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Abstract: African swine fever (ASF) is today’s number one threat for the global swine industry.
Neither commercial vaccine nor treatment is available against ASF and, thus far, only live attenuated
viruses (LAV) have provided robust protection against lethal ASF virus (ASFV) challenge infections.
Identification of ASFV proteins inducing protective immune responses is one of the major challenges
to develop safer and efficient subunit vaccines. Immunopeptidomic studies recently performed in
our laboratory allowed identifying ASFV antigens recognized by ASFV-specific CD8" T-cells. Here,
we used data from the SLAI-peptide repertoire presented by a single set of ASFV-infected porcine
alveolar macrophages to generate a complex DNA vaccine composed by 15 plasmids encoding the
individual peptide-bearing ORFs. DNA vaccine priming improved the protection afforded by a
suboptimal dose of the BA71IACD2 LAV given as booster vaccination, against Georgia2007/1 lethal
challenge. Interestingly, M448R was the only protein promiscuously recognized by the induced
ASFV-specific T-cells. Furthermore, priming pigs with DNA plasmids encoding M488R and MGF505-
7R, a CD8* T-cell antigen previously described, confirmed these two proteins as T-cell antigens with
protective potential. These studies might be useful to pave the road for designing safe and more

efficient vaccine formulations in the future.

Keywords: African swine fever; antigen discovery; T-cells; DNA immunization; live attenuated
virus; protection; immunopeptidomics

1. Introduction

African swine fever (ASF), a pig hemorrhagic disease of obligatory notification to
the World Organization for Animal Health (OIE), is currently one of the major threats to
domestic pigs worldwide. While ASF has been enzootic in many Sub-Saharan countries
since its discovery in 1921, the last occurrence of ASF virus (ASFV) in Georgia in 2007
has provoked its global expansion, starting first in the Caucasian region and Russia and
reaching countries of the European Union in 2014 [1,2]. ASFV in this area has circulated
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between domestic pigs and wild boars, equally susceptible to ASFV, complicating the
control of the disease [3]. The expansion of ASF in Asia and Oceania has been much faster
than in Europe since it was first detected in China in Summer 2018 [4,5], mostly mediated
by human trading activities, with wild boars playing a marginal role thus far. Due to the
lack of commercial vaccines and therapeutics, classic sanitary methods remain as the only
control strategy for ASE. These include early diagnosis followed by stamping out of the
infected and potentially in contact animals, extensive disinfection and rigorous biosecurity
protocols on farms [6]. Confirmation of ASF represents major trade restrictions and serious
economic losses for the affected regions [7,8]. Therefore, developing safe and efficient
vaccines against ASF is imperative if aiming to control and eradicate the disease.

The complexity of ASFV, a large, multi-enveloped and multi-capsid, icosahedral virus
with a dsDNA genome of about 180 kbp in length [9], has complicated the generation of
safe and efficient vaccines. As described in the latest blueprint published by the European
Commission, live attenuated viruses (LAVs) are the most plausible ASF-vaccine option in
the short term [10]. The only data indicating protection from challenge infection available
today against the pandemic ASFV strain, currently circulating in Asia and Europe, come
from the use of naturally attenuated virus strains [11,12] or recombinant LAVs [13-18].
Despite their protective abilities, LAVs have to improve their safety and DIVA capabilities
to be commercially viable in ASF-free areas. While recognizing the key role that future
licensed ASF LAVs will play to control ASF in endemic and infected areas and/or in
emergencies, it is indispensable to continue our research on safer ASF vaccine alternatives
for global use.

The presence of more than 150 open reading frames (ORFs) in the ASFV genome [9,19,20],
together with the lack of protection correlates, hampers the design of rational subunit vac-
cine formulations. As a good example, and even though the crucial role of CD8" T-cells in
protection against ASFV has been established [21], the relevant antigens specifically stimu-
lating this cell subset and inducing protective responses have not been fully determined
yet. Thus, subunit vaccine formulations used in experimental setups have only conferred
partial protection against ASF, and, unfortunately, these results have not been reproduced
against the Georgia2007/1 pandemic virus currently circulating [22]. Gaining knowledge
on this critical gap is essential to allow the rational design of future subunit vaccines. Due
to the failure of previous formulations using DNA vaccination alone against Georgia2007/1
and aiming to increase the chances to discover new T-cell determinants with protective
potential against Georgia2007/1, we decided to perform two independent in vivo experi-
ments following a heterologous prime—boost regime. Therefore, here we first showed that
DNA immunization of pigs with a cocktail of 15 plasmids encoding one ASFV protein eac,
enhanced the protection afforded by a suboptimal dose of BA71ACD2 [14] and confirmed
M448R as the main target for the T-cells induced. The proteins were selected based on
SLAI binding peptides identified using porcine alveolar macrophages (PAMs) infected
with ASFV in vitro. A second immunization experiment was performed by priming pigs
with a mix of pCMV-Ub-M448R and pCMV-Ub-MGF505-7R only, encoding M488R and
MGF505-7R, previously identified as commonly recognized by CD8* T-cells [23], to identify
their protective potential. We finally discuss the possibilities of these methodologies for
antigen discovery and designing future subunit vaccines.

