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Abstract: Novel signal-processing protocols were used to extend the in situ sensitivity of 
ultrasonic frequency-domain reflectometry (UFDR) for real-time monitoring of 
microfiltration (MF) membrane fouling during protein purification. Different commercial 
membrane materials, with a nominal pore size of 0.2 µm, were challenged using bovine 
serum albumin (BSA) and amylase as model proteins. Fouling induced by these proteins 
was observed in flat-sheet membrane filtration cells operating in a laminar cross-flow 
regime. The detection of membrane-associated proteins using UFDR was determined by 
applying rigorous statistical methodology to reflection spectra of ultrasonic signals 
obtained during membrane fouling. Data suggest that the total power reflected from 
membrane surfaces changes in response to protein fouling at concentrations as low as  
14 μg/cm2, and results indicate that ultrasonic spectra can be leveraged to detect and 
monitor protein fouling on commercial MF membranes. 
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1. Introduction 

Fouling is a major problem associated with membrane separation processes because it can often 
severely limit process performance and selectivity [1]. Fouling typically occurs either on the 
membrane (external) surface, leading to cake formation, and/or within the internal membrane structure, 
leading to pore plugging. The efficient microfiltration (MF) of many pharmaceutical products is 
adversely affected by the microbial cultures and microbiological media biopolymers (i.e., proteins, 
polysaccharides, and lipids) in the process stream(s) used to produce them. Membrane fouling is a 
complex phenomenon that depends upon the type of foulant(s), the feed concentration, temperature, 
pH, and ionic strength, as well as the separation system hydrodynamics. The interplay among these 
many factors has made a comprehensive understanding of fouling difficult to obtain. There is a 
significant difference between organic and biological fouling (biofouling). Whereas biofouling is a 
result of microbial attachment to a membrane and the subsequent growth and release of biopolymers 
associated with microbial activity, organic fouling on the other hand is often taken to imply the 
chemical or physical adsorption of organic compounds to the membrane [2]; it follows that organic 
fouling accompanied biofouling. 

It is the primary amino acid sequence that dictates the three-dimensional conformation and  
surface-charge distribution of proteins; this in turn drives their removal by size exclusion, their 
sorption potential for partitioning into/onto membranes, and their ability to be denatured and removed 
using physical and chemical methods. Proteins are divided into crudely defined classes given their 
size, water solubility, tertiary structure and activity (i.e., enzymes), and no unified system exists for 
characterizing the thousands of polypeptide sequences that have been catalogued within proteomic 
databases. Because of their unique and complicated biochemistry, only a few purified proteins have 
been used as surrogates to model the fouling behavior of accepted protein classes during conventional 
membrane-challenge studies including water-soluble bovine serum albumin (BSA), some common 
enzymes (e.g., lysozyme), and poorly soluble structural proteins (e.g., collagen) [3–5]. The causes and 
effects of protein fouling are numerous and have been extensively reviewed and studied [6–8]. 

Persson and colleagues [9] studied and reported the effect of pH on BSA transmission through two 
different MF membranes. Findings of this study showed that transmission of BSA was highest for a 
low-protein binding membrane but that protein-associated fouling was significantly affected by feed 
pH. At pH 5, which is close to the isoelectric point of BSA, the transmission was near 100%; at pH 3 
or 7, BSA transmission was significantly lower, while it was dramatically increased when the ionic 
strength of the BSA solution was increased at pH 3 or 7. 

Toussaint and colleagues [10] studied the influence of temperature on the recovery of extracellular 
α-agarase enzymes from fermentation broth using a polypropylene hollow-fiber filter with 0.5 µm 
pores. Whereas results at 37 °C evidenced higher permeate flux as compared to 22 °C, the study 
suggested the latter temperature would lead to greater overall enzyme recovery due to better molecular 
stability at lower temperatures. Kelly and Zydney [11,12] studied mechanical aspects of protein 
fouling on MF membranes and isolated two distinct mechanisms: deposition of large protein 
aggregates (size exclusion), as well as sorption and chemical attachment of proteins to other  
surface-associated deposits. 
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Characterization of protein-fouled membranes is crucial to understand fouling mechanisms as well 
as to minimize fouling maintenance and membrane cleaning cycles [13]. A promising approach for 
improving the understanding and control of spatially defined fouling mechanisms involves the 
application of practical models and non-invasive, real-time monitoring, which can be validated using 
data from actual membrane operations. Clearly, there are significant benefits in employing  
non-destructive methods [14] that are sensitive only to changes in mass accumulating on a membrane 
surface or to material that “fills” membrane pores, where these markedly different fouling mechanisms 
can be isolated from each other. A practical methodology that currently satisfies these criteria is 
ultrasonic reflectometry (UR). UR shows promise in distinguishing among different fouling modes, 
including internal pore blockage and surface-cake build-up. Recent reports have described the ability 
of UR to monitor the development of fouling layers on the surfaces of flat sheet [15–23] and  
hollow-fiber membranes [24,25] used for drinking water treatment. Ultrasonic time-domain 
reflectometry (UTDR) has also been successfully used to detect protein fouling on tubular 
ultrafiltration (UF) membranes [26]. In the study by Li and colleagues [27], UTDR was used to detect 
protein on polysulfone (PS) UF membranes fouled with 0.5 g/L BSA solution. Results showed good 
correspondence between ultrasonic signal responses and the development of BSA association within 
the membrane microstructure. This study also showed that surface-associated BSA deposits were 
thicker at neutral pH than at its isoelectric point and that gel layers deposited were more compressible 
near the isoelectric point than at neutral pH. Results also suggested that BSA partitioning behavior in 
some membranes varied significantly in response to pH; at neutral pH, protein BSA deposits 
predominantly on a membrane surface; however, around its isoelectric point, BSA readily sorbs both 
in and on membranes. 

