The OCV were compared with the baseline and the OCV ratio between the sample and the baseline
was calculated. Clearly, the OCV gradually increased after every 500 CV cycles. For example, the OCV
were 0.795V and 0.877V, which reached 82% and 90% of the baseline OCV value, after 500 and 3000 CV
cycles, respectively. Therefore, CV cycling is a practical approach for removing the triazole additive
from the catalyst layer. However, the OCV baseline value was not recoverable and no distinguishable
features of hydrogen adsorption/desorption for the cathode electrode were observed, implying that the
amount of 1, 2, 4-triazole additive in the membrane and GDEs was too high to be fully cleansed solely
by CV cycling. It further demonstrates that a trace amount of triazole in the catalyst layer could have a
huge impact on fuel cell performance.

Figure 4. OCV changes before and after 500 and 3000 CV cycles for the melt blown membrane sample.

Table 1. OCV changes and increments after CV cycles.

CV Cycle Numbers OCV/V OCV Ratio
(Sample: Baseline)

0 0.670 0.69
500 0.795 0.82

1000 0.805 0.83
1500 0.814 0.84
2500 0.876 0.90
3000 0.877 0.90

Baseline OCV 0.972 -

The migration of triazole additive from membrane into the cathode catalyst layer was also
confirmed by XPS. The survey spectra of untested and tested cathodic GDE assembly with melt blown
membrane sample were collected in Figures S1 and S2, in which Pt 4f, C1s, O1s, N1s, F1s, and S2p
orbitals can be observed and each individual element content was presented. As N is major element of
the 1, 2, 4-triazole, it was considered as a GDE contamination indicator. The atomic ratio of N 1s: Pt 4f of
GDE before and after fuel cell testing increased from 0.16 to 0.87 (see Table 2), indicating a non-negligible
amount of additive moved out of the membrane into the GDE and remained in the cathode catalyst
layer. The XPS trend is consistent with the CV results shown in Figure 3. The core-level XPS spectra of
N 1s for untested, tested cathodic GDE and 1, 2, 4-triazole as a comparison are shown in Figure 5a.
The tested cathodic GDE shows a negative shift of the N 1s binding energy and a relatively high peak
intensity of N 1s, which has a similar N 1s binding energy as 1, 2, 4-triazole, compared to untested
cathodic GDE, suggesting a considerable amount of N associated with triazole observed in the tested
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cathodic GDE. The N1s XPS spectra for tested cathodic GDE could be reasonably deconvoluted into two
kinds of nitrogen functional groups: pyrrole-type N (400.2 eV) and graphitic-type N (401.1 eV) [19,20].
The deconvoluted N1s XPS spectra and calculated relative area of pyrrole-type N and graphitic-type N
were shown in Figure 5b and Table 3, respectively, which identified the nature of triazole. Meanwhile,
the core-level XPS spectra of Pt 4f is shown in Figure 6 and the principle peaks were attributed to Pt0

at 71.4 eV (4f7/2) and 74.7 eV (4f5/2), while 72.8 eV and 76.1 eV were assigned to Pt in 2+ state [21].
The results of different Pt species were calculated based on the deconvolution of these two kinds of
Pt states and listed in Table 3. The relative area of Pt0 and Pt2+ was calculated to be 61% and 39%,
respectively, for standard untested cathodic GDE. After fuel cell testing, the proportion of Pt0 on
the surface decreased to 50%, while Pt2+ increased to 50%, indicating that the additional nitrogen
containing coordination sites from 1, 2, 4-triazole possibly bonded to Pt. The XPS results proved that
triazole additives migrated from the membrane into the catalyst and then attached to the Pt surface
during OCV testing.

Table 2. Calculated atomic ratio of N 1s: Pt 4f.

Cathodic GDE Pt 4f
(Atomic Percentage %)

N 1s
(Atomic Percentage %)

Ratio
(N 1s:Pt 4f)

Before Assembly 4.73 0.78 0.16
After Test 3.74 3.26 0.87

Table 3. Calculated relative area of N and Pt.

Cathodic GDE Pt Species Relative Area
(%)

Before Assembly
Pt0 61

Pt2+ 39
graphitic-type N 100

After Test

Pt0 50
Pt2+ 50

pyrrole-type N 38
graphitic-type N 62

Figure 5. The core-level XPS spectra of N 1s for (a) untested, tested GDE and 1, 2, 4-triazole and (b)
N1s XPS spectra for the tested GDE.
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Figure 6. Core-level XPS spectra of Pt 4f of the cathodic GDE (a) before assembly and (b) after the
OCV test.

