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Abstract: Vaccines are widely employed in aquaculture to prevent bacterial infections, but their use
by the U.S. catfish industry is very limited. One of the main diseases affecting catfish aquaculture is
columnaris disease, caused by the bacterial pathogen Flavobacterium columnare. In 2011, a modified-
live vaccine against columnaris disease was developed by selecting mutants that were resistant to
rifampin. The previous study has suggested that this vaccine is stable, safe, and effective, but the
mechanisms that resulted in attenuation remained uncharacterized. To understand the molecular
basis for attenuation, a comparative genomic analysis was conducted to identify specific point
mutations. The PacBio RS long-read sequencing platform was used to obtain draft genomes of the
mutant attenuated strain (Fc1723) and the parent virulent strain (FcB27). Sequence-based genome
comparison identified 16 single nucleotide polymorphisms (SNP) unique to the mutant. Genes that
contained mutations were involved in rifampin resistance, gliding motility, DNA transcription, toxin
secretion, and extracellular protease synthesis. The results also found that the vaccine strain formed
biofilm at a significantly lower rate than the parent strain. These observations suggested that the
rifampin-resistant phenotype and the associated attenuation of the vaccine strain result from the
altered activity of RNA polymerase (RpoB) and possible disrupted protein secretion systems.
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1. Introduction

Flavobacterium columnare is the causative agent of columnaris disease, which can
infect a broad range of fish hosts, including wild, cultured and ornamental species [1].
In the United States, F. columnare is one of the leading pathogens affecting the catfish
industry, with in-pond mortality rates reaching up to 60 and 90% in adults and fingerlings,
respectively [2]. F. columnare is a ubiquitous aquatic bacterium [3] that can form biofilm [4]
and survive in water for up to 6 months [5]. Meta-genomic analysis of F. columnare revealed
that the species is capable of denitrification, which could allow for anaerobic growth in
pond sediments [6].

Since the eradication of F. columnare from aquaculture systems is very unlikely, pre-
vention practices are the best approach to reduce the incidence of columnaris disease in
farms. It is well known that the use of vaccines in fish farms contributes to more sustainable
production systems by eliminating or reducing antibiotic use [7]. Among the several types
of vaccines available, live attenuated vaccines elicit a stronger immune response and a
long-lasting humoral and cell-mediated protection than bacterins [8,9]. Currently, there is
a commercial, live attenuated vaccine against columnaris disease under the trade name
AQUAVAC-COLTM (Merck Animal Health, Madison, NJ, USA). However, its efficacy has
been questioned, and it is not widely used by farmers [10].
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F. columnare can be divided into several genetic groups, or genomovars, based on the
16S rRNA gene sequence [11,12]. Genomovar II strains exhibited host-specificity toward
catfishes in aquatic environments [13] and a higher degree of virulence towards channel
catfish than genomovar I isolates [10,14]. AQUAVAC-COLTM derives from a genomovar I
strain and offers little protection against the most virulent strains of F. columnare, not only
in channel catfish but also in tilapia and zebrafish [10]. In 2011, A new attenuated vaccine
was developed derived from a highly virulent genomovar II strain of F. columnare using a
rifampin-resistant selection strategy [15]. The previous study suggested that the vaccine
is stable, safe, and effective, but the mechanisms that resulted in attenuation remained
uncharacterized [10]. In this study, comparative genomics analysis was performed to
identify the point mutations that occurred in the rifampin-resistant mutant and may have
resulted in the attenuated phenotype.

2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

F. columnare strain FcB27 was isolated from channel catfish in Alabama in 2005 [13],
and it caused a cumulative mortality of 53.0 ± 8.6% in channel catfish fingerlings in our
previous study [10]. The mutant strain Fc1723 was obtained by our group by passing strain
FcB27 on an increasing concentration of rifampin (for a detailed description see Olivares-
Fuster et al. [15]), and it provided protection against control groups by a relative percentage
survival (RPS) of 54.7% under the laboratory condition [10]. Bacteria were grown at 28 ◦C
in Modified Shieh (M.S.) broth medium for 48 h with shaking at 200 rpm [16]. Stock
suspensions of the isolates were stored in M.S. broth with 20% glycerol at −80 ◦C.