We report here how ultrasonic frequency-domain reflectometry (UFDR) was used to detect and 
monitor protein fouling on commercial polymeric MF membranes using novel data analysis of 
frequency shifts in conjunction with wave attenuation. The bulk density of organic fouling layers 
developing on MF membranes is often only 0.5% different than that of water, making the process of 
fouling characterization using optical, ultrasonic or piezoelectric contrast from water-based media less 
sensitive; thus, conventional means of identifying energy “echoes” using waveform amplitude changes 
from time-domain data are not typically definitive. The type of analysis described herein provides local 
information regarding morphological changes on membrane surfaces on a three-dimensional 
microscale which can provide topographic quality and spatial mapping ability. 

The objectives of this study were the following: (1) explore the ability of UFDR to detect and 
monitor protein fouling associated with membrane surfaces in flat-sheet cells operating in a laminar 
cross-flow regime; and (2) explore the use of UFDR to monitor protein fouling in which membrane 
types, proteins, and protein concentrations are varied. Using conventional flow-based measurements 
with a suite of optical, ultrasonic and gravimetric bioassays, we describe studies in which two different 
commercial MF membranes were systematically challenged with proteins at selected concentrations 
and discuss leveraging UFDR methodology to monitor and map membrane protein fouling. 



Membranes 2011, 1   198 
 

 

2. Materials and Methods 

2.1. Membranes Preparation 

Two different commercial polymeric membranes, polyvinylidene fluoride (PVDF) with a nominal 
pore size of 0.22 μm and polysulfone (PS), with a nominal pore size of 0.2 µm, were used in the 
experiments. The PVDF membrane is approximately 125 μm thick and is not supported by a separate 
layer. Our displacement porometry results for this membrane showed a mean pore diameter of  
0.20 ± 0.02 µm that agreed well with literature-reported data [28]. The PS membrane is approximately 
80 μm thick and was used with a support layer that is ~200 μm thick. We analyzed this membrane 
using displacement porometry, and results indicated that the mean pore diameter of the membrane was 
0.23 ± 0.03 µm. New membrane coupons (20 cm × 12 cm) were cut from the same membrane roll and 
prepared according to manufacturer recommendations. Residual preservative agents were removed 
from the PVDF membrane surface by soaking membrane sample pieces in 70% isopropyl alcohol for 
10 min, followed by 2 h soaking in ultrapure water to ensure that the pores were free from residual 
alcohol. Polysulfone membrane sample pieces were soaked for 30 min in an alkaline solution 
(ultrapure water, pH adjusted to 10.5–11.0 using 1 M sodium hydroxide) that was constantly mixed at 
50–55 °C. After soaking, the membrane was rinsed with ultrapure water to ensure that the pores were 
free from residual caustic. 

2.2. Cross-Flow Cell System Integrated with Ultrasonic Instrumentation 

For this study three identical acrylic cross-flow membrane filtration cells were operated in parallel. 
A schematic of the MF cross-flow cell system with integrated instrumentation is shown in  
Figure 1 (top). 

The dimensions of the cross-flow cell were 4 mm (height) by 150 mm (length) and 102 mm (width); 
a double “O-ring” arrangement provided a leak-proof seal at the required pressures. The membrane 
(permeation area ca. 150 cm2) was supported by a 2-mm thick stainless steel plate. The feed 
suspension was circulated through the system by three high-pressure pumps (model GBP35.PVSA 
pump with a model DC305A motor, Micropump, Vancouver, WA, USA); the circulation flow-rate was 
controlled via a voltage output to the pump motor from a DC-regulated power supply (model 1688A, 
BK Precision, Yorba Linda, CA, USA). 

