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Abstract: Immunogens mimicking the native-like structure of surface-exposed viral antigens are
considered promising vaccine candidates. Influenza viruses are important zoonotic respiratory
viruses with high pandemic potential. Recombinant soluble hemagglutinin (HA) glycoprotein-based
protein subunit vaccines against Influenza have been shown to induce protective efficacy when
administered intramuscularly. Here, we have expressed a recombinant soluble trimeric HA protein in
Expi 293F cells and purified the protein derived from the Inf A/Guangdong-Maonan/ SWL1536/2019
virus which was found to be highly virulent in the mouse. The trimeric HA protein was found to be
in the oligomeric state, highly stable, and the efficacy study in the BALB/c mouse challenge model
through intradermal immunization with the prime-boost regimen conferred complete protection
against a high lethal dose of homologous and mouse-adapted InfA/PR8 virus challenge. Furthermore,
the immunogen induced high hemagglutinin inhibition (HI) titers and showed cross-protection
against other Inf A and Inf B subtypes. The results are promising and warrant trimeric HA as a
suitable vaccine candidate.

Keywords: Influenza; vaccine; hemagglutinin; intradermal route; virus

1. Introduction

Influenza viruses cause acute respiratory infections with zoonotic potential and are
a major pandemic threat globally [1]. Despite the availability of flu vaccines for more
than 50 years, flu infections continue to persist and rise causing severe health and socio-
economic burden worldwide [2]. The Influenza virus is a segmented, enveloped negative
sense RNA virus and belongs to the Orthomyxoviridae family [3]. There are four types of
influenza viruses, A, B, C, and D, having a wide range of reservoirs ranging from birds,
mammalian hosts, dogs, swine, horses, and bats. Three major types of Influenza A, B, and
C infect humans causing mild to severe infections of which the Influenza A virus (IAV)
is the dominant type [4]. The available vaccines are made up of the circulating strains of
IAV and IBV and provide short-term protection against seasonal viruses [5]. However, the
error-prone mechanism of the viral RNA genome, (antigenic drift) and rearrangement of
the segmented nature of the genome (antigenic shift) continues to give rise to new strains
with varied pathogenesis and virulence [6,7].

The protein subunit-based influenza vaccine development mainly targets the surface
glycoproteins hemagglutinin (HA), and neuraminidase (NA), which are the major antigens
that induce neutralizing antibodies and provide protection [8]. The IAVs are further
classified into subtypes according to the combinations of HA and NA surface proteins.
So far, 16 HA (H1-16) and 9 NA (N1-9) subtypes have been isolated from the natural
reservoir of aquatic birds [9], and recently two additional HA subtypes H17–H18, and
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NA10, NA-11 have been isolated from bats [10,11]. HA is present abundantly on the surface
of the influenza viruses and initiates the infection by attachment to the host cell sialic acid
receptors [12,13]. The receptor-binding further mediates the fusion process, in which the
HA protein undergoes multistep conformational changes from prefusion to post-fusion
conformation, thus exposing the fusion peptide to initiate the fusion of the virus-host cell
membrane [14,15]. Hence, even though the HA protein undergoes the maximum genetic
mutation, it is the predominant antigen that elicits potent neutralizing antibodies [16].

The HA glycoprotein mainly forms homologous trimers on the virion surface [17].
Each precursor of HA (HA0) monomer is approximately ~70 KDa and is cleaved by the
host cell proteases to HA1 (receptor binding domain or head region) and HA2 (ectodomain
or stalk region). The cleavage of HA is an essential prerequisite for the maturation of HA
into a functional protein and to initiate the infection [18]. The HA1 domain consists of the
globular head domain, which is the main antigenic target for the induction of neutralizing
antibodies, however, the globular head domain rapidly mutates [19]. The stalk domain is
highly conserved and currently is the major focus for the development of universal vaccine
candidates for influenza subtypes [20]. In addition, during post-translation modification in
the endoplasmic reticulum (ER) and Golgi apparatus the HA protein undergoes a glycosy-
lation process, thus HA protein is heavily glycosylated which could further influence the
virus biology and immune responses [21,22].