2. Materials and Methods
2.1. Cells

Porcine primary cells were collected from ear tissue samples and fibroblast mono-
layers were obtained following previously described protocols [24]. Porcine peripheral
blood mononuclear cells (PBMCs) were isolated from whole blood using Histopaque-1077
density gradient solution (Sigma-Aldrich, Saint Louis, MO, USA) and maintained in RPMI
1640 medium (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
10% heat-inactivated FBS (GE HealthCare, Chicago, IL, USA), 100 IU/mL of penicillin
(Invitrogen, Carlsbad, CA, USA), 100 pug/mL of streptomycin (Invitrogen) and 2 mM L-
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glutamine (Invitrogen). Fifty micromolar 3-mercaptoethanol (Sigma-Aldrich, Saint Louis,
MO, USA) was added to the medium to help maintain reducing conditions during the
ELISpot assays. Rabbit kidney epithelial RK13 cells were cultured in DMEM supplemented
with 10% FBS, 100 IU/mL of penicillin, 100 ng/mL of streptomycin and 2 mM L-glutamine.

2.2. African Swine Fever Virus Strains

BA71ACD?2 is a LAV lacking the CD2v gene (EP402R), obtained by homologous
recombination from the parental virulent BA71 ASFV strain [14]. Immunization with
BA71ACD2 protects pigs against homologous and heterologous ASFV lethal challenge in a
dose dependent manner. Georgia2007/1 is the pandemic virulent strain of ASFV currently
circulating in Asia and Europe and was kindly provided by Dr. Linda Dixon (The Pirbright
Research Institute, UK).

2.3. Identification of SLAI-Bound Peptides

First, 5 x 10° PAMs/well were seeded in a 6-well plate for ASFV infection, using a
multiplicity of infection (MOI) of 0.1. Cells were harvested by scrapping when cytopathic
effect was evident. Cells were sedimented by centrifugation and obtained cell pellets were
frozen at —80 °C until further use for affinity purification of SLAI molecules followed
by liquid chromatography coupled to mass spectrometry (LC-MS/MS) as previously
described [23].

2.4. Plasmids Encoding ASFV Genes

Fifteen Georgia2007/1 ORFs encoding B475L, B602L, CP2475L (partial), D339L, DP238L,
EP424R, H339R, 1226R, 1243L, 173R, I9R, K145R, M448R, MGF505-1R and MGF505-3R (Gen-
Bank accession number FR682468) were individually cloned into the pCMV plasmid (Clon-
tech Laboratories, Inc., Mountain View, CA, USA). The plasmid pCMV-Ub-MGF505-7R
was previously used to define MGF505-7R as an ASFV antigen recognized by ASFV-specific
CD8" T-cells [23]. Each ORF was cloned in frame with ubiquitin at the N-terminus with
the aim to improve proteasome degradation and subsequent CD8" T-cell induction [25].
In addition, a FLAG-tag sequence was located at the C-terminal end to facilitate the de-
tection of protein expression [26]. Protein expression was analyzed by anti-FLAG-tag
immunofluorescence in transfected RK13 cells. Transfection of RK13 cells was performed
using Lipofectamine 3000 transfection kit (Invitrogen) according to the manufacturers’
instructions. After paraformaldehyde fixation and subsequent Tween-20 permeabilization,
cell monolayers were incubated with AlexaFluor 488-conjugated anti-FLAG-tag mono-
clonal antibody (MA1-142-A488, Invitrogen) diluted 1:100. Hoechst 33342 (Thermo Fisher
Scientific, Waltham, MA, USA) was used for nucleus staining. Cells were finally examined
by fluorescence microscopy.

2.5. In Vivo Experimental Design

Two independent experiments were performed using groups of five four-week-old
male piglets (Landrace x Large White), housed in experimental boxes of the biosafety
level 3 facilities at IRTA-CReSA (Barcelona, Spain). After 7 days of acclimatization, all pigs
were immunized using a heterologous prime-boost regime, priming twice with plasmid
DNA encoding ASFV proteins (DNA priming) and subsequently boosted with 103 plaque-
forming units (PFU) of BA71ACD?2, a recombinant live attenuated vaccine dose previously
described as partially protective [14]. For DNA priming, pigs were immunized with either
the empty pCMV-Ub plasmid (negative control) or a mixture of the corresponding recom-
binant plasmids. Pigs were immunized twice with 0.6 mg of total endotoxin-free DNA
(Qiagen, Hilden, Germany) in 1.5 mL saline, two weeks apart, following the previously
described protocol [27]. Two weeks after the second DNA immunization, all pigs were
intramuscularly inoculated (heterologous boost) with 103 PFU of BA71ACD2. Finally, pigs
were challenged intramuscularly with a lethal dose of 10° gene equivalent copies (GEC) of
Georgia2007 /1, three weeks after last immunization (Figure 1). Blood samples and nasal
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swabs were taken at different time points after: DNA primary vaccination (0, 4 and 7 days
post primary vaccination (dpp)), BA71ACD2 boost (0, 4, 7 and 14 days post booster vacci-
nation (dpb)) and Georgia2007/1 challenge (0, 4, 7, 14 and 21 days postchallenge infection
(dpc)). Rectal temperatures were monitored daily, as well as ASF typical clinical signs,
including behavior, body condition (prominence of vertebrae and ribs), cyanosis, digestive
and respiratory signs. Each parameter was scored from 0 to 3 according to the severity (0:
normal; 1: mild; 2: moderate; 3: severe). Post-mortem examinations were carried out to
confirm or discard the presence of ASF typical pathological lesions [28]. Animal care and
procedures were carried out in accordance with the guidelines of the Good Experimental
Practices and under the supervision of the Commission of Animal Experimentation of
Generalitat de Catalunya (approval code CEA-OH/9212/2). As mentioned above, two
independent in vivo experiments were performed priming pigs with different plasmid
compositions. In the first experiment, pigs were primed with the cocktail of 15 plasmids,
and, in the second experiment, pigs were primed with a mix of pCMV-Ub-M448R and
pPCMV-Ub-MGF505-7R, following the procedure described above.