Two 10-MHz planar ultrasonic transducers in a 1.27-cm diameter element (model V111, 
Panametrics, Waltham, MA, USA) were mounted on each cross-flow cell for continuous monitoring. 
Ultrasonic transducers were positioned 2.5 cm from the flow cell feed intake such that the transducers 
were approximately 3 cm from each other (see Figure 1 bottom). An ultrasonic pulser/receiver (model 
505PRX, Panametrics, Waltham, MA, USA) in combination with the ultrasonic transducers and a 
digital storage oscilloscope (model TDS3052, Tektronix, Richardson, TX, USA) were used to process 
and archive real-time ultrasonic spectra. Each ultrasonic field (sampling area) was 8 mm2. 

Flow sensors (model 105, McMillan Co., Georgetown, TX, USA) were located on the permeate line 
and were connected to a 12-bit multifunction I/O analog-to-digital converter (NI-USB 6008, National 
Instruments, Austin, TX, USA); real-time permeate flow-rates were recorded using a laboratory PC. A  
multi-channel scanner was used for acquiring ultrasonic signals from the ultrasonic transducers, and a 
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custom LabVIEW program (National Instruments, Austin, TX, USA) was used to automatically record 
permeate flow-rates and composite ultrasonic spectra. 

Figure 1. TOP: schematic of microfiltration (MF) cross-flow cell system with integrated 
instrumentation; BOTTOM: Top view of the bottom plate of the cross-flow cell showing 
the location of the two ultrasonic transducers (T1 and T2) and flow-sensors (F). 
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membranes were fouled with BSA at two different challenge concentrations: 0.1 and 1 g/L. The PS 
membranes were fouled with BSA and with amylase, both at a challenge concentration of 0.1 g/L. 
During the fouling experiments with BSA, the feed temperature was kept at 24 ± 2 °C. During the 
fouling test with amylase, the temperature was controlled at 15 ± 2 °C with a recirculating chiller. 
Amylase was tested at lower temperature since this particular amylase, depending on its concentration, 
the pH, and other factors, has a tendency to fall out of solution above about 20 °C. 

During a fouling experiment, feed was constantly mixed using a magnetic stirrer, and permeate was 
recycled to the feed tank. The permeate flow-rate and real-time ultrasonic spectra were continuously 
monitored for 5 to 25 h, depending on the fouling response. The test was terminated when the 
permeate flow-rate reached a steady-state value. 

2.3. Real-Time Amplitude, Frequency and Total Reflected Power (TRP) Distributions 

The reflection time (s) and amplitude (mV) of reflected sound waves were recorded and compiled 
into frequency distributions with a Fourier transform using commercial software (Matlab, Mathworks 
Inc., Natick, MA, USA) according to methods previously described [29,30]. The total reflected power 
(TRP) from each ultrasonic observation was determined by integrating the amplitude of reflected 
sound waves. TRP distributions were compiled and normalized by their TRP observations 
corresponding to an initial phase when the membranes were in a clean but otherwise identical 
operating condition [21]. 

The intensity of the ultrasonic energy delivered by the monitoring system used in this study is 
comparable to that delivered by diagnostic ultrasonic systems used for many non-destructive medical 
applications. Such intensity levels do not result in mechanical damage or heating of the biopolymers 
accumulating in or on separation membranes [21]. 

2.4. Post-Mortem Characterization 

Fouled membranes were characterized by post-mortem techniques including a gravimetrically 
normalized biochemical assay, optical examination using scanning electron microscopy (SEM) and 
scanning acoustic microscopy (SAM). 

2.4.1. Biochemical Assay 

After removing the membranes from the cross-flow cells, the region directly beneath the 
transducers was sectioned into coupons of known surface area (ca. 7 cm2). Water-soluble protein was 
then eluted from the membranes using the following procedure. Membrane coupons were aseptically 
placed in 50-mL clean plastic test tubes. A total of 10 mL of ultrapure sterile water was added, and the 
resulting solution sonicated on ice for 1 h. Eluent was analyzed for protein content using a 
bicinchoninic acid kit (Pierce, Rockford, IL, USA) and a BSA standard calibrator. Colorimetric results 
were obtained by measuring 562-nm absorbance using a spectrophotometer (model DR/2010, Hach, 
Loveland, CO, USA). 
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2.4.2. Optical Examination 

Concurrently with the biochemical analysis, fouled membrane coupons were prepared for high 
magnification optical evaluation using SEM. Cold storage (4 °C) was used to preserve  
membrane-associated proteins between their removal from the cross-flow cell and the SEM scan. The 
membrane samples were analyzed with a low-vacuum SEM (model JSM 6480LV, JOEL Ltd.,  
Tokyo, Japan). 

2.4.3. Scanning Acoustic Microscopy 

Membrane coupons were also characterized using an acoustic microscope operating in a scanning 
mode. Acoustic monitoring was non-destructively executed by traversing the membrane coupons in a 
constant temperature water bath using a methodology developed and described by Kujundzic and 
colleagues [21,22]. Independent cohorts of reflections were obtained in triplicate from the same 
coupon, and TRP data were taken from coupons sectioned from different parts of the membrane. 

