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Abstract: Porcine parvovirus (PPV) is the most important infectious agent causing infertility in pigs,
which can be prevented by routine vaccination. Successful vaccination depends on the association
with potent adjuvants that can enhance the immunogenicity of antigen and activate the immune
system. Polysaccharide adjuvant has low toxicity and high safety, and they can enhance the humoral,
cellular and mucosal immune responses. In the present study, we prepared the VP2 protein subunit
vaccine against PPV (PPV/VP2/N-2-HACC) using water-soluble N-2-Hydroxypropyl trimethyl am-
monium chloride chitosan (N-2-HACC) as the vaccine adjuvant, and the ability of the PPV/VP2/N-
2-HACC to induce immune responses and protect sows from PPV infection was evaluated. In vivo
immunization showed that the sows immunized with the PPV/VP2/N-2-HACC by intramuscular
injection produced higher HI antibody levels and long-term immune protection compared with the
other groups, while the subunit vaccine did not stimulate the proliferation of CD4+ and CD8+ T
lymphocytes to trigger the secretion of higher levels of IL-2, IL-4, IFN-α, IFN-β, and IFN-γ, indicating
that the PPV/VP2/N-2-HACC mainly induced humoral immunity rather than cellular immunity.
PPV was not detected in the viscera of the sows immunized with the PPV/VP2/N-2-HACC, and
the protective efficacy was 100%. Collectively, our findings suggested that the N-2-HACC was a
potential candidate adjuvant, and the PPV/VP2/N-2-HACC had immense application value for the
control of PPV.

Keywords: porcine Parvovirus; VP2 protein; vaccine adjuvant; N-2-Hydroxypropyl trimethyl ammo-
nium chloride chitosan; subunit vaccine

1. Introduction

Porcine parvovirus (PPV) is the most important infectious agent causing infertility in
pigs, leading to significant damage in sows and boars. PPV is mainly spread in the digestive
tract and respiratory tract. PPV results in sterility, abortion, stillbirth, fetal mummy, and
fetal malformation [1–3]. Additionally, PPV often combines with other pathogens to cause
a mixed infection, directly resulting in sow breeding obstacles [4]. This disease causes
huge economic losses to the pig breeding industry [5–7]. Nowadays, infections caused by
PPV are very serious and have spread all over the world, and the positive antibody rate of
swine exceeds 90%.

PPV is a small, non-enveloped and single-stranded DNA virus, which belongs to the
genus Parvovirus and the family Parvoviridae [8]. The genome of PPV consists of two large
open reading frames, which encode non-structural protein NS1 and several capsid proteins,
such as VP1, VP2, and VP3 [9,10]. NS1 is necessary for viral DNA replication, and the
VP2 protein is the major antigenic domain that can induce PPV-neutralizing antibodies
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and play a key role in the prevention and diagnosis of PPV [5]. Previous studies have
demonstrated that the recombinantly expressed VP2 protein can self-assemble into virus-
like particles, which have ideal immunogenicity and can stimulate the body to produce
high antibody titers.

Classical inactivated PPV vaccine is available commercially and widely used to control
PPV infections [11,12]. However, the safety and multiple immunizations with large doses
are the major considerations of the inactivated vaccine, leading to the development of the
PPV subunit vaccine. The adjuvant is an indispensable component of a subunit vaccines to
improve the immunogenicity because it can induce stronger immune responses and reduce
the dosage and production cost. A better adjuvant can not only enhance the immunogenic-
ity of the vaccine and activate the immune system, such as cytotoxic T lymphocytes (CTLs)
or helper T lymphocytes (THs), but also strengthen the humoral and/or cellular immune
responses [13]. Natural polysaccharides are characterized by intrinsic immunomodulation,
biocompatibility, biodegradability, low toxicity and safety, and a variety of natural polysac-
charides have been proved to have better immune promoting effects and can enhance
immune responses [14]. Among the natural polysaccharides, chitosan is a biopolymer of
cationic polysaccharides with lots of biological properties, including low toxicity, good
biocompatibility, and biodegradability [15,16], while the weak water solubility of chitosan
greatly limits its application. One of the strategies to improve the solubility of chitosan is to
modify the molecular structure by the addition of hydrophilic functional groups [17]. Our
laboratory has synthesized the water-soluble N-2-Hydroxypropyl trimethyl ammonium
chloride chitosan (N-2-HACC) [18], and the N-2-HACC has been used as the vaccine
adjuvant and delivery system in the live-attenuated vaccine and DNA vaccine of New-
castle disease virus (NDV) [19,20]. In our previous studies, we found that the N-2-HACC
nanoparticles can better carry the antigen into cells and enhance the immune responses,
and the N-2-HACC can be used as a polysaccharide adjuvant to improve the immune level
of the body. Many studies have shown that vaccine antigens encapsulated in or conjugated
onto polymer-based microspheres/nanoparticles can stimulate the body to produce strong
cellular, humoral and mucosal immune responses [21–23].

