1	Antigen-specific IFN-y/IL-17-co-producing CD4 ⁺ T-cells are the determinants for
2	protective efficacy of tuberculosis subunit vaccine
3	
4	Han-Gyu Choi ^{1,3} , Kee Woong Kwon ^{2,3} , Seunga Choi ¹ , Yong Woo Back ¹ , Hye-Soo Park ¹ , Soon
5	Myung Kang ² , Eunsol Choi ² , Sung Jae Shin ^{2*} & Hwa-Jung Kim ^{1*}
6	
7	¹ Department of Microbiology, and Medical Science, College of Medicine, Chungnam National
8	University, Daejeon, Republic of Korea
9	² Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain
10	Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul,
11	Republic of Korea
12	³ These authors contributed equally.
13	

- 14 *Corresponding authors
- 15 Hwa-Jung Kim, email: hjukim@cnu.ac.kr,
- 16 Sung Jae Shin, email: sjshin@yuhs.ac

1 Supplementary Information

2

3 Supplementary Fig. 1. Gating strategy for the assessment of intracellular cytokines. All 4 samples stained for surface and intracellular cytokines were gated based on forward scatter 5 (FSC) and side scatter (SSC). T-cells were gated from lymphocytes by FSC vs. SSC on the 6 basis of Thy1.2/CD4 expression for CD4⁺ T-cells. To distinguish multifunctional T-cell 7 subsets, gates indicating positive staining for each cytokine (IFN-y, IL-2, IL-17A, and TNF-8 α) were delineated using the unstimulated control to determine background staining. Using a 9 Thy1.2⁺CD4⁺T cell gate, specific staining for IFN-γ, IL-2, IL-17A, and TNF-α are shown for 10 isotype-control and stimulated spleen and lung cells. 11

2 Supplementary Fig. 2. Ag-specific multifunctional T-cells are induced in the lungs, spleen, 3 and lymph nodes in BCG+HSP90-E6-immunised mice. Mice were immunised and euthanised 4 as described in the Methods section. Four weeks after the last immunisation, the mice were 5 sacrificed and lung, spleen, and lymph-node cells collected from the mice were treated with 6 PPD (2 µg/ml) at 37°C for 12 h in the presence of GolgiStop. Upon stimulation with PPD, cell 7 counts of Ag-specific, multifunctional CD4⁺CD44⁺ T-cells producing IFN-y, IL-17, and/or 8 TNF- α , IL-2 in lung, spleen, and lymph-node cells from each immunised group were 9 determined by flow cytometry. Gray arc denotes the percentage of cytokine-positive T-cells

1	(IL-17 ⁺ IFN- γ^+ TNF- α^+ IL-2 ⁺ -, IL-17 ⁺ IFN- γ^+ IL-2 ⁺ -, IL-17 ⁺ IFN- γ^+ TNF- α^+ -, and IL-17 ⁺ IFN- γ^+ -
2	CD4 ⁺ CD44 ⁺ T-cells). 2 ⁺ stands for sum percentages of double-cytokine positive T-cells (IL-
3	<u>17</u> ⁺ IFN- γ^+ , IL-17 ⁺ TNF- α^+ , and IL-17 ⁺ IL-2 ⁺), 3 ⁺ stands for triple-cytokine positive T-cells (IL-
4	<u>17⁺IFN-γ^+IL-2⁺, IL-17⁺IFN-γ^+TNF-α^+ and IL-17⁺TNF-α^+IL-2⁺), and 4⁺ stands for quadruple-</u>
5	<u>cytokine positive T-cells (IL-17⁺IFN-γ^+TNF-α^+IL-2⁺).</u> Data are the mean ± SD for 5 mice from
6	each group. <i>n.s.</i> : not significant, $*p < 0.05$, $**p < 0.01$, $***p < 0.001$ and $****p < 0.0001$
7	compared to BCG-immunised mice. <i>n.s.</i> : not significant, $**p < 0.01$ and $***p < 0.001$ between
8	BCG+ESAT-6- and BCG+HSP90-E6-immunised mice.