2.5. Statistical Evaluation 

Accepted statistical analysis protocols were applied to rigorously assess differences and correlations 
between ultrasonic responses during membrane operations. When the PS membranes were utilized, 
three phases were identified: (1) membrane compaction (usually observed during the first hours of 
operation); (2) membrane setting (designated to be at steady state when the pure water flow-rate varied 
less than 4% over 12 h) [31]; and (3) acute membrane fouling (immediately following the feed 
challenge). When the PVDF membranes were used, compaction was not observed. In this study, the 
Anderson-Darling normality tests were applied to all TRP and permeate flow-rate data; this test 
measures the deviation of a data set from a prescribed statistical distribution, resulting in a probability 
(p) value. The statistical standards in this study were established by choosing a 90% confidence level. 
As judged by the Anderson-Darling test, some TRP spectra were not normally distributed, thereby 
requiring nonparametric statistical analyses. Analogous to a parametric t-test, a Mann-Whitney test at a 
90% confidence level was employed to assess significant differences between nonparametric 
distributions. Acoustic spectra from the PVDF membranes fouled with BSA and acoustic spectra from 
the PS membranes fouled with amylase were normally distributed, requiring t-tests with unequal 
variances at a 90% confidence level to assess significant differences between TRP distributions. 
Acoustic spectra from the PS membranes fouled with BSA were not normally distributed, thus 
requiring the use of the Mann-Whitney test to assess differences between TRP distributions during 
compaction, setting, and fouling. In addition, permeate flow-rate data were not normally distributed. 
Thus, the Mann-Whitney test was used to compare permeate flow-rates during the compaction, setting, 
and fouling phases in all experiments. 

Observations were compiled and presented in the form of box plots, where permeate flow-rate 
(mL/min) and TRP (mV × MHz) were isolated as process variables and averaged over the period of 
each operating phase. TRP values are presented for two transducers positioned on each cross-flow cell. 
A horizontal line in the middle of each rectangular box represents the median observation of each 
distribution. The minimum and maximum values are located at the endpoint of the vertical line 



Membranes 2011, 1   202 
 

 

extended through the box. The top of the box represents the 75th percentile, and the bottom of the box 
corresponds to the 25th percentile. Points at a greater distance from the median than 1.5 times the 75th 
and 25th percentile values are plotted individually as asterisks and represent potential outliers. The 
nonparametric, Kruskal-Wallis test was used to test for differences in the SAM TRP distributions from 
clean and protein fouled membranes. 

3. Results 

3.1. PVDF Membranes Fouled with BSA 

Figure 2 (top) shows relative changes in permeate flow and total reflected power over the two 
phases of cross-flow cell operation, i.e., membrane setting and fouling for the case where the PVDF 
membranes were fouled with 0.1 g/L BSA. During the initial phase, the flow cells were operated with 
ultrapure water. These membranes had ultrapure water permeate flow-rates starting at 120 mL/min. 
Over the first 1250 min, the permeate flow-rate remained relatively constant. Following the 
introduction of BSA, the permeate flow-rate decreased by more than 40% over the subsequent  
1500-min period. The total reflected power values changed between 5% and 10% during the  
fouling challenge. 

Permeate flow-rate data were averaged over the entire time period of the setting and fouling phases 
and are presented in box plots for each phase. When applied to the permeate flow-rate data, a 
nonparametric Mann-Whitney test showed that the flow-rates during setting were significantly 
different from the flow-rates during the fouling phase (p < 0.1) (Figure 2, middle). TRP values 
presented in the box plots were also averaged over the entire time period for each operating phase. 
When applied to the TRP distribution spectra obtained during membrane challenges with 0.1 g/L BSA, 
t-tests showed that the TRP response during setting was not significantly different from the TRP 
response during the fouling phase on one transducer (p > 0.1) and significantly different on the other 
transducer (p < 0.1) (Figure 2, bottom). 

Figure 3 (top) shows relative changes in permeate flow and total reflected power over the two 
phases of cross-flow cell operation, i.e., membrane setting and fouling for the case where the PVDF 
membranes were fouled with 1 g/L BSA. During the initial phase, the flow cells were operated with 
ultrapure water. Over the first 1200 min, the permeate flow-rate remained relatively constant. 
Following the introduction of BSA, the permeate flow-rate decreased by 90% over the  
subsequent 300-min period. The total reflected power values changed by as much as 30% during the 
fouling challenge. 