The effect of N-2-HACC in a non-nano state on vaccine immune enhancement, espe-
cially mucosal immune enhancement, is of great significance for the development of new
chitosan derivative adjuvants. Therefore, we prepared the VP2 subunit vaccine against PPV
(PPV/VP2/N-2-HACC) and aimed to explore the characteristics of PPV/VP2/N-2-HACC
to evaluate the potential of N-2-HACC as a vaccine adjuvant of the subunit vaccine.

2. Materials and Methods
2.1. Cells, Virus, Commercial Vaccine, Adjuvant, and Animals

Recombinant baculovirus AcNPV-VP2, sf21 (Spodoptera frugiperda) cells, ST (Swine
testis) cells, and PPV (PPV-H strain) were provided by the Research Team of Pig Digestive
Tract Infectious Diseases of Harbin Veterinary Research Institute of the Chinese Academy
of Agricultural Sciences (Harbin, China).

Commercial PPV inactivated vaccine (cp-99, 107.5 TCID50/mL) was purchased from
Shandong Binzhou Wohua Biological Engineering Co., Ltd. (Binzhou, Shandong Province,
China), with the approval number of Veterinary Medicine (2009) 151721058. The water-
soluble quaternized chitosan, N-2-Hydroxypropyl trimethyl ammonium chloride chitosan
(N-2-HACC), was synthesized as previously described [18].

A total of 20 healthy sows (6~7 months old) and adult healthy boars were provided by
the Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences
(Harbin, China). Before the experiment, when the PPV antibody titers in the serum of sows
was less than 26 by haemagglutination inhibition (HI), the PPV antibody titers of all animals
were confirmed to be negative in the study. All animal experiments were approved by the
Animal Ethics Committee of Harbin Veterinary Research Institute of the Chinese Academy
of Agricultural Science and the Animal Ethics Committee of Heilongjiang Province (SYXK
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(H) 2006-032). All animals received humane care in compliance with good animal practice
according to the animal ethics procedures and guidelines of China.

2.2. Expression and Purification of PPV VP2 Protein

Expression and purification of the PPV VP2 protein were carried out as previously
described [24]. Briefly, the PPV VP2 protein was expressed in an insect-baculovirus cell sys-
tem and purified using Ni-NTA affinity column chromatography. The purified VP2 protein
was separated by SDS-PAGE and then electro-transferred onto nitrocellulose membrane
for Western blotting analysis. The membranes were blocked with 5% skim milk in TBST
buffer (50 mmol/L Tris-HCl, 150 mmol/L NaCl, 0.05% Tween 20, pH 7.5) at 4 ◦C overnight;
Subsequently, the membranes were incubated with swine anti-PPV serum obtained from
the Harbin Veterinary Research Institute at a dilution of 1:1000 with shaking overnight
at 4 ◦C. The membranes were then washed three times with TBST buffer, each time for
5 min, followed by incubation with horseradish peroxidase-conjugated rabbit anti-pig IgG
antibody (Sigma, St. Louis, MO, USA) for 1 h, and then the membranes were washed with
TBST buffer three times. The immunoreactive bands were visualized by a Licor ODYSSEY
near-infrared fluorescent scanning imaging system (Licor, Lincoln, NE, USA).