2.2. Genomic DNA Extraction

Bacterial DNA was extracted using a Qiagen DNeasy Blood & Tissue kit (Qiagen, MD,
USA) following the manufacturer’s instructions, including the RNase incubation step. All
the DNA samples were quantified using a NanoDrop ND-1000 Spectrophotometer (Thermo
Scientific, Wilmington, DE, USA) and separated on a 1% agarose gel for integrity check.

2.3. Genomic Sequencing and Assembly

The genomic library was prepared using a DNA Template Prep Kit 1.0 (PacBio)
with a 20 kb preparation protocol. Afterwards, the sequencing was performed with the
PacBio long-read sequencing RS II P6-C4 chemistry platform. PacBio subreads were
filtered with default parameters, and a total of 1.55 Gb and 1.28 Gb of subreads were
generated from parent strain FcB27 and mutant strain Fc1723, respectively. In general,
strain FcB27 yielded 534,427 subreads with an average length of 3064 bp, while strain
Fc1723 generated 418,658 subreads with an average length of 3579 bp. Genome assembly
was performed using PacBio PBcR HGAP 2.3 pipeline using de novo assembly protocol
under the default settings, and contigs with mean quality values (QV) of less than 45 were
filtered out. In the end, four contigs with a total length of 3.45 Mb (mean coverage = 281×,
mean QV = 48.63) were obtained from strain Fc1723, and 6 contigs with a total length
of 3.45 Mb (mean coverage = 281×, mean QV = 48.63) were acquired from strain FcB27.
The library preparation and sequencing were carried out at the University of Washington
PacBio Sequencing Service center (Seattle, WA, USA). A QV of 45 ensured above 99.997%
accuracy [17].

2.4. Gene Annotation and SNP Identification

Contig annotation was performed with the Rapid Annotation using Subsystem Tech-
nology (RAST) for prokaryotic bacteria [18,19]. Pairwise genome alignment was used to
identify the single nucleotide polymorphisms (SNPs) with Mauve version 2.4 [20]. Genes
containing mutations were analyzed using BLAST (Altschu et al., 1990), IGV viewer [21],
and RAST subsystem database [18]. The functional changes of the amino acid were pre-
dicted using PROVEAN Protein software [22].
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2.5. Biofilm Quantification Assay

Biofilm formation was evaluated as described previously [4]. Briefly, an overnight
inoculum was diluted 100 times in M.S. broth, and 100 µL bacterial suspension was added
to each well in a 96-well microtiter polystyrene plate (NuncImmuno MaxiSorp; Nunc,
Rochester, NY, USA) in quadruplicate. Microtiter plates were incubated for 48 h at 28 ◦C
to allow for bacterial attachment and biofilm formation. General growth was quantified
by measuring the optical density (OD) at 595 nm with a MultiSkan FC spectrophotometer
(Thermo Scientific, Waltham, MA, USA). Medium containing unattached cells was dis-
carded, and wells were stained with 1% (w/v) crystal violet for 20 min. Excess crystal violet
solution was removed, and wells were rinsed 3 more times with distilled water. Biofilm
formation was quantified by measuring OD595 after the remaining dye was dissolved in
96% (v/v) ethanol solution. OD values were analyzed using SAS software version 9.2 (SAS
Institute, Cary, NC, USA). The significant difference was set at p ≤ 0.05.

