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Population Dynamics 

The model considers 27 age groups: 0-2 Months, 2-4 Months, 4-6 Months, 6-8 Months, 8-10 

Months, 10-12 Months, 1-2 years, 2-3 years, 3-4 years, 4-5 years, 5-6 years, 6-7 years, 7-8 years, 

8-9 years, 9-10 years, 10-11 years, 11-12 years, 12-13 years, 13-15 years, 15-18 years, 18-21 years, 

21-25 years, 25-35 years, 35-45 years, 45-55 years, 55-65 years, and >65 years. Those age groups 

were taken from Israel’s central bureau of statistics and were chosen as the finest resolution for 

good, significant data both on the demographics point of view and our primary case data. 

Population Growth Model 

We developed an aged-structured population growth model for the years 1951-2016. The model 

explicitly considered the variation in birth, mortality and immigration over the years as reported 

by the Israeli Central Bureau of Statistics (CBS). A snapshot of the year 1988 is depicted in Figure 

S1.  

 

To detirmine the intial number of individuals in each health compartment in the transmission 

model, we fixed the age distribution of 1951, and ran the dynamic model for 30 years. Given that 

pertussis is highly contagious and that there was no vaccination during that time period, we 



arbitrarily initalized the following paramters to 𝑆(𝑡 = 0)=0.2, 𝐼((𝑡 = 0)=0.02, 𝑅(𝑡 =

0)=0.78, which we confirmed to have no effect on our simluations.  

 

 

Figure S1: A snapshot of the age distribution at the year 1988, as considered by our population growth model. The 
information is presented as a population pyramide, where the X-axis represents the number of people (in thousands) 
and the Y-axis represents 5-year age groups. An interactive video showing the changes in age distribution over the 
years is available at [1].  
 

Contact Mixing Patterns 

Given a person of age group  and their infected contact of age group , we evaluated the daily 

contact rate , using data from a previous study [2]. In order to match the contact ages to our 

selected demographics and in order to have a symmetric matrix, we adjusted the matrix according 

to the means for reciprocal age group pairing as conducted by a previous study [3] (Figure S2).  



 
Figure S2: Contact matrix between different age groups. Darker colors stand for higher values 
 

Parameters Estimation 

Our model includes several missing parameters that were evaluated using primary data on 

pertussis. This primary data from the Israeli Ministry of Health (IMoH) encompass all reported 

pertussis cases for the entire Israeli population from January 1998 to December 2013. The dataset 

contains over 20,000 reported pertussis cases and includes demographic information such as age, 

ethnicity, and residence, as well as medical information such as date of GP and hospitalizations 

visits, and laboratory test results. We also used another, publically available (REF) IMoH dataset 

of yearly-aggregated cases of pertussis in Israel since 1951. We normalized both pertussis datasets 



using census data from the Israeli Central Bureau of Statistics to calculate the number of pertussis 

cases per 100,000 population. Given that all records in Israel are electronically reported, we 

consider our data to be 100% of all reported cases. Yet, due to under reporting, misclassification, 

and asymptomatic infections, we assumed that only 1.5% are reported. This assumption is 

consistent with previous studies in the US, and inline with a previous serological study conducted 

in Israel [4,5].   

Unifying Age Groups 

In order to get a more representing fit, we needed to choose age groups that would capture 

population dynamics while still having a statistical significance within every group. The 27 age 

were summed over to create 3 new “super” age groups. 

To determine which ages should be combined to each group, the cases were stratified by age. First, 

the cases and were fitted a general mixture model of 3 normal distribution using expectation 

minimization. Second, the age boundaries were chosen to reflect population dynamics, while still 

taking the general mixture model into account. Infants under 1 are the main driver of the disease, 

and 21 is the nominal age for military discharge. The age groups that were chose where 0y-1y, 1y-

21y, >21y (Figure S3). 

 



 
Figure S3: Case distribution by age with fitted labels from a general mixture model. Clear pattern can be seen of the 
three distinct age groups. Decision boundaries were chosen to reflect both the fitted distribution and the country’s 
population dynamic. 
 

Parameter estimation using MCMC 

We estimated 4 model parameters for the force of infection and validated them by fitting the model 

to the age-stratified reports of our primary data representing 16 years from 1998-2014 of Israeli 

pertussis cases. 

The age-dependent susceptibility was modelled by fitting susceptibility amplitude rates  for ages 

0-1, 1-21, >21, multiplied by the periodical frequency , periodical offset  and an additive 

parameter  that represents a constant, “basic” force. 

The proposed model Equations 1 has no closed-form solution, and the estimated parameters are 

very difficult to measure in a study. Therefore, we have to measure them through are primary 

population-level data. 



Markov Chain Monte Carlo simulations were used to estimate these parameters (Figures S4 and 

S5). In that Bayesian approach, the parameters are not valued by their point estimate, but by a set 

of values that can be described as a probability distribution. The MCMC is in an iterative process 

where the parameter starts with an initial, prior probability (Table 2 main text), and then, using 

Bayes’ Theorem, is updated to the posterior distribution. 

We applied the MCMC using the Metropolis Hastings algorithm. We assumed a multi-normal 

proposal distribution, and updated the standard deviation to be the product of covariance between 

the parameters in the last 250 iterations and a scaling factor.  

We assumed normal error between our model and the data, thus taking the likelihood function as 

the mean-squared error between 192 months over 3 age groups, in our data, and their 

corresponding predictions in our model. The data was multiplied by to 100 (1%) for infants and 

by 67 (1.5%) for other age groups, to account for reporting rates. After reaching convergence on 

the algorithm, we ran it for 25000 more iterations, with a constant proposal distribution. 

 

 



 
Figure S4: MCMC Chain Convergence with four chains 



Figure S5: MCMC Chains and Distributions for Chosen chain after Gelman-Rubin convergence 

 



 

Policy Determination  

Effective Sample Size 

Given a chain of a converged MCMC, we have chosen a subset of 2000 parameter sets (A 2000 

by 4 matrix) - First we used a burning of 10,000 samples as this was the warming-up period were 

the chain is not reversible. Then, from the remaining 25,000 sample we have taken a thinning rate 

of  where   and 

𝑎𝑐𝑓(𝑘, 𝑝) is the autocorrelation of parameter  with lag . We ended up with ~2000 samples for 

each MCMC scenario. 

Simulation Process 

From the ~2000 sample, we ran 5000 simulation iterations. At each iteration of the simulation we 

sample 1) one set of parameters, 2) a uniformly-generated maternal vaccine coverage 3) 

 that represents the chance to be hospitalized given infection.  are taken from a 

beta distribution  where  is the number of hospitalized cases between 2004 

and 2014, while  are the non-hospitalized cases. We ran a simulated future between the years 

2014 and 2026 for each of the 30 policies. We compare each policy pairwise with a base policy 

such that for every tested policy we have 1) aggregated cases for the 12-year period, 2) aggregated 

hospitalizations, 3) aggregated cases of children under 1, and 4) aggregated hospitalizations of 



children under 1. Those are simulated results based on the same parent distribution, thus assuring 

a result is significant without the need to account for multiple comparisons. 

Parameter Distribution 

Maternal Coverage  

   

   

   
Table 2: Draw distribution for simulation-level parameters. 
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