2.3. Preparation of the PPV/VP2/N-2-HACC

Hemagglutination (HA) titer of the VP2 protein was tested by HA assay [25]. The
VP2 protein solution was mixed with the N-2-HACC solution at a ratio of 0.5% (v/v)
and then emulsified with mineral oil for 30 min at a speed of 8000 r/min. The subunit
vaccine was abbreviated as PPV/VP2/N-2-HACC. The HA titer of the VP2 protein in the
PPV/VP2/N-2-HACC was 28.

2.4. Sterility Assay of the PPV/VP2/N-2-HACC

To determine the sterility of the PPV/VP2/N-2-HACC, the extraneous bacteria or
mold were tested as previously described [26]. Briefly, 0.2 mL of the PPV/VP2-N-2-HACC
solution was inoculated onto the thioglycolate medium (T.G), tyropeptone agar medium
(G.A), and glucose peptone medium (G.P) under the aseptic condition. Subsequently, the
plates were incubated at 37 ◦C and 28 ◦C for 3–5 days to determine the presence of bacteria
or mold. Meanwhile, the endotoxins in the PPV/VP2/N-2-HACC were detected by the
Limulus test.

2.5. Safety and Storage Stability of the PPV/VP2/N-2-HACC

To assess the safety of PPV/VP2/N-2-HACC, in vivo cytotoxicity assays were carried
out on five 4-month-old healthy sows. Each sow was intramuscularly injected with 20 mL
of the PPV/VP2/N-2-HACC at multiple sites. The abnormal changes in the administered
sow, such as injection site, feeding, drinking, mental state, body weight, and clinical
symptoms, were continuously monitored and recorded for 14 days.

To investigate the storage stability of PPV/VP2/N-2-HACC, the subunit vaccine was
stored at room temperature, 4 ◦C, −20 ◦C, and 37 ◦C for 28 days, respectively. The mor-
phology, particle size, viscosity, and stability of the PPV/VP2/N-2-HACC were assessed
and recorded.

2.6. Vaccination

A total of 20 sows were randomly and evenly divided into four groups, and the animals
were housed separately. Sows in Group 1 were immunized with 2 mL PPV/VP2/N-2-
HACC; sows in Group 2 were immunized with 2 mL commercial PPV inactivated vaccine;
and sows in Groups 3 and 4 were immunized with 2 mL N-2-HACC or PBS, respectively.
The sows were immunized by intramuscular injection in the neck, and the booster injection
was given at an interval of 2 weeks. After the second immunization, sows of each group
were mated with serum PPV-negative adult healthy boars, and the fetuses in the uterus
of sows were observed, including sterility, abortion, stillbirth, fetal mummy, and fetal
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malformation. Blood samples were aseptically collected from the anterior aortic vein of
sows on 0, 7, 14, 21, 28, 35, 42, and 56 days after the first immunization, respectively. Serum
HI antibody titers were measured by a micro-method [27], and the contents of cytokines
(IFN-α, IFN-β, IFN-γ, IL-2, and IL-4) in serum were measured by corresponding ELISA
kits (Invitrogen, Carlsbad, CA, USA).

To investigate the cellular immune response induced by the PPV/VP2/N-2-HACC,
the blood samples were aseptically collected from the anterior aortic vein on 28, 42, 56,
70, and 84 days after the first immunization, respectively. The contents of CD4+ and
CD8+ T lymphocytes were measured as follows. Lymphocytes were incubated with FITC-
conjugated mouse anti-pig CD4+ antibody and phycoerythrin (PE)-conjugated mouse
anti-pig CD8+ antibody. After incubation, the cells were washed with cold PBS three times
and then suspended in PBS. The CD4+ and CD8+ T lymphocytes were sorted by FACSAria
flow Cytometer (BD Biosciences, San Diego, CA, USA).