3. Results
3.1. Draft Genome of F. columnare B27 and 1723

FcB27 and Fc1723 genomes were sequenced using a PacBio RS II platform. In general.
a total of 534,427 and 418,658 subreads were obtained for FcB27 and Fc1723, respectively.
Contigs of each genome were generated with Hierarchical Genome Assembly Process
(HGAP) de novo assembly analysis application. Short-length contigs with a mean QV
of less than 45 were filtered out. The remaining contigs were aligned and reordered to
construct the draft genomes using Mauve software with F. columnare C2 strain genome
(GenBank accession number: NZ_CP015107.1) as a reference. In the end, the FcB27 genome
was comprised of six contigs with a genome size of 3.43 Mb, and the Fc1723 genome was
comprised of four contigs with a genome size of 3.45 Mb. The overall GC content was
31.4% for each genome. RAST identified 3008 and 3061 coding sequences for FcB27 and
Fc1723, respectively, which were functionally categorized into 324 and 325 subsystems.

3.2. Single-Nucleotide Polymorphisms Identified in Fc1723

Sequence-based genome comparison by Mauve identified 16 SNP unique to the mutant
strain Fc1723 (Table 1). Out of those, fourteen resulted in nonsynonymous amino acid (aa)
changes and two in a synonymous change (Table 1). Two nonsynonymous mutations were
identified in the rpoB gene region, which codes for the DNA-directed RNA polymerase
β subunit. In F. columnare, rpoB encodes a protein containing 1341 aa. The rpoB gene in
the mutant strain Fc1723 presented a double mutation resulting in two aa substitutions:
Asn469Lys and His486Tyr substitutions (CDS: AND63316.1 in NCBI). These aa positions
(469 and 486 in F. columnare) correspond to positions 509 and 526 in the RpoB of E. coli K12.
There are three clusters within RpoB that have been identified as a rifampin resistance-
determining region (RRDR) in E. coli (whose rpoB encodes for 1342 aa). Cluster I includes
aa 507 to 533, cluster II comprises aa 563 to 572, and cluster III corresponds to the single aa
687 [23]. The two rpoB mutations identified in Fc1723 fall into the RRDR cluster I region.
The PROVEAN (Protein Variation Effect Analyzer) score was −3.43 and −5.73 for the
Asn469Lys and His486Tyr substitution, indicating the mutations were deleterious.

There were two mutations that resulted in nonsense codons in a nucleoside permease
(NupG) and in a phosphoesterase. The C to A transversion on the minus strand in NupG
changed the codon GGA (glysine) to TGA (stop codon), resulting in 240 aa truncated
polypeptides from the original 417 aa polypeptides (CDS: AND62982.1 in NCBI). The G to
T transversion on the positive strand in the phosphoesterase (annotated as hypothetical
protein in NCBI; CDS: AND63983.1) changed the codon GAA (glutamic acid) to TAA (stop
codon), resulting in 194 aa truncated polypeptides from the original 333 aa polypeptides.

Five missense mutations resulted in amino acid substitutions in patatin (Phe577Cys),
protease IV (Ala470Asp), thiol:disulfide interchange protein (Gly386Arg), thioredoxin re-
ductase (Ile2902Met), and dynein protein (Phe238Ser). There were also two silent mutations
identified that resulted in no aa change (protoheme IX farnesyltransferase and dynein
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heavy chain). Finally, the remaining five mutations observed in Fc1723 occurred in regions
of the genome that either encoded hypothetical proteins of unknown function or had not
been annotated.

Table 1. Analysis of single nucleotide polymorphisms (SNPs) compared between vaccine strain and parent strain.

SNP Contig SNP Position a Reference Position b SNP Pattern c Amino Acid
Change d Annotation e Functional Group

scf7180000000036 125027 2071493 G > A Asn469Lys DNA-directed RNA
polymerase beta subunit Gene transcription

scf7180000000036 125076 2071592 G > T His486Tyr DNA-directed RNA
polymerase beta subunit Gene transcription

scf7180000000039 83013 1656107 C > A Gly240stop Nucleoside permease Nucleosides transporter
scf7180000000044 91216 121892 G > T Glu194Stop Phosphoesterase Lipid metabolism
scf7180000000039 132995 1700354 G > A Gly386Arg Protein-disulfide reductase Protein biosynthesis
scf7180000000044 114715 145396 C > A Phe577Cys Patatin Energy storage
scf7180000000043 500199 2767414 C > A Ala470Asp Protease IV Toxin secretion