DNA priming
! I BA71ACD2 Georgia2007/1
1st DNA 2nd DNA boost lethal
immunization| | immunization v challenge
v v v
Weeks 0 2 4 7 10
i I I — i —— i i
0 4 7 0 4 7 14 0 4 7 14 21
| dpp dpb | dpc

Figure 1. Schematic representation of the in vivo experimental designs. The two in vivo experiments performed in this

study followed an identical scheme but priming with different plasmid combinations: either 15 clones in Experiment 1 or
the combination of two plasmids (pCMV-Ub-M448R + pCMV-Ub-MGF505-7R) in Experiment 2. Groups of five pigs were
primed twice two weeks apart using the indicated DNA plasmid mixes and boosted with 103 PFU of BA71ACD2. Three
weeks after the boost, pigs were challenged with a lethal dose of Georgia2007/1. Samples were taken at different days post

priming (dpp), post boost (dpb) or post challenge (dpc).

2.6. Analytical Assays

DNA was obtained from sera and nasal swab-PBS suspensions (NucleoSpin Blood kit;
Macherey-Nagel, Diiren, German) and ASFV-specific DNA was quantified by real-time
PCR (qPCR), using methods previously described in our laboratory [29]. Results were
expressed as logjp numbers of GEC per mL of sera or nasal swab-PBS suspension. The
limit of detection of the assay was established at 103 GEC/mL. For comparative purposes,
our qPCR technique has previously shown more reproducible results in sera than in whole
blood. Therefore, virus in sera and no viremia was measured, being aware that the amount
of virus present in blood would be around 1 log higher in magnitude.

ASFV-specific immunoglobulin G (IgG) in pig sera were detected by the OIE-approved
indirect ELISA assay based on the use of soluble extracts from ASFV-infected cells [30].
Plates were read at a wavelength of 450 nm and results from individual pigs were expressed
as optical density (OD) values.

ASFV specific T-cell responses were assessed for each individual pig at the indicated
times after immunization and after Georgia2007/1 challenge by IENY ELISpot assay using
PBMCs from immunized pigs as previously reported [29]. As specific stimuli, PBMCs were
incubated overnight with 10° PFU BA71ACD2 per well (multiplicity of infection of 0.2). RPMI
and 10 pg/mL phytohemagglutinin-M (PHA-M, Sigma-Aldrich, Saint Louis, MO, USA) were
used as negative and positive controls, respectively. The frequency of specific IFNY-secreting
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cells (IFNY-SC) represented in the graphs is the mean of two replicates, subtracting the
counts in the negative control wells. Three hundred spots/well was considered the limit of
our assay resolution (wells with more than 300 spots received a score of 300).

When fibroblastoid cells were used as antigen presenting cells (APCs) in the ELISpot
assay, the ratio used was one APC to five autologous PBMCs, and plasmid transfection was
performed by electroporation using the Neon Transfection System 10 pL Kit (Invitrogen,
Carlsbad, CA, USA), as previously described [23]. The number of spots in a control well
using fibroblastoid cells transfected with the empty pCMV-Ub plasmid, which never
exceeded 10, was subtracted from the specific IFNY-SC represented in the graphs.

2.7. Statistical Analysis

For transparency, data from individual animals (always groups of five pigs each) are
provided. Complementarily, statistical analysis was inferred between groups applying a
standard lineal model (SliM) at different time points while there were enough pigs alive.
Thus, no statistical analysis could be performed from the time in which control groups
counted with only one surviving pig (in both experiments). This analysis was done using
RStudio software [31] with tidyverse and survival packages [32,33]. Statistical significance
was set at p < 0.05. Sample size is one of the main factors affecting the power of statistical
tests, therefore due to lack of enough surviving pigs in the control group (only one out of
five in each experiment) analysis were limited.