2.7. Protective Efficacy

The ability of PPV/VP2/N-2-HACC to protect sows against the infection of PPV-H
strain (106.0 TCID50/mL) was determined. When the level of HA antibody in serum of
every immunization group reached 7.0 log2 after the first immunization, five sows from
each group were intramuscularly injected with 2.0 mL of the highly virulent PPV-H for
challenge studies. Any abnormal changes, such as feeding, water drinking, mental state,
body weight, clinical symptoms and mortality of these sows were continuously observed
and recorded for 28 days. The blood was collected for the detection of serum HI antibody
level as well as the contents of CD4+ and CD8+ T lymphocytes at 1, 2, 3, and 4 weeks after
the challenge. At the 4th week after the challenge, sows were euthanized, and the fetuses
in the uterus of sows were observed, including the total number of fetuses, number of
diseased fetuses, stillbirth, fetal mummy, and fetal malformation. Meanwhile, the hearts,
lungs, livers, spleens, and kidneys from sows were collected for histological staining assay.
The viral DNAs in the heart, lung, liver, and spleen (200 mg) was extracted with the DNA
Extraction Kit (Biotech Corporation, Beijing, China) and stored at −20 ◦C. The quantitative
real-time polymerase chain reaction (qRT-PCR) was used to detect the content of PPV in
sows after the challenge and assess the immune effect [28].

Specific primers for PPV (forward primer: 5′-AAATGTACCTGATTGGTCCG-3′, reverse
primer: 5′-TTGGTGAAAGTTGGTGTTGTT-3′) were designed based on a partial fragment
of NS1 using Primer-BLAST software. The probe (5′-CAGCGGACAACAACTACGCAGCA-
BHQ1-3′) was synthesized by Shanghai Invitrogen Trade (Shanghai, China). The qRT-PCR
was performed in a 20 µL reaction system consisting of 10 µL of Premix Ex Taq Probe
qRT-PCR (TaKaRa, Kusatsu-shi, Japan), 0.5 µL of PPV forward primer (10 nmol/mL),
0.5 µL of PPV reverse primer (10 nmol/mL), 1 µL of probe (10 nmol/mL), 1 µL of genomic
DNA, and 7 µL of DNase/RNase-free deionized water. Briefly, after an initial denaturation
step at 95 ◦C for 5 min, the amplifications were carried out with 45 cycles at a melting
temperature of 95 ◦C for 10 s, an annealing temperature of 58 ◦C for 30 s, and an extension
temperature of 72 ◦C for 20 s. Fluorescent signals were detected at the end of each cycle.
The cycle threshold (CT) value was defined as the cycle number, at which the amplification
curve reached the threshold. Samples with a CT value above the cutoff value were retested
and considered positive if they remained so.

2.8. Statistical Analysis

Data were presented as the mean ± standard deviation (SD). Duncan’s multiple range
test was used to determine the differences among groups with SPSS 19.0 (IBM, New York,
NY, USA). p < 0.05 was considered statistically significant.
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3. Results
3.1. Expression of the PPV VP2 Protein In Vitro

Figure 1 shows that the PPV VP2 protein was purified. To confirm the expression
of the VP2 protein, the purified VP2 protein was analyzed by Western blotting analysis
using PPV-positive pig serum, and the polyclonal antibodies recognized VP2 protein with
a molecular weight of 64 KDa (Figure 1), and the densitometry readings of target bands
were 10,717 using the Image J software (NIH, Bethesda, MD, USA).

Figure 1. Western blotting analysis of the PPV VP2 expressed in sf21 cells. M: Protein ladder;
1: Precipitation of cells (the purified VP2); 2: Supernatant of the cell culture. To confirm the PPV VP2
expression, the purified VP2 was subjected to Western blotting analysis. The primary antibody is
PPV-positive pig serum, and the secondary antibody is horseradish peroxidase-conjugated rabbit
anti-pig IgG antibody.