scf7180000000036 99642 2048192 T > G Ile2902Met Thioredoxin reductase Redox
regulation/biofilm

scf7180000000044 41423 74284 T > C Phe238Ser Dynein heavy chain Unknown
scf7180000000044 41416 74277 C > T Leu236Leu Dynein heavy chain Unknown

scf7180000000043 534202 2801439 C > T Glu167Glu
Heme O

synthase/protoheme IX
farnesyltransferase

Protein biosynthesis

scf7180000000047 741630 1267503 G > A NA Hypothetical protein NA
scf7180000000044 1361 NF C > T NA Unknown region NA
scf7180000000044 1147 NF A > G NA Unknown region NA
scf7180000000044 1363 NF G > A NA Unknown region NA
scf7180000000047 249370 804839 G > T NA Unknown region NA

a SNP contigs and position (in bp) are based on the FcB27 draft genome. The comparison was conducted by Mauve version 2.4, and the
alignments were provided in the Table S1. b Reference position (in bp) in F. columnare 94081 reference genome. c SNP Pattern represents
nucleotide changes. d Predicted amino acid change based on identified SNP. e Based on RAST annotation. NA, Non-Applicable. NF,
Not Found.

3.3. Growth, Gliding Motility, and Biofilm Formation

It had been reported that thioredoxin reductase plays an important role in gliding
motility and biofilm formation in F. psychrophilum [24]. Our result indicated that both
parent and mutant strains exhibited gliding motility. No apparent differences were ob-
served between the strains. Since thioredoxin reductase is known for its role in biofilm,
biofilm formation between the parent and the mutant strain was further compared. While
planktonic growth by both parent and mutant strains was similar (Figure 1a), there was a
significant difference in biofilm formation using the microtiter plate method (Figure 1b)
between FcB27 and Fc1723. The mutant strain’s ability to form biofilm on microtiter plates
was significantly lower than its parent strain.
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strain and vaccine strain after 48 h incubation in microtiter plate. * indicates significant difference.

4. Discussion

Attenuated vaccines are regularly used in human and animal medicine to prevent
disease. They tend to mimic the route of entry of pathogens, persist longer in the host (can
even replicate in some cases) and induce a stronger immune response than bacterins [9,25].
Modified live vaccines elicit a wider range of immunologic responses, including both
cell-mediated and humoral, that are generally of greater magnitude and longer duration
than those produced by killed or subunit vaccines. In aquaculture, live attenuated vaccines
can be easily administered as a timed bath treatment, which significantly reduces vaccine
delivery costs when compared with injectable vaccines [26,27]. However, the use of live
vaccines has safety concerns associated with the risk of reversion to a virulent form and the
possibility of causing disease in immunocompromised individuals [28]. These concerns
have hindered the application of live vaccines and, in some cases, have resulted in banning
modified live vaccines from use [29,30].

One of the most common strategies to obtain avirulent (attenuated) mutants is by
multiple passages of a wild-type strain on increasing concentrations of an antibiotic, for
example, rifampin. This process is effective in generating avirulent mutants, but the
mechanism(s) responsible for attenuation has remained vastly uncharacterized [31–34].
Many vaccines had been obtained using this strategy, including Brucella abortus (RB51) [32],
Edwardsiella ictaluri [34], F. psychrophilum [33], and F. columnare [35]. In this study, the
molecular mechanism of a rifampin resistant mutant of F. columnare was investigated by
identifying the SNPs that differentiated the mutant from its parent strain.