3.2. Conditioning Behaviour of 1, 2, 4-Triazole Additive Contaminated GDE

In order to further investigate the effects of 1, 2, 4-triazole additive on fuel cell performance,
the triazole was intentionally introduced into GDEs by immerging the GDEs in either 1 ppm or 50 ppm
1, 2, 4-triazole additive solution for 48 h, which were named 1 ppm-GDE (GDE contaminated in
1 ppm of 1, 2, 4-triazole solution) and 50 ppm-GDE (GDE contaminated in 50 ppm of 1, 2, 4-triazole
solution), respectively. The baseline was a standard GDE without any 1, 2, 4-triazole pre-treatment.
Figure 7a shows the H2/air conditioning curves for baseline, 1 ppm, and 50 ppm GDE samples obtained
at 68 ◦C and 100% RH at a current density of 0.8 A cm−2. Each GDE sample was tested with two
duplicated samples for examining the experimental reproducibility, which was labelled as baseline-2,
1 ppm-GDE-2, and 50 ppm-GDE-2, respectively. The results are shown in Figure 7c. The repeatability
of the test was acceptable because the difference in cell voltage between the two measurements
(Figure 7a,c) was within 10 mV after conditioning. The cell voltage in the conditioning curves of
the baseline GDEs gradually increased from 505 mV to 587 mV in the first 6 h and then reached a
plateau, suggesting that the MEA be “well-conditioned.” Moreover, the high frequency resistance
(HFR) collected by the current interrupt technique is mostly contributed from the membrane’s ionic
resistance (see Figure 7a,c), which slightly decreased by ~15 mΩ cm2 during the conditioning, which is
mainly attributed to the membrane hydration under 100% RH. Like the baseline, the conditioning
curves of the 1 ppm-GDE showed a similar trend: the cell voltage gradually increased, and then
reached its steady state (see Figure 7a). However, the 1 ppm-GDE sample showed inferior cell
performance. The cell voltage for the 1 ppm-GDE sample was 190 mV and 70 mV lower than that of
baseline at initial and after conditioning, respectively. For the 50 ppm-GDE, the performance drop
was more obvious than the 1 ppm-GDE, since the cell performance was too low to draw a load at 20A.
Alternatively, the 50 ppm-GDE sample was conditioned at a relatively low current of 0.4 A cm−2 for
16 h. After that, the conditioning curve was collected at an increased load, 0.8 A cm−2, as shown in
Figure 7a. After conditioning, the cell voltages of the MEA samples at a current of 0.8 A cm−2 were in
the order of 590 mV for the baseline, >520 mV for the 1 ppm-GDE, and >505 mV for the 50 ppm-GDE.
The 50 ppm-GDE sample exhibited the lowest cell performance compared to the baseline and the
1 ppm-GDE. The absorption of 1, 2, 4-triazole in the catalyst layers led to a decrease in cell voltage,
thus explaining the initial low fuel cell performance, while the removal of the contaminant from the cell
by water generated from the electrochemical reaction or humidified gas streams resulted in a gradual
improvement in cell performance. Additionally, the final cell performance for the contaminated GDE
was still inferior to the baseline, implying that a certain amount of additive remained in the catalyst
layer and the 50 ppm-GDE retained the most additive. IR-compensated conditioning curves were
obtained by membrane resistance correction [22], as shown in Figure 7b,d. Similar to the non-corrected
conditioning curves, IR-compensated conditioning curves showed the same trend: the cell voltages
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gradually went up, and then reached a plateau without further increases. It also demonstrated that
HFR cannot be the main factor resulting in the differences of conditioning behavior between the MEAs.
To further confirm the inferior cell performance of triazole doped GDEs, other in-situ characterizations
were conducted and discussed in the following sections.

Figure 7. H2/air conditioning curves of (a) baseline, 1 ppm-GDE, and 50 ppm-GDE and (c) baseline-2,
1 ppm-GDE-2, and 50 ppm-GDE-2, obtained at 68 ◦C and 100% RH at a current density of 0.8 A cm−2

and their IR-compensated conditioning curves of (b) baseline, 1 ppm-GDE, and 50 ppm-GDE and (d)
baseline-2, 1 ppm-GDE-2, and 50 ppm-GDE-2.

3.3. 2, 4-Triazole Additive Influence on Catalyst Layer

To conclude on whether the additive stuck to and contaminated the cathodic catalyst layer, all the
MEAs underwent cyclic voltammetry (CV) to check the ECSA of the cathodic catalyst. The CV of the
MEA with the membrane without additive (Nafion 211) served as the baseline. Figure 8 compares the
CVs of the 1 ppm-GDE and the 50 ppm-GDE with the baseline after conditioning at a current density
of 0.8 A cm−2 with a scan rate of 50 mV s−1. There were no obvious changes in ECSA between the
1 ppm-GDE and the baseline. However, a considerable difference in ECSA were observed, in which the
peaks corresponding to adsorption/desorption of hydrogen for the 50 ppm-GDE (0.1–0.45 V) are smaller
than that of the baseline, indicating a loss of Pt catalyst activity. After conditioning, ECSA (H-des) for
the 50 ppm-GDE is 15 m2 g−1 whereas the baseline’s ECSA (H-des) is 26 m2 g−1, representing a ~40%
ECSA loss compared to the baseline. The decline in ECSA can be ascribed to the leftover of additives
in the catalyst layer and explains why the performance of the 50 ppm-GDE is lower than the baseline
after conditioning.
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Figure 8. CVs for baseline, 1 ppm-GDE, and 50 ppm-GDE after conditioning at a current density of
0.8 A cm−2 at a scan rate of 50 mV s−1.