3.2. Sterility of the PPV/VP2/N-2-HACC

The prepared PPV/VP2/N-2-HACC was milky white liquid and easily detached
from the bottle wall by gently shaking, and the lower layer was slightly reddish after
standing. There was no growth of bacteria and mold on the T.G, G.A, and G.P medium
containing the PPV/VP2/N-2-HACC. The content of endotoxin in the PPV/VP2/N-2-
HACC was less than 0.125 EU/mL, which was following the stipulations of the third
volume (2010 edition) of Veterinary Pharmacopoeia of the People’s Republic of China
(less than 5.0 EU/mL). These results showed that there was no pathogenic microbial
contamination in the PPV/VP2/N-2-HACC, and the subunit vaccine could be used safely.

3.3. Safety of the PPV/VP2/N-2-HACC

In vivo toxicity results showed that the feeding, drinking, mental state, and body
weight were normal in the sows immunized with the high doses of PPV/VP2/N-2-HACC,
and the morbidity and mortality of sows were 0%. Furthermore, there were no inflamma-
tion, redness, and other abnormal phenomena at the injection site. These results indicated
that the high doses of the PPV/VP2/N-2-HACC were safe.

3.4. Storage Stability of the PPV/VP2/N-2-HACC

To evaluate the storage stability of the PPV/VP2/N-2-HACC, the subunit vaccine was
placed at room temperature, 4 ◦C, −20 ◦C, and 37 ◦C for 28 days. The results showed that
no significant changes in the morphology and particle size of the PPV/VP2/N-2-HACC
were observed after the PPV/VP2/N-2-HACC was placed for 28 days at room temperature,
4 ◦C, and −20 ◦C. However, it was slightly stratified after being stored at 37 ◦C for 28 days.
In addition, it took 6.0 s to naturally flow out 400 µL of the PPV/VP2/N-2-HACC stored
at different temperatures for 28 days, showing that the viscosity of the subunit vaccine
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was satisfactory. When the PPV/VP2/N-2-HACC stored at different temperatures for
28 days was centrifuged at 3000 r/min for 20 min, it was still milky white, and there was
no delamination and demulsification. These results indicated that the subunit vaccine had
good storage stability and could be placed for a long period even at room temperature. The
immunization power of the vaccine after being placed at room temperature, 4 ◦C, −20 ◦C,
and 37 ◦C for 28 days will be evaluated in further study.

3.5. PPV/VP2/N-2-HACC Promotes Antibody Production

Figure 2A shows that no antibody was detected in the N-2-HACC and PBS groups.
PPV/VP2 specific antibody was detected at 14 days and 21 days post the immunization in
the commercial PPV inactivated vaccine and PPV/VP2/N-2-HACC groups, respectively.
From 70 days after the immunization, the antibody titers in serum from the sows immu-
nized with the PPV/VP2/N-2-HACC were higher compared with those immunized with
the commercial PPV inactivated vaccine, while the differences in both groups were not
significant (p > 0.05), and the antibody titer in the PPV/VP2-N-2-HACC group remained at
a high level for more than 14 weeks, suggesting that the PPV/VP2/N-2-HACC induced
better humoral immune response compared with the commercial PPV inactivated vaccine.
Furthermore, the subunit vaccine induced long-lasting antibody levels compared with the
commercial PPV inactivated vaccine. Additionally, HI antibody titers in serum from sows
immunized with the PPV/VP2/N-2-HACC and commercial PPV inactivated vaccine were
detected at four weeks after the immunization, and the immune protection against PPV
infection was induced in the sows in both groups.

Figure 2. PPV-specific antibody titers (A) and the levels of IFN-α (B), IFN-β (C), and IFN-γ (D) in
serum from the sows immunized with the PPV/VP2/N-2-HACC, commercial PPV inactivated
vaccine, N-2-HACC and PBS via intramuscular injection. Values represent mean ± S.D. (n = 5). Note:
a, b, c: Values within the same column with the different lower case letters (a–c) in the superscript
indicate statistically significant differences (p < 0.05).