In our study, rifampin resistance was possibly conveyed by two point mutations in the
rpoB gene in F. columnare. Rifampin is a potent, broad-spectrum antibiotic that functions by
inhibiting the β-subunit of prokaryotic DNA-dependent RNA polymerase (RNAP) [36].
The molecular basis of rifampin resistance has been extensively studied in E. coli, where it
has been clearly demonstrated that the drug targets the β subunit of the RNAP encoded by
rpoB [37]. Comparison of the primary structures of RpoB proteins from different rifampin-
resistant bacteria led to the identification of three clusters that contained the majority of
the mutations observed in the rpoB gene [38]. In Fc1723, two mutations were found within
cluster I of RRDR in rpoB [23]. It is hypothesized that mutations in the rifampin-resistant
RNAP affect the activity of this protein to the extent that protein synthesis is affected.
This is supported by some rifampin-resistant mutants exhibiting lower growth rates than
their parent strains [31]. However, this was not the case for our mutant Fc1723, which
displays a similar growth pattern to its parent strain FcB27. Interestingly, while FcB27
displays the typical rhizoid colonies on the agar plate, Fc1723 presents a smooth colony
type [15]. This phenotype could be attributed to the mutations found in rpoB, but, more
likely, the rifampin-associated attenuation is the result of a synergistic effect of several
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mutations induced in the course of in vitro passaging. In our previous study, a total of
13 mutants were obtained from different parent strains, and they exhibited different genetic
characteristics and virulence [15], which indicated the random mutations genesis during
the passage.

Previous studies found that rifampin-resistant attenuated B. abortus RB51 and Ed-
wardsiella ictaluri displayed altered lipopolysaccharide (LPS) structures that lacked a high
molecular mass of LPS fraction. The changes in the LPS structure were considered as the
cause for the avirulent phenotype of those mutants [39,40]. In our previous study, however,
polyacrylamide gel electrophoresis (SDS-PAGE) of LPS fraction did not show any difference
among the LPS profiles between parent strain FcB27 (denoted as AL-CC-17 in [15]) and
mutant strain Fc1723. This is consistent with the present genetic analysis, in which no SNPs
in genes involved in LPS synthesis were noticed. Similarly, LaFrentz et al. also found that
a rifampin-resistant attenuated strain of F. psychrophilum did not exhibit different LPS or
glycocalyx profiles as compared to the wild-type strain [33]. In addition, Fc1723 exhibited
the highest protection rate among all the generated mutants [10]. It is possible that the
intact LPS of the mutant strain might trigger a better immunogenic response since it could
present an LPS profile same to its parent.

The functionality of a protein is highly dependent on its structure [41]. We identified a
nonsense mutation in the gene that codifies for nucleoside permease nupG. This transmem-
brane protein transports purine and pyrimidine across the cell membrane. Nucleobase
transport has been studied mostly in E. coli and Bacillus species [42], where NupG plays a
key role in nucleic acid and nucleotide metabolism as it scavenges for exogenous preformed
bases to be used in nucleotide biosynthesis [43]. A second nonsense mutation occurred
in a gene encoding a phosphoesterase. The mutation at 194 amino acid changed the Glu
into a stop codon, resulting in 194 aa premature polypeptides instead of 333 polypeptides
(GenBank: AND63983.1). The protein was predicted to be part of the PAP2-like superfamily.
Type II phosphatidate phosphatases (PAP2) are transmembrane enzymes, which regulate
lipid metabolism by catalyzing the conversion of phosphatidate to diacylglycerol [44]. No
correlation between NupG, PAP2, and virulence has been described to date.