- 1 and IL-17⁺TNF- α ⁺IL-2⁺), and 4⁺ stands for quadruple-cytokine positive T-cells (IL-17⁺IFN-
- 2 γ^{+} TNF- α^{+} IL-2⁺). Data the mean ± SD for 7 mice from each group. *n.s.*: not significant, **p* <
- 3 0.05, **p < 0.01 and ***p < 0.0001 compared to BCG-immunised mice. *n.s.*: not significant,
- 4 **p < 0.01 and ****p < 0.0001 between BCG+ESAT-6- and BCG+HSP90-E6-immunised
- 5 mice.
- 6

Supplementary Fig. 4. Ag-specific multifunctional T-cells are induced in the lungs in 2 3 BCG+HSP90-E6-immunised mice. Mice were immunised and euthanised as described in the 4 Methods section. Four weeks after the last immunisation, mice were sacrificed, and lungs cells 5 were treated with ESAT-6 (2 µg/ml) at 37 °C for 12 h in the presence of GolgiStop. Upon 6 stimulation with PPD, cell counts of Ag-specific, multifunctional CD4⁺CD44⁺ T-cells 7 producing IFN- γ and/or TNF- α and IL-2 in the lung cells from each immunised group were 8 determined by flow cytometry. Data are the mean \pm SD for 5 mice from each group. ****p <9 0.0001 compared to BCG-immunised mice.

Supplementary Fig. 5. Induction of Ag-specific multifunctional T-cells accompanied with the production cytokines after challenge with Mtb HN878. Mice in each treatment group were sacrificed 10 weeks post-infection, and lung cells were treated with ESAT-6 (2 µg/ml) at 37°C for 12 h in the presence of GolgiStop. Upon stimulation with ESAT-6, cell counts of Agspecific, multifunctional CD4⁺CD44⁺ T-cells producing IFN- γ and/or TNF- α and IL-2 in the lung cells from each immunised group were determined by flow cytometry. Data are the mean \pm SD for 7 mice from each group. ***p < 0.001 compared to BCG-immunised mice.

Supplementary Fig. 6. The protective correlation of protection with pre-infection driven immune response in the vaccinated and challenged mice. Relationship between protection (CFU) and ESAT-6 specific various cytokine combination in CD4⁺CD44⁺ T-cells is shown as a fitted regression line with the correlation coefficient. Spearman's r and P values of the correlations are indicated. White circle: Naïve, green circle: BCG, red circle: BCG+E6, and blue circle: BCG+HSP90-E6.

Supplementary Fig. 7. The protective correlation of protection with post-infection driven immune response in the vaccinated and challenged mice. Relationship between protection (CFU) and ESAT-6 specific various cytokine combination in CD4⁺CD44⁺ T-cells is shown as a fitted regression line with the correlation coefficient. Spearman's r and P values of the correlations are indicated. White circle: Infection, green circle: BCG, red circle: BCG+E6, and blue circle: BCG+HSP90-E6.

Supplementary Fig. 8. IFN- γ /IL-17 inhibits intracellular bacterial growth in Mtb-infected macrophages. Mtb-infected BMDMs were treated with IFN- γ (1 - 100 ng/ml), IL-17(1 - 100 ng/ml), or IFN- γ /IL-17 (1 - 10 ng/ml each) for 3 days. Intracellular Mtb growth in BMDMs was determined at time point 0 and 3 days after cytokine treatment. Data are the mean \pm SD (n= 3); **p < 0.01, or ****p < 0.0001 versus infection control, ^{††}p < 0.01 or ^{††††}p < 0.0001 for co-treated vs. IFN- γ , ^{##}p < 0.01 or ^{#####}p < 0.0001 co-treated vs. IFN- γ determined by one-way ANOVA. n.s.: no significant difference.

Supplementary Fig. 9. IFN- γ /IL-17 from supernatants of spleen cells from HSP90-E6vaccinated mice inhibit intracellular Mtb growth. Mtb-infected BMDMs were treated with supernatants of ESAT-6-re-stimulated spleen cells from BCG+HSP90-E6-vaccinated mice in the presence of absence of anti-IFN- γ or anti-IL-17 for 3 days. Intracellular Mtb growth in BMDMs was determined on day 3. Data are the mean \pm SD (n = 3); **p < 0.01, or ***p <0.001.