3.6. PPV/VP2/N-2-HACC Does Not Enhance Cellular Immune Response

To evaluate the cellular immune response induced by the PPV/VP2/N-2-HACC,
we investigated the levels of IFN-α, IFN-β, IFN-γ, IL-2, and IL-4, as well as the content
changes of CD4+ and CD8+ T lymphocytes, in each immunized group. From first to
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eighth week post the immunization, the levels of IFN-α (Figure 2B), IFN-β (Figure 2C),
IFN-γ (Figure 2D), IL-2 (Figure 3A), and IL-4 (Figure 3B) in the PPV/VP2/N-2-HACC and
commercial PPV inactivated vaccine groups had no significant difference compared with
those of the control group (p > 0.05).

Figure 3. The levels of IL-2 (A) and IL-4 (B) in serum from the sows immunized with the PPV/VP2/N-
2-HACC, commercial PPV inactivated vaccine, N-2-HACC, and PBS via intramuscular injection.
Values represent mean ± S.D. (n = 5).

Figure 4 shows that the contents of CD4+ and CD8+ T lymphocytes from the 4th to
12th week post the immunization were not significantly different between the vaccine-
immunized groups and control groups (p > 0.05). These results indicated that both the
PPV/VP2/N-2-HACC and commercial PPV inactivated vaccine did not induce the cellular
immune response.

Figure 4. The contents of CD4+ (A) and CD8+ (B) T lymphocytes in the blood from the sows
immunized with the PPV/VP2/N-2-HACC, commercial PPV inactivated vaccine, N-2-HACC, and
PBS via intramuscular injection. Values represent mean ± S.D. (n = 5).

3.7. PPV/VP2/N-2-HACC Protects Pigs from PPV Infection

The PPV/VP2 specific antibody was measured by ELISA assay after the challenge
(Table 1). HI antibody titers in the N-2-HACC and PBS groups were all at a low level.
The levels of HI antibody in the PPV/VP2/N-2-HACC group were significantly higher
compared with the commercial PPV inactivated vaccine group in the first and third week
after challenge (p < 0.05), while HI antibody between the PPV/VP2/N-2-HACC group and
commercial PPV inactivated vaccine group had no significant difference in the second and
fourth week after challenge. The contents of CD4+ (Figure 5A) and CD8+ T lymphocytes
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(Figure 5B) in the peripheral blood had no significant changes after the challenge between
the PPV/VP2/N-2-HACC and commercial PPV inactivated vaccine groups (p > 0.05).

Table 1. HI antibody titers in serum after challenge (unit: Log2).

Groups
Weeks after Challenge

1 2 3 4

PPV/VP2/N-2-HACC 9.5 ± 0.7 a 10.5 ± 0.71 a 10.0 ± 0.0 a 10.0 ± 1.41 a

Commercial PPV inactivated
vaccine 8.0 ± 0.0 b 10.5 ± 0.71 a 11 ± 1.41 b 10.0 ± 0.0 a

N-2-HACC 7.0 ± 0.0 c 7.5 ± 0.71 b 7.0 ± 0.0 c 6.5 ± 0.71 b

PBS 7.5 ± 0.71 c 7.0 ± 1.41 b 7.5 ± 0.71 c 7.0 ± 0.0 b

Note: Values within the same column with the different lower case letters (a–c) in the superscript indicate
statistically significant differences (p < 0.05).

Figure 5. Contents of CD4+ (A) and CD8+ (B) T lymphocytes in the peripheral blood after challenge.
Values represent mean ± S.D. (n = 5).

The ability of PPV/VP2/N-2-HACC to eliminate PPV infection was assessed after the
challenge with PPV. The high-titer viruses from different organs were detected, and no
virus was detected in the organs of all the sows immunized with the PPV/VP2/N-2-HACC
and commercial PPV inactivated vaccine at 28 days after the immunization.