Five missense mutations were identified in genes encoding patatin, protease IV, thiol-
disulfide interchange protein, thioredoxin reductase, and dynein protein. Patatins are a
group of plant storage glycoproteins that show lipid hydrolase activity [45]. The first char-
acterized patatin-like protein (PLP) in bacteria was ExoU in P. aeruginosa, which is a type
III secreted cytotoxin and a virulent factor with lipase and phospholipase activity [46,47].
Genomes of pathogenic P. aeruginosa strains showed a significantly higher number of plp
genes than those found in genomes of non-pathogenic strains, which suggests a correlation
between the plp genes and virulence [48]. The authors speculated that a high number of
plp genes might confer an advantage to the bacterium in its interaction with the host. A
thiol-disulfide exchange protein (DsbA) is required for disulfide bond formation in some
periplasmic proteins [49]. It facilitates the formation of disulfide bridges and is essential for
the correct folding or assembly of many proteins, including toxins, adhesins, and compo-
nents of the trans-membrane protein secretion system [24]. Since the cytotoxic potential of
most common toxins relies on their subunit disulfide cleavability with subsequent release
of associated A chains [49], the malfunction of the DsbA could be associated with loss of
fitness and perhaps virulence. A study by Peek et al. [50] showed that the periplasmic
thiol:disulfide interchange protein is required for the functional maturation of secreted
virulence factors of Vibrio cholerae.

Protease IV is a membrane endoprotease that specially hydrolyzes the signal pep-
tide that accumulates in the cytoplasmic membrane as a result of the translocation of
major lipoprotein. A protein that is to be exported across the cytoplasmic membrane of
a bacterium is synthesized as a large precursor containing a signal peptide in the amino
terminus (N-terminal). The signal peptide is removed from the precursor at the cytoplasmic
membrane, and it is then digested by signal peptide peptidase called protease IV [51]. It is
notable that the expression of protease IV is induced by quorum sensing in P. aeruginosa [51]
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and that purified protease IV was able to digest a number of biologically important proteins,
including immunoglobulin, complement components, fibrinogen, and plasminogen [52].
A previous study showed that the F. columnare parent strain displayed the typical rhizoid
colonies, while mutant exhibited smoother colony types [15]. This result, which is possibly
caused by the compromised protein secretion system, is consistent with other reports that
virulent isolates typically showed rhizoid colony morphology [53].

Two SNPs in the genomic area annotated as dynein protein in F. columnare were
identified by RAST. This sequence is also present in F. columnare strain C#2 (Sequence ID:
CP015107; query cover: 93%) and strain 94081 (Sequence ID: CP013992; query cover: 78%)
by sequence comparison using BLASTn [54], but there is no annotation information under
the NCBI platform. The annotation inconsistency could be due to the different annotation
methods employed by RAST (i.e., Rapid Annotation using Subsystem Technology) and
NCBI (i.e., Prokaryotic Genome Automatic Annotation Pipeline). Dynein proteins function
as motor protein for gliding motility and intracellular cargo transport in eukaryotes, but it
is not well known to present in the prokaryotes. Whether the dynein-like proteins were
due to poor annotation warrants attention.

Finally, the mutation observed in the thioredoxin reductase gene might explain the
decreased biofilm formation capability of Fc1723. Mutations in the thiol-oxidoreductase
of F. psychrophilum resulted in decreased virulence and cytotoxicity, as well as enhanced
biofilm formation [24]. Biofilm formation of the vaccine and parent strains was com-
pared, and the result indicated that the mutant demonstrated both decreased virulence
and biofilm formation. The phenotype of decreased biofilm could be due to the key mu-
tation in thioredoxin reductase or to the synergistic effect of other mutations affecting
protein secretion.

5. Conclusions

In summary, sixteen point mutations were identified in the vaccine strain. The ri-
fampin resistance is conferred by two point mutations in the 469 and 486 aa region (Cluster
I region in rpoB). This study identified some key mutations related to the bacterial attach-
ment and extracellular protease secretion activity that are potential attributing regions for
attenuated virulence. These results also indicated that the vaccine contains mutations in
multiple genetic loci that contribute to its stability and would make reversion to a virulent
phenotype unlikely. It should be noted that, although point mutations were identified, it is
possible that other mutations that would be difficult to identify by the genome sequencing
approach could affect phenotypes (such as gene duplications leading to increased copy
numbers, and thus perhaps increased level of certain proteins).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vaccines9111370/s1, Table S1, Analysis of single nucleotide polymorphisms (SNPs) compared
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