Supplementary Fig. 10. IFN-γ/IL-17 from supernatants of lung and spleen cells from ESAT6-vaccinated mice inhibit intracellular Mtb growth. Mtb-infected BMDMs were treated with
supernatants of ESAT-6-re-stimulated lung and spleen cells from BCG+E6-vaccinated mice in
the presence of absence of anti-IFN-γ or anti-IL-17 for 3 days. Intracellular Mtb growth in
BMDMs was determined on day 3. Data are the mean ± SD (*n* = 3); **p* < 0.05. G1: naïve, G3:
BCG, G4: BCG+E6.

1

Supplementary Fig. 11. IFN- γ /IL-17 from supernatants of lung cells from infected ESAT-6vaccinated mice inhibit intracellular Mtb growth. Mtb-infected BMDMs were treated with supernatants of ESAT-6-re-stimulated lung cells from BCG+E6-vaccinated mice in the presence of absence of anti-IFN- γ or anti-IL-17 for 3 days. Intracellular Mtb growth in BMDMs was determined on day 3. Data are the mean \pm SD (n = 3); *p < 0.05. G1: naïve, G2: infection, G3: BCG, G4: BCG+E6.

BCG-E6

Supplementary Fig. 12. IFN-γ/IL-17 from supernatants of spleen cells from infected ESAT6-vaccinated mice inhibit intracellular Mtb growth. Mtb-infected BMDMs were treated with
supernatants of ESAT-6-re-stimulated spleen cells from BCG+E6-vaccinated mice in the
presence of absence of anti-IFN-γ or anti-IL-17 for 3 days. Intracellular Mtb growth in BMDMs
was determined on day 3. n.s.: no significant difference. G1: naïve, G2: infection, G3: BCG,
G4: BCG+E6.

1

2 Supplementary Fig. 13. IFN- γ /IL-17 induces phagosome-lysosome fusion in Mtb-infected 3 macrophages. BMDMs were infected with Mtb-RFP (MOI = 1) for 4 h, washed, incubated 4 with/without IFN-y (1 - 100 ng/ml), IL-17(1 - 100 ng/ml), or IFN-y/IL-17 (1 ng/ml each) for 5 72 h, fixed with 4% paraformaldehyde, and immunolabeled with anti-LAMP1 antibody and 6 Alexa 488-conjugated goat anti-rabbit or anti-rat IgG (green). Nuclei were counterstained with 7 DAPI (blue). The cells were analysed by laser-scanning confocal microscopy. Scale bar, 10 8 μm. Quantification of Mtb–LAMP1 colocalisation is shown in the bar graph. Data are the mean 9 \pm SD of 50–100 cells per experiment (n = 3). **p < 0.01 and ***p < 0.001 for treatment 10 compared to infection-only controls (CON) or for difference between treatment data. n.s., no 11 significant difference.

Supplementary Fig. 14. IFN- γ /IL-17 does not affect IFN- γ R1 in Mtb-infected macrophages. BMDMs were infected with Mtb (MOI = 1) for 4 h, washed, incubated with/without IFN- γ (1 ng/ml), IL-17 (10 ng/ml), or IFN- γ /IL-17 (1 ng/ml each) for 72 h, immunolabeled with anti-IFN- γ R1 antibody, and analysed by flow cytometry. Data are the mean \pm SD (n = 5); *n.s.*: not significant, **p < 0.01 or ***p < 0.0001 versus infection control.

Supplementary Fig. 15. IFN- γ /IL-17 does not affect ROS or NO production in Mtb-infected macrophages. (a) BMDMs were infected with Mtb (MOI = 1) for 4 h, washed, incubated with/without IFN- γ (100 ng/ml), IL-17 (100 ng/ml), or IFN- γ /IL-17 (1 – 0.1 ng/ml each) for 72 h, and immunolabeled with anti- DCFDA or DHE antibodies, and analysed using flow cytometry. Data are the mean \pm SD (n = 5); *n.s.*: not significant for IFN- γ /IL-17-treated vs. IFN- γ - or IL-17-treated cells, determined by one-way ANOVA. (b) NO production from culture supernatants were determined. Data are the mean \pm SD (n = 5); *n.s.*: not significant,

- 1 ****p < 0.0001 for IFN- γ /IL-17-treated vs. IFN- γ -treated cells, determined by one-way
- 2 ANOVA.