3. Results
3.1. DNA Immunization with a Cocktail of Plasmids Encoding 15 ASFV Pre-Selected Proteins
Improves Protection against Georgia2007/1 Challenge Infection

To confirm the potential of our immunopeptidomic assays to identify potentially
protective ASFV antigens, we infected a randomly selected PAM sample from our cell
culture collection with BA71ACD2, at a MOI of 0.1. Fifty-four hours after infection, cells
were lysed, SLAl-peptide complexes were immunoprecipitated, the SLAI-bound peptides
were eluted and subjected to LC-MS/MS as recently described [23]. As shown in Table 1,
17 individual ASFV peptides were identified, all of them between 8 and 12 amino acids
in length and belonging to 15 different antigens (Table 1). The corresponding ORFs were
cloned into the pCMV plasmid, under the control of an immediate early promoter of human
cytomegalovirus for eukaryotic expression. Each ORF was cloned in frame with ubiquitin
to optimize their SLAI antigen presentation and the induction of specific CD8+ T-cell
responses [29,34] and with the FLAG-tag peptide in their C-terminal end to confirm their
expression. Thus, before any in vivo experiment, the expression of each protein was tested
by transient transfection of RK13 cells and anti-FLAG tag immunofluorescence (Table 1).

Table 1. Selection of ASFV ORFs for in vivo immunization studies.

Peptides Protein Activity/Similarity Plasmid Anti-FLAG Tag

DSFIPKEYSQSI

NKKLYEKML B475L Unknown pCMV-Ub-B475L-Flag +
RKQELLTSQEL

KVDEFYYKY B602L Major capsid protein p72 pCMV-Ub-B602L-Flag +

chaperone

ITKTFVNNI p37 (CP2475L /partial) Structural polyprotein pCMV-Ub-P37-Flag +

RSKKDFKQI D339L RNA polymerase subunit 7 pCMV-Ub-D339L-Flag +

YSEKEKETI DP238L Unknown pCMV-Ub-DP238L-Flag +

NKIKLLNEYL EP424R FTS J-like methyl transferase pCMV-Ub-EP424R-Flag ¥

domain
NPTIIMEQY H339R Unknown pCMV-Ub-H339R-Flag +
KNILNTLMF 1226R Unknown pCMV-Ub-1226R-Flag +
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Table 1. Cont.

Peptides Protein Activity/Similarity Plasmid Anti-FLAG Tag
NTILTNKI 1243L Transcription factor SII pCMV-Ub-1243L-Flag +
TAKNIKVVI I73R Unknown pCMV-Ub-173R-Flag +
YKIYIHSDL I9R Unknown pCMV-Ub-I9R-Flag +
YIKTSKQEYL K145R Unknown pCMV-Ub-K145R-Flag +
RAKIPAQEI M448R RNA ligase pCMV-Ub-M448R-Flag +
YAIHHAPKL MGF505-1R Unknown pCMV-Ub-MGF505-1R-Flag +
KKYQHKHIL MGF505-3R Unknown pCMV-Ub-MGF505-3R-Flag +

All SLAI peptides identified by MS-based immunopeptidomics using ASFV-infected PAMs are listed in column Peptides, while the ASFV
proteins containing the identified peptides and their putative functions are listed in column Protein and Activity/Similarity, respectively.
The plasmids encoded each of the selected ASFV ORFs as fusion with ubiquitin at their N-terminus and with a FLAG-tag in the carboxyl
terminal end (listed in the column Plasmid). Immunofluorescence assays using an anti-FLAG antibody allowed detecting the expression of
the fusion proteins after transient transfection of each plasmid in RK13 (indicated with a + sign).

75

50

% survival

25

1001

Once the expression of the appropriate protein was confirmed, a group of five pigs was

immunized twice two weeks apart with the 15 plasmids cocktail (priming). Five pigs receiv-
ing pCMV-Ub served as control group. Two weeks later, all pigs were boosted with 103 PFU
of BA71ACD?2, and three weeks later were challenged with a lethal dose of Georgia2007/1
(Figure 1). As expected from previous results using 10°> PFU of BA71ACD2 [14], only
one out of the five control pigs (20%) survived the lethal challenge with Georgia2007/1
(Figure 2A). Conversely, three out of five (60%) pigs primed with the 15 recombinant
plasmids and boosted with 10> PFU BA71ACD2 survived the lethal challenge with Geor-
gia2007/1 (Figure 2A).