Five sows immunized with the PPV/VP2/N-2-HACC and commercial PPV inac-
tivated vaccine displayed no disease symptoms and survived until 28 days after the
challenge. The sows in the N-2-HACC and PBS groups showed clinical symptoms, while
the sows in the PPV/VP2/N-2-HACC and commercial PPV inactivated vaccine groups
did not show clinical symptoms (Table 2). The protective efficacy was 100% for the sows
immunized with the PPV/VP2/N-2-HACC and commercial PPV inactivated vaccine. The
fetuses in the uterus of sows immunized with the commercial PPV inactivated vaccine
were normal, while the fetuses of the N-2-HACC and PBS groups showed various degrees
of fetal mummification (Table 2). Because the sows immunized with the PPV/VP2/N-2-
HACC were not successfully mated, the results of fetuses from sows immunized with the
PPV/VP2/N-2-HACC were not shown in Table 2.

Table 2. Protective efficacy of immunized sows after challenged with PPV-H strain.

Groups
The Number of Sows

with Clinical
Symptoms/Total Sows

The Number of Diseased
Fetuses/Total Fetuses

PPV/VP2/N-2-HACC 0/5 —/—
Commercial PPV inactivated vaccine 0/5 0/5

N-2-HACC 5/5 5/5
PBS 5/5 3/3
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Histologically, the kidney surface of sows in the PBS and N-2-HACC groups had a
large number of bleeding spots, the surfaces of the liver, spleen, and heart had dark red
hemorrhages, and the pathological sections showed local inflammation. There were a
large number of red blood cells and white blood cells in alveoli from sows in the PBS and
N-2-HACC groups, the capillaries in the alveolar walls were congested with many red
blood cells, and there was hemosiderosis. However, the heart, liver, spleen, lung, and
kidney from sows immunized with PPV/VP2/N-2-HACC and commercial PPV inactivated
vaccine significantly eliminated the viral infection during the challenge, and no obvious
pathological changes were found (Figure 6). Additionally, organs obtained from sows
immunized with the PPV/VP2/N-2-HACC showed less pathological changes compared
with the commercial PPV inactivated vaccine group (Figure 6).

Figure 6. Histopathological analyses of heart, liver, spleen, lung, and kidney from the immunized
sows at 28 days after the challenge with the highly virulent PPV.

4. Discussion

PPV causes reproductive failure in pregnant sows, and vaccine immunization is con-
sidered to be the most valuable and valid way to prevent PPV. Current vaccines have some
flaws [29–31], and it is necessary to develop a novel adjuvant to improve the effectiveness
of the PPV vaccine. Chitosan nanoparticle delivery systems have been used for encap-
sulation of antigen, which enhances antibody responses compared with the traditional
adjuvant. We have previously evaluated the potential of chitosan nanoparticles as an adju-
vant in the NDV vaccine and avian influenza virus (AIV) vaccine in chickens. However,
the water solubility of chitosan is weak, which limits its application as an adjuvant [32].
Our previous study has proved that the water-soluble N-2-HACC can serve as a safe
vaccine adjuvant and delivery carrier for the NDV vaccine [33]. Therefore, in the present
study, we investigated the potential of the water-soluble N-2-HACC as an adjuvant to
enhance protective immune responses of the VP2 subunit vaccine in sows. In vivo safety
results showed that the sows’ diets and spirits were normal and there were no signs of
morbidity after intramuscular injecting 10 times dose of the PPV/VP2/N-2-HACC, and
the PPV/VP2-N-2-HACC generated significantly higher systemic antibody responses and
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protected sows against PPV infection. Therefore, the PPV/VP2-N-2-HACC could be a
potential vaccine candidate.