When applied to the permeate flow-rate data, a nonparametric Mann-Whitney test showed that the 
flow-rates during setting were significantly different from the flow-rates during the fouling phase  
(p < 0.1) (Figure 3, middle). When applied to the TRP distribution spectra obtained during membrane 
challenges with 1 g/L BSA, a t-test showed that the TRP response during setting was significantly 
different from the TRP response during fouling phase for both transducers (p < 0.1) (Figure 3, bottom). 
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Figure 2. TOP: Permeate flow (▲) and total reflected power (TRP) from two transducers 
(♦,◊) associated with setting and fouling when PVDF membranes were challenged with  
0.1 g/L BSA; maximum standard deviations from at least three independent observations 
are 25% and 6% for permeate flow and TRP, respectively. MIDDLE: Permeate flow data 
during the challenge represented in a box plot format where the vertical lines on the boxes 
indicate minimum and maximum observations; upper and lower quartiles are represented 
by the box boundaries and the median value is represented by the central intersecting line. 
BOTTOM: TRP distributions from each of two transducers mounted on the flow cells 
during the challenge represented in a box plot format. 
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Figure 3. TOP: Permeate flow (▲) and total reflected power (TRP) from two transducers 
(♦,◊) associated with setting and fouling when PVDF membranes were challenged with  
1 g/L BSA; maximum standard deviations from at least three independent observations are 
6% and 22% for permeate flow and TRP, respectively. MIDDLE: Permeate flow data 
during the challenge represented in a box plot format where the vertical lines on the boxes 
indicate minimum and maximum observations; upper and lower quartiles are represented 
by the box boundaries and the median value is represented by the central intersecting line. 
BOTTOM: TRP distributions from each of two transducers mounted on the flow cells 
during the challenge represented in a box plot format.  

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400 1600

Time (min)

Pe
rm

ea
te

 F
lo

w
-r

at
e 

(%
)

70

80

90

100

110

TR
P 

(%
)

Setting Fouling

 

P
er

m
ea

te
 F

lo
w

-R
at

e 
(m

L/
m

in
)

FoulingSetting

120

100

80

60

40

20

0

118

21

 

TR
P

 (
m

V
*

M
H

z)

Fouling SettingFoulingSetting

7.5

7.0

6.5

6.0

5.5

5.0

4.5

5.98

6.52

5.84

4.70

 

Transducer 1 (T1) Transducer 2 (T2) 



Membranes 2011, 1   205 
 

 

3.2. Polysulfone Membrane Fouled with BSA and Amylase 

Figure 4 (top) shows relative changes in the permeate flow and total reflected power over the three 
phases of flow cell operation, i.e., membrane compaction, setting, and fouling for the case where the 
PS membrane was fouled with 0.1 g/L BSA. During the initial phase, the flow cells were operated with 
ultrapure water. This membrane had initial ultrapure water permeate flow-rate values between  
50–60 mL/min, while the fully compacted ultrapure water flow-rate was approximately 30 mL/min. 
Over the first 300 min, the permeate flow-rate decreased by approximately 60% due primarily to the 
structural aspects of membrane compaction. Subsequently, permeate flow-rate remained relatively 
constant over next 1200 min. Following the introduction of BSA, permeate flow-rate decreased from a 
value equivalent to 35% to one equivalent to 15% of the initial maximum value over the subsequent 
840-min period. The total reflected power values decreased <10% during the fouling challenge. 

When applied to the permeate flow-rate data, a nonparametric Mann-Whitney test showed that the 
permeate flow-rates during compaction and setting were significantly different from the flow-rates 
during the fouling phase (p < 0.1) (Figure 4, middle). When applied to the TRP distribution spectra 
obtained during membrane challenges with 0.1 g/L BSA, a Mann-Whitney test indicated that the TRP 
response during the compaction phase was not significantly different from the TRP response during 
the setting phase on one transducer (p > 0.1), but significantly different on the other transducer  
(p < 0.1) (Figure 4, bottom). The TRP response during the compaction and setting phases was 
statistically different from the TRP response during the fouling phase on both transducers (p < 0.1). 
Inconsistency in absolute TRP values obtained from transducers T1 and T2 from the ultrapure water 
phase is most likely due to local differences in the membrane itself including variability in the 
membrane thickness at the two transducer locations. 

Figure 5 (top) shows relative changes in permeate flow and total reflected power over the three 
phases of flow cell operation, i.e., membrane compaction, setting, and fouling for the case where the 
PS membranes were fouled with 0.1 g/L amylase. During the initial phase, the flow cells were operated 
with ultrapure water. Over the first 720 min, the permeate flow-rate decreased by almost 40% due 
primarily to the structural aspects of membrane compaction. Subsequently, the permeate flow-rate 
remained relatively constant over the approximately 720-min setting phase. Following the introduction 
of amylase, the permeate flow-rate decreased from a value equivalent to 60% to one equivalent to 20% 
of the initial maximum value over the subsequent 480-min period. The total reflected power values 
changed by as much as 30% during the fouling challenge. 