3.4. 2, 4-Triazole Additive Influence on ORR Kinetics

During conditioning, in-situ EIS was conducted to improve understanding of the mechanism
behind the impacts of triazole additives on fuel cell performance. Generally, when the cell is operated
at high current densities, a double semicircle in the Nyquist plot could be observed, which is attributed
to the sum of the charge transfer resistance (Rct) and mass transport resistance (Rmt). Figure 9 shows
the spectrum (Nyquist plots) of the baseline and the 1 ppm-GDE, including one high frequency (HF)
capacitive loop and one medium frequency (MF) capacitive loop, as well as one low frequency (LF)
capacitive loop and one LF inductive loop [23]. The small HF capacitive loop can be fitted by a
contact resistance R1 in parallel with a contact capacitance C1, associated with either the electronic
contact impedance or the ionic ohmic drop inside the active layer [24]. The MF impedance arc
mainly corresponds to the charge transfer resistance associated with the ORR, and the LF domain is
predominantly attributed to the mass transfer resistance, representing the resistance to mass transfer in
the gas phase within the gas diffusion layer and the catalyst layer. Based on the essential feature of
fuel cell reactions and the observed electrochemical phenomena, the MF and LF loops can be fitted
using the equivalent circuit shown in Figure 9, consisting of a charge transfer resistance Rct in parallel
with a constant phase element (CPE1) and a mass transfer resistance Rmt in parallel with a constant
phase element (CPE2), respectively [25]. With increasing conditioning time, the MF capacitive loop
changes significantly. In contrast, there was negligible variation in the LF inductive loops. Therefore,
the fitting for LF inductive loops was not conducted in this work. Figures 9 and 10 present the fitting
curves (solid line) and fitting results, respectively. The Rct for the baseline have a ~15% decrease
compared to their initial values during the entire conditioning period. In comparison, the initial Rct
for the 1 ppm-GDE was 180 mΩ cm2 (~50%) higher than that of the baseline. The results implied the
triazole additive bonding/poisoning with/of the Pt catalyst, which led to a significant increment in Rct
at the beginning. Meanwhile, the Rct for 1 ppm-GDE exhibited a quick decrease from ~490 mΩ cm2

to ~250 mΩ cm2 in the first 4 h, accounting for more than 50%. The results indicate that the triazole
additive bonded on Pt catalyst surface could be washed away either by humidified gas streams or the
water generated from the electrochemical reaction [25,26]. The Rct gradually reduced and then nearly
approached the baseline after a certain amount of additive was rinsed off from the catalyst surface by
water. Alternatively, the 50 ppm-GDE sample needed to be conditioned in two consecutive steps, at a
current density of 0.4 A cm−2 for 16 h and then at a current density of 0.8 A cm−2 for another 16 h,
due to the triazole additive severe poisoning of the catalyst layer. As a result, Rct decreased gradually
and reached the same value as the baseline (Figure 11), which suggests that contaminant removal
requires additional energy or extended conditioning time. Moreover, the inferior voltage compared to
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the baseline after conditioning suggests that the anode might be contaminated, or the additive remains
in GDLs. Further study is ongoing to determine the hypothesis.

Figure 9. In-situ electrochemical impedance spectra of (a) baseline and (b) 1 ppm-GDE during
conditioning at a current density of 0.8 A cm−2.

Figure 10. Calculated charge transfer resistance of the baseline and the 1 ppm-GDE during conditioning
at a current density of 0.8 A cm−2.
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Figure 11. (a) In-situ electrochemical impedance spectra and (b) calculated charge transfer resistance
of the 50 ppm-GDE during conditioning at a current density of 0.8 A cm−2.

4. Conclusions

In this study, the 1, 2, 4-triazole contaminated membrane was tested under OCV conditions and 1,
2, 4-triazole contaminated cathode GDE were investigated under fuel cell conditioning conditions.
The samples were characterized and diagnosed in PEMFC using a variety of techniques, such as
ECSA, in-situ EIS, UV-Vis spectra, and XPS. The overall results presented in this report demonstrated
that 1, 2, 4-triazole as an additive does migrate from the membrane and contaminates the catalyst
layer. The release of extra additive caused lower OCV, longer conditioning time, and inferior fuel
cell performance due to catalyst layer contamination. Conditioning and CV cycling are two practical
approaches to remove the migrated additive partially/completely from catalyst layer, which depends on
the amount of additive remaining in the membrane. However, in the worst-case scenario, the migrated
additive could not be removed completely, leading to severe inferior fuel cell performance. From a
manufacturing perspective, this work confirms that a post-treatment step following melt-blowing
processing of the membrane to remove organic additives from the membrane is highly recommended.
The findings in this work at the same time provides some insights on quality control of membrane for
manufacturers, to control and minimize the amount of additive remaining in the membranes in order
to achieve the best fuel cell performance.
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assembly with melt blown membrane sample.
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