-+ 15 plasmids
-- Control

C

42.0
)
60% (3/5) < 415

41.0
40.5

20% (1/5) 40.0

Rectal temperature ('

39.5

12 3 456 7 8 9 10 111213 14 1516 17 18 19 20 21

123456789

13 15

21 39.0

Days post Georgia2007/1 challenge

Days post Georgia2007/1 challenge

42.0

415

41.0
40.5

40.0

Control
-
=]
~N

Rectal temperature (°C)

39.0

15 plasmids e 180 ® 181 o 182 v 183 + 184

012345678 9101112131415161718192021

Days post Georgia2007/1 challenge

Control 0 185 {1 186 & 187 v 188 < 189

$ %95 a0

012345678 91011121314151617 18192021

Days post Georgia2007/1 challenge

Figure 2. Priming pigs with 15 plasmids improves the protection induced by suboptimal BA71ACD2 immunization against
lethal Georgia2007/1 challenge. Pigs were immunized twice with either the empty pCMV-Ub plasmid (Control) or the
15 plasmids and next boosted with 103 PFU BA71ACD2. Two weeks later, all pigs were challenged with a lethal dose of
Georgia2007/1 and (A) deaths, (B) ASF-compatible clinical signs and (C) rectal temperature from 15 plasmids (top) and
control (bottom) groups were recorded daily. Solid lines represent animals that survived the challenge while dashed lines
symbolize animals that succumbed the challenge.
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GEC/ml serum (log4q)

GEC/ml serum (log4o)

All pigs that succumbed to Georgia2007/1 challenge suffered typical ASF signs,
evident from Days 4-5 post-challenge (pc) (Figure 2B), independently of the group. These
included lethargy, general body condition, digestive signs, respiratory signs, cyanosis and
fever (Figure 2C). Interestingly, the only control pig surviving Georgia2007/1 challenge,
Pig 185, showed high fever during Days 4-9 pc, while immunized pigs only showed brief
and milder peaks of fever, with Pig 184 showing no apparent clinical signs typical for ASF.

Clinical signs and rectal temperature matched almost perfectly the viral loads found
both in sera (Figure 3A) and nasal swabs (Figure 3B). As expected, pigs succumbing
Georgia2007/1 challenge showed detectable ASFV as early as at Day 4 pc. All surviving
pigs showed a strong reduction of virus in both samples as indicated by decreased GEC.
Thus, the only surviving pig from the control group (Pig 185) showed a maximum of
10° GEC of ASFV detectable between Days 7 and 14 pc, while the three surviving pigs from
the 15 plasmid group showed a maximum of 10* GEC/mL detectable at Day 7 pc in one
sample only (Figure 3A,B).

15 plasmids ® 180 MW 181 A 18271 V 1831 & 184
Control O 185 [ 186+ A 1871 V 188+ O 189+¢

B

y 9,
‘A .
Y S 9 A
y 5, I
=
g 6 v
i 0 D
i o 9
1 :.':.' % 4.
4 - . 3- Ny
0 4 7 14 21 0 4 7 14 21
Days postchallenge Days postchallenge
v 9;
| A 38 A
’ 37 v
Y v ‘
Qo B
g 6 .
o
|
O 4
3.
0 4 7 14 21 0 4 7 14 21
Days postchallenge Days postchallenge

Figure 3. ASFV virus titers in sera and nasal swabs found in pigs after Georgia2007/1 challenge. (A) ASFV titers as indicated
by GEC/mL found in sera and (B) nasal swabs analyzed by qPCR at different time points post challenge in the 15 plasmids
group (top) and the control group (bottom). Solid lines represent animals that survived the challenge while dashed lines

indicate animals that succumbed to the challenge.

3.2. Immunization with the 15 Plasmids Induces ASFV-Specific T-Cells That Specifically
Recognize M488R

As expected due to the presence of ubiquitin in the N-terminus of the ASFV pro-
teins [29,34], no antibody responses were detectable after priming with the 15 plasmids
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(Figure 4A). All pigs seroconverted by Day 14 post-inoculation with BA71ACD2, showing
no statistically significant differences between both groups at any time post-boosting. In
addition, a clear boost of antibody titers after Georgia2007/1 challenge was observed in all
animals, reaching their maximum titers at the latest time point investigated (Figure 4A).

16 plasmids @ 180 H 131 A 1821 V 1831 & 184
Control O 185 O 186+ A 1871 V 1881 & 189 1%

Antibody titers

Georgia2007/1
challenge

n

BA71ACD2

N
L

oM
0 4 7 14 4 7 14 21 4 7 14 21
f dpp } dpb } dpc |
B ELISpot using ASFV as stimulus ELISpot using transfected
? fibroblasts as stimulus
‘2’3881 Hees NOO o8ho o "
o 150 v O 1501
: = ;
S 1009 A & o .
g v S 1001
O 50 S o [ ]
? 3
= ¢ 0 A e} O
T ettt EHOAVQ- === === mmmaom oo O 901
- T T T T T T U.)
Q Q O Q Q (<] 0
K & & K S K =
S I £ o
15 plasmids Control M448R 15 plasmlds

Figure 4. M488R is frequently recognized by ASFV-specific T-cells. (A) ASFV-specific antibodies (total IgG) were measured
by ELISA, expressing the results as OD values at a wavelength of 450 nm. Solid lines represent the 15-ASFV plasmids group
and dashed lines represent the control group. (B) ASFV-specific T-cell responses were assessed by IFNY ELISpot using
PBMC s isolated at different time points: after DNA prime (14 dpp), after BA71ACD2 boost (21 dpb) and after Georgia2007/1
challenge (21 dpc). (C) IENY ELISpot using PBMCs from surviving animals as effector cells and autologous fibroblasts
transfected with pCMV-Ub-M448R or the 15 plasmids as specific stimuli. T indicates animals succumbing to ASFV challenge.