The immune system is diverse with the capability of responding to all types of infec-
tious organisms [34]. Humoral immunity plays an important role in the immune system.
Higher antibody titers and longer duration play an important role in preventing and
defending against epidemic diseases. Nanocarrier-based delivery systems can provide
a suitable route of administration and induce robust humoral immune responses. In the
present study, at the first to third week after the immunization, the HI antibody levels of
commercial PPV inactivated vaccine were higher compared with the PPV/VP2-N-2-HACC
(p < 0.05). However, the levels of HI antibody in the PPV/VP2/N-2-HACC group were
increased rapidly at 28 days after the immunization, and then the upward trend was
relatively flat until 56 days after the immunization. From 70 days after the immunization,
the serum HI antibody levels of PPV/VP2-N-2-HACC were higher compared with the com-
mercial PPV inactivated vaccine, while the differences in both groups were not significant
(p > 0.05). The antibody titer in the PPV/VP2-N-2-HACC group remained at a high level for
more than 14 weeks. These results showed that the immunity linked to the administration
of commercial PPV inactivated vaccine started earlier, the PPV/VP2-N-2-HACC had better
results in the long period, and the PPV/VP2/N-2-HACC enhanced the humoral immunity.

The cytokines secreted by helper T cells can be divided into Th1-related cytokines
(IFN-γ and IL-2) and Th2-related cytokines (IL-4 and IL-6) [35]. Two types of cytokines
are mutually restricted in the body to maintain the body’s immune balance [36,37]. IFN-γ
mediates cellular immunity by promoting the proliferation and differentiation of T cells,
and it is indispensable for the activation of macrophages that ingest and kill intracellular
pathogens. IFN-γ and IL-12 promote IgG2a production (Th1 type) [38]. IL-2 is an important
component for the activation and differentiation of T lymphocytes. In addition, it can
promote the secretion of immunoglobulins produced by B cells and induce the differen-
tiation and proliferation of natural killer cells [39]. IL-4 plays an important role in Th2
differentiation and strongly induces the secretion of IL-5, IL-9, and IL-10 [40]. Besides,
IFN-α and IFN-β are important members of the interferon family and belong to type I
interferon [41]. IFN-α has cytotoxic activity, and IFN-β is secreted by immune cells, both
playing important roles in cellular immunity [42]. In the present study, the contents of IL-2,
IL-4, IFN-α, IFN-β, and IFN-γ were detected in the serum of sows immunized with the
PPV/VP2/N-2-HACC and commercial PPV inactivated vaccines, while there was no sig-
nificant difference among these groups. It indicated that the PPV/VP2/N-2-HACC failed
to induce Th1 and Th2 immune responses. T-helper lymphocytes (CD4+) and T-cytotoxic
lymphocytes (CD8+) are key links in the immune regulation of organisms. CD4+ T lym-
phocytes can promote a cell-mediated immune response and induce the maturation of Ts
and Th cells. CD8+ T lymphocytes can recognize and kill the infected cells in the host [43].
Cellular immunity plays a role in clearing the long-term viral infection. Therefore, it may
be relevant for long-term PPV infection [44]. In the present study, the contents of CD4+ and
CD8+ T lymphocytes in the serum of sows immunized with the PPV/VP2/N-2-HACC and
commercial PPV inactivated vaccine did not change after immunization and challenge. The
changes of CD4+ and CD8+ T lymphocytes were consistent with the cytokine test results.
Therefore, the PPV/VP2/N-2-HACC induced good humoral immunity in the body, while
it did not induce cellular immunity.

Numerous derivatives of chitosan with varying chemical and physical properties have
been synthesized in recent years. In the present study, our results showed that the prepared
PPV/VP2/N-2-HACC had good storage stability, no pathogenic microbial contamination,
safety with high doses, and fewer pathological changes after being challenged with PPV-H
strain. Moreover, the adjuvanticity of water-soluble chitosan was evaluated, and the result
showed that the water-soluble chitosan significantly improved the protective effec of the
PPV subunit vaccine against PPV infection. Our findings indicated that the N-2-HACC
was a potential candidate adjuvant and could be highly useful for the rational development
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of improved vaccines, suggesting the possibility of the PPV/VP2/N-2-HACC to be a novel
efficient PPV vaccine.

5. Conclusions

These results indicated that the PPV/VP2/N-2-HACC nano subunit vaccine was safe
and had good storage stability and could be placed for a long period even at the room
temperature. While results of the immunization showed that the immunity linked to
administration of commercial PPV inactivated vaccine started earlier, the PPV/VP2-N-2-
HACC had better results in the long period.
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