When applied to the permeate flow-rate data, a nonparametric Mann-Whitney test showed that the 
flow-rates during compaction and setting were significantly different from the flow-rates during the 
fouling phase (p < 0.1) (Figure 5, middle). When applied to the TRP distribution spectra obtained 
during the membrane challenges with 0.1 g/L amylase, a t-test showed that the TRP response during 
the compaction phase was not significantly different from the TRP response during the setting phase 
for one transducer (p > 0.1), and different for the other transducer (p < 0.1) (Figure 5, bottom). The 
TRP response during the compaction and setting phases was significantly different from the TRP 
response during the fouling phase for both transducers (p < 0.1). 
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Figure 4. TOP: Permeate flow (▲) and total reflected power (TRP) from two transducers (♦,◊) 
associated with compaction, setting and fouling when PS membranes were challenged with  
0.1 g/L BSA; maximum standard deviations from at least three independent observations are 6% 
and 7% for permeate flow and TRP, respectively. MIDDLE: Permeate flow data during the 
challenge represented in a box plot format where the vertical lines on the boxes indicate 
minimum and maximum observations; upper and lower quartiles are represented by the box 
boundaries and the median value is represented by the central intersecting line. BOTTOM: TRP 
distributions from each of two transducers mounted on the flow cells during the challenge 
represented in a box plot format. 
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Figure 5. TOP: Permeate flow (▲) and total reflected power (TRP) from two transducers (♦,◊) 
associated with compaction, setting and fouling when PS membranes were challenged with  
0.1 g/L amylase; maximum standard deviations from at least three independent observations 
are 5% and 19% for permeate flow and TRP, respectively. MIDDLE: Permeate flow data 
during the challenge represented in a box plot format where the vertical lines on the boxes 
indicate minimum and maximum observations; upper and lower quartiles are represented by 
the box boundaries and the median value is represented by the central intersecting line. 
BOTTOM: TRP distributions from each of two transducers mounted on the flow cells during 
the challenge represented in a box plot format. 
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3.3. Post-Mortem Characterization Results 

3.3.1. Biochemical Assay 

Protein associations with the MF membranes varied depending on the challenge protein, fouling 
time, type of membrane and protein concentration. The protein concentration associated with the 
PVDF membranes after 1500 min of fouling with 0.1 g/L BSA was 34 ± 17 µg/cm2. For comparison, 
the protein concentration after 300 min of fouling with 1 g/L BSA was 81 ± 9 µg/cm2. When the PS 
membranes were fouled with BSA at a concentration of 0.1 g/L, the protein concentration associated 
with the membranes after 840 min of fouling was 39 ± 2 µg/cm2. When the PS membranes were fouled 
with amylase at a concentration of 0.1 g/L, the protein concentration after 480 min of fouling was  
14 ± 11 µg/cm2. 

3.3.2. Scanning Acoustic Microscopy 

Acoustic spectra from virgin PVDF and PS membrane materials (prepared with ultrapure water) and 
from coupons sectioned from membranes fouled with BSA and with amylase are shown in Figure 6. 
The fouling mechanism associated with a relatively pure protein feed solution would be expected to be 
dominated by internal mechanisms under the test conditions here, although SEM results described later 
showed some surface accumulation of protein. The findings indicate that UR could differentiate 
between clean and fouled membranes with a relatively high degree of confidence (90%) for the 
challenge with replication (n = 3). PVDF membrane coupons fouled with BSA showed a bimodal and 
somewhat wider TRP distribution when compared to virgin membrane coupons. As judged by 
nonparametric Kruskal-Wallis test, TRP distributions from clean and BSA-fouled membranes were 
significantly different (p < 0.1). The membrane coupons fouled with amylase showed a slight TRP 
departure toward higher power values when compared to virgin membrane coupons; a nonparametric 
test indicated that the two TRP distributions obtained from virgin and amylase-fouled coupons were 
also significantly different (p < 0.1). 

3.3.3. Optical Examination 

Optical inspection via SEM complemented the results of the real-time acoustic scans and suggested 
that a discontinuous accrual of membrane-associated biopolymers was the dominant mode of biomass 
accumulation on the membrane surfaces. Representative SEM images of a virgin PS membrane sample 
(Figure 7, top) as well as samples from a PS membrane fouled with 0.1 g/L BSA (Figure 7, middle) 
and a PS membrane fouled with 0.1 g/L amylase (Figure 7, bottom) confirmed the “patchy” 
distribution of biomass on the surfaces of the membranes fouled with both proteins. 
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Figure 6. Total reflected power (TRP) distributions obtained via scanning acoustic 
microscopy (SAM); mean and standard deviation of the distributions in units of VxMHz 
are presented in parentheses; TOP: a virgin PVDF membrane coupon (0.37 ± 0.06) and a 
BSA-fouled PVDF membrane coupon (0.32 ± 0.11); BOTTOM: a virgin PS membrane 
coupon (0.34 ± 0.06) and an amylase-fouled PS membrane coupon (0.35 ± 0.05). 
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Figure 7. Representative SEM micrographs of polysulfone membranes. TOP: clean with 
the porous surface clearly visible; MIDDLE: fouled with 0.1 g/L BSA; BOTTOM: fouled with  
0.1 g/L amylase. Original magnification: 4300×. 