The commercially available marketed influenza vaccines are mainly produced by
three approaches; (1) inactivated influenza vaccine (IIV), (2) live attenuated influenza
vaccine (LAIV), and (3) recombinant HA vaccine [23]. Although every approach has its
pros and cons, recombinant subunit HA-based protein production is one of the better
choices for pandemic preparedness, as it could be rapidly produced, cost-effective, and
could overcome egg allergy [24,25]. However, there are a few disadvantages of a subunit
protein-based vaccine which are, a single HA protein might not be a potent immunogen,
may lack cross-protection, may require higher and repeated doses, and different adjuvants
formulations [26]. Furthermore, in the majority of cases, the subunit protein-based vaccine
is administered intra-muscularly, which is not the best choice for children and vulnerable
populations (old, immunocompromised, pregnant women) [8]. Another promising vaccine
delivery approach is microneedle patches in which the antigen is delivered via Intra dermal
route, which will be painless and might enhance the vaccine uptake [27].

In our study, we have generated a recombinant full-length soluble trimeric HA protein
derived from the sequence of Influenza A/Guangdong-Maonan/SWL 1536/2019(H1N1)
pdm-09-like virus and expressed in mammalian Expi293F expression sys-tem to preserve
the native-like structure, termed as HA-T-AGM protein. The 2020–2021 northern hemi-
sphere quadrivalent vaccine consists of four circulating flu strains, an Inf A/Guangdong-
Maonan/SWL1536/2019 (H1N1) pdm09-like virus; an Inf A/Hong Kong/2671/2019
(H3N2)-like virus; an Inf B/Washington/02/2019 (B/Victoria lineage)-like virus; and an Inf
B/Phuket/3073/2013(B/Yamagata lineage)-like virus (https://www.who.int/publications/
m/item/recommended-composition-of-influenza-virus-vaccines-for-use-in-the-2020--20
21-northern-hemisphere-influenza-season, accessed on 5 January 2023). Out of these
four viruses, the A/Guangdong-Maonan/SWL1536/2019 (H1N1) pdm09-like virus was
found to be highly lethal in the BALB/c mouse infection model. We have generated the
ectodomain HA protein in its native-like form by stapling a fold-on trimerizing domain at
the C-terminal. The recombinant soluble HA-T-AGM protein was found to form trimers
and oligomers, highly stable and soluble protein when administered intradermally along
with Addavax adjuvant in BALB/c mice, eliciting robust antibody responses. We further
evaluated the protective efficacy by challenging the immunized mice with a lethal dose of
mouse-adapted Inf A/PR/8/1934 virus. The HA-T-AGM immunized mice showed com-
plete protection against the lethal challenge, elicited potent hemagglutination inhibition (HI)
titer, and further showed cross-protection against InfA/H1N1/Cal04, InfA/H3N2/X31,
and InfA/H3N2/X79 viruses as measured by HI and microneutralization. The immunized
mice sera also showed high HI titer against Inf A/Hong Kong/2671/2019(H3N2) and Inf
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B/Washington/02/2019 (Victoria lineage). Furthermore, we have also found complete pro-
tection against the homologous Inf A/Guangdong-Maonan/SWL1536/2019 virus challenge
in immunized BALB/c mice. Our results suggest that the stable higher-order oligomeric
HA-T-AGM antigen derived from a lethal virus and expressed in a mammalian expression
system is a promising immunogen and could be used for the development of subunit
protein vaccine and in the development of self-delivery microneedle patch formulation.

2. Materials and Methods
2.1. Design, Expression, and Purification of Recombinant HA-T-AGM Protein

The sequence of HA-T-AGM was derived from the HA (aa 18-530) (Inf A/Guangdong-
Maonan/SWL1536/2019 (H1N1); GISAID accession#: EPI1542570) and the human codon-
optimized gene (Invitrogen) was cloned in pCDNA 3.1 expression vector. The HA gene
was fused to the CD5 signal peptide sequence at the N-terminal for extracellular expression
and attached with the Foldon domain at the C-terminal followed by an avi-tag, a TEV
cleavage site, and 6x-His tag for ease of purification.

For protein production, Expi293F cells were maintained in suspension cultures in
Expi Expression Medium (Thermo Fisher Scientific, Waltham, MA, USA) at 37 ◦C, 8% CO2,
and 80% humidity on a shaker incubator set to 110 rpm, cell density was maintained
at 0.5–8 × 106 cells/mL in polycarbonate vented Erlenmeyer flasks (Corning, NY, USA)
containing a medium volume of 1/3 of the total volume of the flask. Cells were transfected
using the Expifectamine 293 Transfection Kit (GibcoTM) according to the manufacturer’s
instructions. Target plasmid DNA was diluted using Opti-MEM in 5% of the final culture
volume, while in a separate conical tube, Expifectamine was diluted in 5% of the final
culture volume to achieve a final culture concentration of 1 µg DNA/mL. Diluted mixtures
were incubated for 5 min at room temperature (RT). DNA mixture was added to the
Expifectamine mixture and incubated at RT for 30 min before addition to the cells. After
18–20 h post-transfection, 0.5% of Enhancer 1 and 5% of Enhancer 2 to the final culture
volumes were added. Expressed protein in the culture supernatant was harvested 5–6 days
post-transfection or when viability reached <60%.