	Variables of cytokine in T cells	Pre-infection		Variables of cytokine in T cells	Post-infection	
		Spearman r	P value	-	Spearman r	P value
Log₁₀ CFU in Lung	$IFN\text{-}\gamma^{*}TNF\text{-}\alpha^{*}IL\text{-}2^{*}IL\text{-}17^{*}$	-0.9082	<i>P</i> < 0.0001	IFN-γ ⁺ IL-17 ⁺	-0.7703	<i>P</i> < 0.0001
	IFN-γ ⁺ IL-17 ⁺	-0.8641	<i>P</i> < 0.0001	IFN-γ ⁺ IL-2 ⁺ IL-17 ⁺	-0.7133	<i>P</i> < 0.0001
	IL-17⁺	-0.8183	<i>P</i> < 0.0001	$IFN-\gamma^{+}TNF-\alpha^{+}IL-2^{+}$	-0.6845	<i>P</i> < 0.0001
	$IFN-\gamma^{+}TNF-\alpha^{+}IL-2^{+}$	-0.6434	<i>P</i> = 0.0002	$TNF-\alpha^{+}IL-2^{+}IL-17^{+}$	-0.5829	<i>P</i> = 0.0009
	IL-2 ⁺ IL-17 ⁺	-0.6333	<i>P</i> = 0.0002	IL-17⁺	-0.5537	<i>P</i> = 0.0018
	TNF - α^+	-0.4473	<i>P</i> = 0.0150	IL-2 ⁺ IL-17 ⁺	-0.4168	<i>P</i> = 0.0245
	$TNF-\alpha^{+}IL-2^{+}IL-17^{+}$	-0.3242	<i>P</i> = 0.0862	IFN-γ ⁺ IL-2 ⁺	-0.3583	P = 0.0563
	$TNF-\alpha^{+}IL-2^{+}$	-0.3242	<i>P</i> = 0.0862	IFN- γ^{+} TNF- α^{+} IL-17 ⁺	-0.3497	P = 0.0629
	$IFN-\gamma^{+}TNF-\alpha^{+}IL-17^{+}$	-0.2292	<i>P</i> = 0.2318	IFN- γ^{+} TNF- α^{+}	-0.3072	<i>P</i> = 0.1050
	IFN-γ ⁺ IL-2 ⁺	-0.1914	P = 0.7289	$IFN-\gamma^{+}TNF-\alpha^{+}IL-2^{+}IL-17^{+}$	-0.1933	P = 0.3150
	$TNF-\alpha^{+}IL-17^{+}$	-0.1906	<i>P</i> = 0.3220	$TNF-\alpha^{+}IL-2^{+}$	-0.1476	<i>P</i> = 0.4450
	IFN-γ ⁺	-0.0676	P = 0.726	IL-2 ⁺	-0.0976	P = 0.6146
	IL-2 ⁺	-0.0399	<i>P</i> = 0.8372	$TNF-\alpha^{+}IL-17^{+}$	-0.0266	<i>P</i> = 0.8910
	IFN-γ ⁺ IL-2 ⁺ IL-17 ⁺	-0.0309	P = 0.8735	$TNF-\alpha^+$	0.1904	P = 0.3225
	$IFN-\gamma^{*}TNF-\alpha^{*}$	0.0687	<i>P</i> = 0.7233	IFN-γ ⁺	0.6789	<i>P</i> < 0.0001

Supplementary Table 1. Correlations between protection level and vaccine-induced immune
responses pre- and post-infection. Correlations between protection (CFU) and ESAT-6-specific
T-cells are shown in the table. Spearman's r and p values of the correlations are indicated.