 

 

 

4. Discussion 

By systematically observing the responses of two different MF membranes challenged with 
different proteins at different concentrations, we obtained converging lines of acoustic, optical, and 
gravimetric evidence which suggests that at protein concentrations as low as 0.1 g/L, UR 
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(accompanied with other post-mortem and real-time observations) was able to monitor protein fouling 
in real time. The decline in permeate flow-rate observed with the PS membranes during operation with 
ultrapure water is most likely due to membrane compaction [32]. Similarly, in the study by Li and 
colleagues [33] with nylon membranes (nominal pore size of 0.2 µm) operating with pure water for 2 h 
at a pressure of 150 kPa, observed significant decrease (76% maximum) in permeate flow-rate was 
also attributed to structural compaction. Compaction was not observed in our tests using PVDF 
membranes. As indicated previously, these membranes are much thinner than the PS membranes and 
do not contain a support structure, which is highly porous and undoubtedly prone to significant 
compaction. 

The accuracy of the transducers was assessed using a simple and standard protocol. The transducers 
were mounted atop an aluminum reference block of known thickness (26.6 mm) and ultrasonic data 
were then sequentially obtained from each transducer. Based on the arrival times corresponding to the 
ultrasonic reflections from the top and bottom of the reference block and the wave velocity in 
aluminum (6420 m/s), the thickness of the block was measured. Representative results from two 
transducers were identical (26.64 mm) and were statistically identical to a thickness value of 26.58 mm 
determined independently using a calibrated micrometer. 

In earlier studies we have experimented with multiple transducers in different locations above a 
cross-flow cell. Since our approach considers measuring TRP changes in real-time, transducers 
observed reflection changes at pre-selected (sentinel) locations, and were not moved as they recovered 
reflective power inventories. In this study, we selected to place transducers at the cell intake where 
highest amount of organic fouling is expected to be seen. Variability in the absolute TRP values from 
transducers T1 and T2 during the ultrapure water phase with the PS membrane (Figures 4 and 5, 
bottom) can be explained by local differences in the membrane including thickness at the two 
transducer locations. Studies of local differences have been reported in the literature. For example, in a 
test of material homogeneity, Evans [34] tested three types of polymeric membrane coupons randomly 
cut from different areas of the same membrane roll. Results suggested that the ultrasonic TRP baseline 
for membrane coupons from the same manufacturing lot significantly differ and that considerable 
material variations exist within commercial membrane rolls. In addition, different local behavior of PS 
membrane during compaction and setting (Figures 4 and 5 top) can be explained by membrane  
sample-to-sample variations in the same manufacturing lot [34,35]. 

When membranes were fouled in the cross-flow cell module, the degree of TRP departure varied 
greatly and was not always consistent among co-located transducers. This may be explained by  
non-uniform distribution of the organic fouling layer over the membrane surface, i.e., “patchiness” 
which was evident from SEM images (Figure 7, middle and bottom). Whereas permeate flow-rate data 
are represented by a response that is effectively averaged over the entire membrane surface, UR 
provides a near-point measurement that characterizes the local condition. These differences were 
determined to be statistically significant and are not unexpected given that the organic fouling layers 
are dynamic and viscoelastic in nature, i.e., the amorphous protein deposits possess hydrogel-like 
characteristics such that the deposits can move along or sporadically attach or detach from the 
membrane surface [21–23]. The importance of such local differences relative to the flux behavior is 
essential with respect to the utility of UR. In the present case for which the membrane axial dimension 
is small, fouling and permeate responses occur on the same time scale so UR offers relatively little 
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practical advantage. In situations in which the membrane axial dimension is sufficiently large such that 
organic fouling develops preferentially near one location, UR would be expected to show a statistically 
significant departure from baseline values before a corresponding decrease in permeate flow [23]. This 
possibility of detecting early-stage fouling could be advantageous with respect to optimizing the 
cleaning of an organic foulant as has been reported for inorganic scaling [15,18], or even in improving 
membrane module design [36]. 