Immunization with the 15 plasmids induced statistically significant ASFV-specific
IFNY responses, detectable 14 days after the second plasmid injection (Figure 4B). By Day
21 pb (after BA71ACD2 boosting), all pigs showed indistinguishable ASFV-specific T-cell
responses, from both the 15 plasmids and the control group. Interestingly, the two pigs from
the 15 plasmids group that did not survive Georgia2007/1 challenge showed the lowest
level of antibodies and ASFV-specific T response at the time of Georgia2007/1 challenge
(Figure 4A,B). Surviving pigs did show very strong cellular responses prior euthanasia.

To identify the specificity of the T-cells recognized by the surviving pigs, PBMCs
isolated 21 days after Georgia2007/1 challenge were stimulated in vitro with autologous
fibroblasts transfected with each individual recombinant plasmid or a mix containing
the 15 plasmids, and the specific IENY secretion was detected by ELISpot (Figure 4C).
Interestingly, only the fibroblasts transfected with pCMV-Ub-M448R induced significant
IENY responses in all four surviving pigs and the response was similar in magnitude to
that obtained with fibroblasts transfected with the mix of the 15 recombinant plasmids
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(Figure 4C). Interestingly, M448R was also recognized by PBMCs from control pigs, indicat-
ing that specific T-cells against this antigen are also induced after BA71ACD2 inoculation
without the need of a DNA priming.

3.3. DNA Immunization with pCMV-Ub-M448R and pCMV-Ub-MGF505-7R Improves
Protection against Georgia2007/1 Lethal Challenge

Given the promiscuous recognition of M448R by ASFV-specific T-cells, we decided to
test the protective potential of a simple DNA formulation based on two plasmids: pCMV-
Ub-M488R and pCMV-Ub-MGF505-7R, recently described in vitro as an ASFV CD8* T-cell
antigen [23], following the immunization strategy described before (Figure 1). Once again,
only one out of the five control pigs (primed twice with pCMV-Ub) survived Georgia2007/1
lethal challenge. On the contrary, three out of the five pigs primed with pCMV-Ub-M488R
and pCMV-Ub-MGF505-7R survived (Figure 5A). In this occasion, two out of the three
surviving pigs from the immunized group showed no clinical signs compatible with ASF
(Figure 5B), with Pig 89 showing no fever at any time point investigated, while Pig 90
showed a peak of fever at the end of the study (Figure 5C). The third surviving pig in
the immunized group (Pig 88) recovered from mild apathy and early fever, resolving the
infection afterwards. Conversely, the only control pig surviving ASFV lethal challenge
(Pig 99) suffered prolonged lethargy starting at Day 9 pc and lasting until the end of the trial.
Moreover, it developed cyanosis in ears and tail, even though fever was only detectable at
the end of the experiment (Figure 5C). Matching fever and clinical signs, succumbing pigs
showed higher virus GEC numbers in both sera (Figure 6A) and nasal swabs (Figure 6B),
3—4 logs above those found in surviving pigs. Only Pig 89 showed no detectable virus in
serum at any time after infection.
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Figure 5. Priming pigs with pCMV-Ub-M448R and pCMV-Ub-MGF505-7R improves the protection afforded by suboptimal
BA71ACD2 immunization against lethal Georgia2007/1 challenge. Pigs were immunized twice with either the empty
pCMV-Ub plasmid (Control) or pCMV-Ub-M488R + pCMV-Ub-MGF505-7R and next boosted with 103 PFU BA71ACD2.
Two weeks later, all pigs were challenged with a lethal dose of Georgia2007/1 and (A) deaths, (B) ASF typical clinical
signs and (C) rectal temperature from pCMV-Ub-M488R + pCMV-Ub-MGF505-7R (top) and control (bottom) groups
were recorded daily. Solid lines represent animals that survived the challenge while dashed lines symbolize animals that
succumbed to the challenge.
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Figure 6. Virus DNA titers found in sera and nasal swabs of pigs after Georgia2007/1 challenge.
(A) ASFV GEC titers found in sera and (B) nasal swabs at different times post Georgia2007/1
challenge detected by qPCR in the pCMV-Ub-M448R and pCMV-Ub-MGF505-7R primed group (top)
and the control group (bottom). Solid lines represent animals that survived the challenge while
dashed lines symbolize animals that succumbed to the challenge.

3.4. M448R and MGF505-7R Are Frequently Recognized by ASFV-Specific T-Cells

Administration of the pCMV-Ub-M448R and pCMV-Ub-MGF505-7R plasmids did not
induce any detectable ASFV-specific antibody response in the IgG ELISA (Figure 7A) due to
the presence of ubiquitin in their N-terminus [29,34]. Conversely, all pigs but one (Pig 100)
showed similar antibody responses by day 21 post BA71ACD2 boosting. Surviving pigs
showed maximum antibody titers after Georgia2007/1 challenge, albeit protection did not
perfectly correlate with the levels of antibodies existing at the time of challenge (Figure 7A).

Priming with pCMV-Ub-M448R and pCMV-Ub-MGF505-7R induced a significant
number of T-cells that specifically recognized ASFV in vitro. The number of T-cells de-
tectable after BA71ACD2 boost dramatically increased in DNA primed pigs, and also in
control pigs, reaching similar levels, with the exception of Pig 100 that showed no specific
T-cell responses (Figure 7B).

Interestingly, specific IFNY responses against M448R and MGF505-7R were detectable
in DNA primed pigs before BA71ACD2 boost, and in both groups of animals after boosting
with BA71ACD2 (Figure 7C, top and bottom). After Georgia2007/1 challenge, surviving
animals showed high numbers of T-cells capable to specifically recognize ASFV (Figure 7B),
and also the M448R and MGF505-7R ASFV proteins (Figure 7C).
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Figure 7. M488R and MGF505-7R are frequently recognized by specific T-cells. (A) ASFV-specific antibodies (total IgG)
were measured by ELISA, expressing the results as OD values at a wavelength of 450 nm. Solid lines represent the M448R +
MGF505-7R group and dashed lines represent the control group. ASFV-specific T-cell responses were assessed by IFNY
ELISpot using as stimulus (B) ASFV or (C) autologous fibroblasts transfected with either pCMV-Ub-M448R or pCMV-Ub-
MGF505-7R at different time points: after DNA prime (14 dpp), after BA71ACD2 boost (21 dpb) and after Georgia2007 /1
challenge (21 dpc). Data from the M448R+MGF505-7R primed group and control group are represented at the top and
bottom, respectively. 1 indicates animals succumbing to ASFV challenge.

4. Discussion

The socioeconomic impact of ASF ranks this lethal swine disease as the number
one challenge for the pig industry worldwide. This relates to animal well-being, trade
restriction and consequently availability of food at affordable prices based on pork. As one
of the most cost-effective measures, ASF vaccine development has a major priority. Thus
far, only LAVs have shown solid protection against ASFV. Even though most of the times
protection is limited to homologous protection [13,16,17], LAVs have become essential
tools to confirm the protective role of innate [35-38] and adaptive immune responses,
with both humoral response [39-41] and ASFV-specific CD8* T-cells [21] playing crucial
roles in protection. In this regard, recombinant LAVs are the most advanced candidates
against the pandemic virus [14-17]. Although still pending approval from the authorized
governmental agencies, LAVs candidates should contribute in the near future to control
ASF in endemic areas and in emergencies. However, it is difficult to envision the use of
LAVs in ASF-free areas in the short term, overall taking into account the non-vaccination
policy applied against other diseases of obliged declaration to the OIE in disease-free
countries. On the other hand, subunit vaccines against ASF are not a utopia, but needing
extra research to understand the disease and subsequent development efforts [22,42],
including discovery of protective antigens.
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Subunit vaccine formulations used in experimental setups have only conferred partial
protection against ASF [29,34,43]. Unfortunately, these results have not been reproduced
against the Georgia2007 /1 pandemic virus currently circulating [22,44,45]. Confirming this
reality, preliminary work perform in our laboratory using DNA immunization as a tool
and CD2v as vaccine target failed to confer any protection against Georgia2007/1 challenge
(unpublished results), while the same formulation conferred partial protection against E75,
a genotype I ASFV strain isolated in Spain in the 1970s [34]. Differences in the amino acid
sequence of CD2v between these two strains might partially explain the different extent
of protection. Thus, the two CD8* T-cell determinants identified in the E75 strain [34] are
absent in the CD2v sequence of the Georgia2007/1 ASFV. Nonetheless, many other reasons
might contribute to this outcome, including the differential degree of virulence due to a
possible different biology observed for these two ASFV strains. Similar results have also
been described for LAV prototypes, showing different protection abilities depending on the
ASFV strain used for vaccine designing and for experimental challenge [46,47]. Thus far,
only complex formulations encoding multiple ASFV antigens have shown some protective
efficacy against experimental lethal Georgia2007/1 challenge, but seldom avoiding the
death of the animals [45,48]. Due to the failure of previous formulations using DNA
vaccination alone against Geogia2007/1 and aiming to increase the chances to discover
new T-cell determinants with protective potential against Georgia2007/1, here we decided
to immunize pigs following a prime-boost regime.

Recent efforts performed using a multiple approach that combined in silico predic-
tions, immunopeptidomics and in vitro antigen presentation assays allowed identifying
a panel of novel Georgia2007/1 antigens commonly recognized by CD8" T-cells from
surviving pigs [23]. Here, we present parallel studies performed in our laboratory confirm-
ing immunopeptidomics as a consistent approach not only to identify ASFV CD8* T-cell
determinants in vitro, but also to discover novel ASFV antigens with protective potential.
Taking into account the failure of our experimental DNA vaccines based on CD2v, here
we implemented a heterologous prime-boosting immunization protocol, boosting DNA-
immunized pigs with a partially protective dose of 103 PFU of BA71ACD2 [14] aiming to
optimize the protective potential of our DNA vaccine formulations against Georgia2007 /1.
A similar immunization strategy using vector-expressed ASFV antigens as a prime, fol-
lowed by a boost with the naturally attenuated OURT88/3 ASFV isolate was previously
published [49]. Nevertheless, that specific study was focused on antibody response, and
neither cell-mediated response nor protective potential was evaluated. Our heterologous
prime-boost protocols were shown to increase the chances to discover ASFV antigens with
protective potential for future vaccine formulations in optimized expression vectors.