When the PVDF membranes were fouled with BSA in the cross-flow cells, a non-systematic change 
in TRP values was observed. These results are different than those obtained for the same polymeric 
membrane but with a larger nominal pore size (0.65 µm) that was fouled with bacterial biofilm and 
analyzed post-mortem via scanning acoustic microscopy [21]. In that study, TRP distributions showed 
an initial increase followed by a significant decrease in TRP values. This observed difference in TRP 
values could be related to the different modes associated with fouling via bacterial biofilm formation 
versus fouling with a specific biopolymer (i.e., protein). Also, these responses can be explained by 
differences in the relative acoustic impedance of the various layers as well as increased sensitivity to 
internal fouling (bulk density changes) versus surface-associated fouling. Membranes with larger pore 
sizes tend to experience both surface and internal fouling, whereas membranes with a smaller pore size 
experience primarily surface fouling. Moreover, real-time changes in the fouling layers are more 
difficult to document than the time independent responses characterized by the post-mortem 
techniques. Significant variability in the TRP values was evident during the course of our tests and 
may be attributed to the fact that these organic foulants manifest as hydrogels, which are dynamic in 
nature with a morphology that changes due to substrate concentrations and local hydrodynamic 
conditions. In addition, a portion of TRP variability from fouling may be attributed to capricious layer 
growth, movement and sloughing. 

In cross-flow experiments reported here, the concentration of the protein on the membrane surface 
at the end of the fouling phase was 14–81 µg/cm2, thus demonstrating that UR can be sensitive to very 
low protein concentrations. In a related study [22], 0.2 μm PVDF membranes were fouled with BSA in 
flow cells operating in a dead-end mode at a transmembrane pressure of 13.8 kPa (2 psi). BSA solution 
with a concentration of 1 g/L was prepared and then filtered through the MF membranes, and coupon 
sections were obtained for acoustic analysis in scanning mode. When compared to clean membranes 
used as a reference, BSA-fouled membrane coupons evidenced consistent attenuations in reflection 
amplitude, which caused statistically significant departures in reflected power. The findings based on 
the ultrasonic response of the protein-fouled membranes showed that UR can differentiate between 
clean and protein-fouled membranes. 

When protein fouling on the PVDF membranes tested at two different BSA concentrations (0.1 and 
1 g/L) was compared, more intense fouling was achieved at shorter time intervals when the membranes 
were challenged with higher BSA concentration. In addition, differences in the TRP responses between 
the setting and fouling phases were more pronounced when this membrane material was fouled with 
higher BSA concentration. Comparison of the fouling potential of the PVDF and PS membranes using 
the same protein at the same challenge concentration indicated that fouling occurred more quickly with 
the latter. In addition, the trends for the permeate flow-rate decreases were different. Whereas the PS 
membrane evidenced an immediate decrease in the permeate flow-rate, the decline for the PVDF 
membrane was initially less evident in the early stage but was more pronounced after 600 min of 
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fouling. In addition, changes in the TRP responses were greater for the PS as compared to the PVDF 
membranes. For the case in which the PS membranes were fouled with two different proteins, BSA 
and amylase, at the same concentration, the fouling response was detected sooner with amylase. In 
addition, a more significant change in the TRP response was observed with amylase when compared  
to BSA. 

Post-mortem characterization data agreed well with permeate flow-rate behavior and real-time 
ultrasonic spectra. In the test where PVDF membranes were fouled for 1500 min with 0.1 g/L BSA, 
the decrease in permeate flow-rate was 40%, which corresponded to a protein concentration of 
approximately 34 μg/cm2. An almost 2.5-times higher protein concentration was measured on the same 
membrane that was fouled (for only 300 min) with an order of magnitude higher BSA concentration 
that resulted in 90% decrease in permeate flow-rate. Similar protein concentrations were obtained 
when both membranes were fouled with 0.1 g/L BSA, which resulted in a similar TRP response. As 
expected, post-mortem characterization via SAM showed that ultrasonic spectra from clean and fouled 
membrane coupons were statistically different at a confidence level of 90%. 

Overall, our results indicated that UR could be successfully used to detect protein fouling associated 
with different commercial polymeric MF membranes. Both real-time and post-mortem characterization 
techniques showed that UR could be successfully used to monitor protein fouling of MF membranes. 
Despite the success of the UR approach in monitoring protein fouling, it is clear that more specific 
information regarding the onset, chemical nature and thickness of protein layers would be of great 
value in optimizing module operation including the evaluation of particular cleaning strategies and 
optimization of the technique in industrial-scale applications. 

4. Conclusions 

This study describes the application of UFDR for a non-invasive method to detect and monitor 
protein fouling on commercial polymeric MF membranes. The ultrasonic signal response corresponded 
well with permeate flow-rate data. UFDR was able to detect the onset of protein fouling and monitor 
protein fouling in the cross-flow modules. Although, the degree of TRP departure varied significantly 
in a manner that was not always predictable, statistical analysis demonstrated that the TRP response 
changed significantly as a result of membrane fouling with proteins which are commonly used to 
model organic fouling processes. Our findings provide a strong basis for continued development of 
UFDR methodology for monitoring protein fouling in MF separations. Such efforts must incorporate 
adaptations for successful transition from bench- to large-scale industrial applications. 
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