In line with previous experiences, priming with DNA vaccines encoding ubiquiti-
nated antigens induced ASFV-specific cellular responses detectable directly after DNA
immunization, while no specific antibody response was observed [29,34]. Unexpectedly,
no significant differences were observed in the kinetics or in the levels of ASFV-specific
IFNY-secreting cells after administration of BA71ACD2 between DNA-primed and control
animals, at least at the time tested (21 dpc) and by using the IFNY ELISpot as readout. The
consistent improvement in the survival rate of vaccinated animals versus control pigs sug-
gests that the T-cell repertoire induced by the DNA priming contributed to a better control
of the infection. It must be noted that the two vaccine formulations successfully tested in
the in vivo experiments here described provided the same degree of protection (60% of the
pigs survived the ASFV lethal challenge). Although the clinical score of the surviving pigs
seemed slightly better in the group primed with pCMV-Ub-M448R + pCMV-Ub-MGF505-
7R than with the 15 ASFV clones, the differences have no statistical significance. Moving
into the field of speculation, plasmids within the plasmids mix neglected due to the lack
of significant responses (data not shown) might have contributed to parallel the protec-
tion rates observed when combining pCMV-Ub-M448R and pCMV-Ub-MGF505-7R. The
protection capabilities of these two plasmids individually were not tested.
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Combining the parallel approaches described here and in our previous report [23], we
aim to identify as many protective determinants as possible in the Georgia2007/1 proteome.
Despite the phenotype of the T-cells secreting IFNY has not been confirmed, the use of
transfected as APCs, in combination with the ubiquitination strategy, points to a CD8* T
cell phenotype, as recently described for other antigens using a similar technology [23].

The lack of in vitro correlates for ASFV protection complicates providing a definitive
explanation of why pigs do or do not survive. In agreement with multiple experiences in
our lab and independently of the ASFV strain used for challenge, no perfect correlation
existed between protection and the level of antibodies detectable by ELISA or the number
of IFNY specific T-cells detectable by ELISpot at the time of challenge. On some occasions,
this relationship seems to exist, as shown in Figure 4 for the IFNY spots found before
Georgia2007/1 challenge, but, in many others, pigs with large amounts of specific T-cells
and antibodies do not survive ASFV challenge. These results confirm that, together with
antigen discovery, extra efforts should be directed at searching for consistent correlates of
protection. Solving this gap would not only help rational vaccine design, but also avoid
unnecessary suffering to pigs, since up to today no alternative to Georgia2007/1 challenge
exists to characterize protective determinants or vaccine prototypes.

Proteins M448R and MGF505-7R were identified not only as frequently recognized
ASFV-specific T-cell determinants, but also as candidates to be included in future and
complex vaccine formulations. Even though M448R remains an uncharacterized protein
in ASFV [19], orthologs have been described in other dsDNA viruses [50,51]. Their RNA
ligase activity is involved in tRNA repair [52], and hence can facilitate host evasion due
to bypassing immune response to damaged RNA associated with virus infection [53,54].
M448R sequence is conserved among ASFV isolates [55], a common feature of metabolic
enzymes [56]. MGF505-7R ASFV gene (A528R in the old nomenclature), also conserved
among ASFV strains [55,57], has been described to encode an IEN inhibitor protein [58].

While this is the first report showing the immunogenicity of the combinations of
both proteins (MGF505-7R and M448R), M448R was previously included in a complex
experimental vaccine formulation based on recombinant viral vectors encoding individual
ASFV proteins [59]. In this case, immunization of both NIH dd minipigs and outbred pigs
with this cocktail induced specific humoral and T-cell response against M448R. However,
the M448R-specific response was not uniform in all pigs and, despite a delayed onset
of clinical signs and reduced viremia and viral loads in tissues, all pigs died after lethal
challenge with OURT88/1 ASFV (genotype I). Further testing of MGF505-7R and M448R,
using the appropriate vaccine vectors would definitively shed more light on their protective
potential. These and others results obtained thus far using complex subunit vaccine
formulations [43,44,48] confirm the complexity of developing safe and efficient subunit
vaccines in the future as well as the need of identifying as many protective antigens as
possible within the ASFV. We believe that this is just one piece of a puzzle, which will also
need further research to select the optimal combination of expression vectors and immune
adjuvants if aiming to mimic the solid protection conferred by LAVs. In addition, a better
understanding of protective innate and adaptive immunity is fundamental to optimize in a
rational manner vaccine compositions in the future.
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