The harvested supernatant was directly loaded onto the PBS equilibrated nickel-
nitrilotriacetic acid agarose, Ni-NTA resin (Qiagen, Germany), and protein was allowed
to bind. Flowthrough was collected thereafter with an increasing gradient of imidazole;
unwanted loosely bound proteins were removed first with 30mM imidazole and thereafter
small fractions of protein were collected and confirmed with Bradford’s reagent with final
elution from 500 mM imidazole. The eluted protein was dialyzed against PBS to get rid
of the suspended imidazole fully. For size exclusion chromatography (SEC), a HiLoad
Superdex 200 Increase 10/300 GL column (GE Healthcare, Chicago, IL, USA) was used,
and PBS was used as the mobile phase with a flow rate of 0.5 mL/min. The purified
protein aliquots were snap-frozen in liquid nitrogen and stored at −80 ◦C until further use.
Protein purity and oligomeric status were confirmed in SDS-PAGE and gradient 4–15%
Native-PAGE.

2.2. SDS-PAGE, Native PAGE, and Western Blotting

Sample proteins were prepared by boiling for 10 min with SDS and β-Mercaptoethanol
consisting of loading dye and resolved on reducing 12% SDS-PAGE, followed by visualiza-
tion with Coomassie brilliant blue staining. For Native-PAGE analysis, the proteins were
separated by 4–15% Native-PAGE gels (Mini-PROTEAN TGXTM, Bio-Rad, Hercules, CA,
USA) using Native-PAGE sample preparation buffer (Invitrogen, Waltham, MA, USA) and
Bis-Tris running buffer, followed by the same protocols as above.

For further characterization with western blotting, the separated proteins on SDS-
PAGE were transferred to nitrocellulose membrane by electroblotting (Biorad, USA) for
1 h at room temperature at 100 V. The membrane was then blocked with blocking buffer
(BSA 1%) at room temperature for 1 h. The membrane was probed with anti-mouse sera
(1:500) and separately with monoclonal commercially available antibody (1:1000, IRR
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FR572),. The membrane was washed three times with washing buffer [0.5% (v/v) Tween 20,
1 × PBS], each for 10 min at room temperature and then probed with anti-mouse IgG HRP
conjugated antibody (1:2000) for another 1 h before washing. The blots were developed
using chemiluminescence reagents (luminol and peroxidases from G Biosciences, St. Louis,
MO, USA).

2.3. Vaccination and Challenge Study in BALB/c Mice

BALB/c mice of 6–8 weeks of age were used for this study, which were inbred at
the THSTI small animal facility. All experiments were conducted to minimize animal
suffering, and carried out following the principles of humanity described in the relevant
Guidelines of the CPCSEA, the protocol was approved by the Institutional Animal Ethics
Committee (IAEC Approval number: IAEC/THSTI/147). In the preliminary experiment,
we assessed the pathogenicity of the Inf A/Guangdong-Maonan/SWL1536/2019 virus in
BALB/c mouse. Briefly, the virus was grown in MDCK cell line and the virus titer was
caluclated 6–8 weeks old naïve BALB/c mice (n = 5) were challenged intranasally with 105

TCID50/mL of viruses, and animals were monitored for their body weight and survival
post-challenge. For the immunization study, the animals were randomly divided into three
groups (n = 5) each for the soluble immunogen and virus control group and PBS control).
The animals were gender-matched and randomly divided into experimental groups such
that the average weight of the animals in each group was +/− 10% of the body weight
of each group and of the individual animals. Mice were injected with 30µg of antigen
(HA-T-AGM) with Addavax adjuvant in a 1:1 ratio. The immunization was carried out
with a single prime-boost strategy on day 0 and day 21 respectively. For i.d. delivery,
mice were injected on the lower dorsal surface using a 1-mm-long, 34-gauge (Ga) stainless
steel microneedle (15, 34, 36) fitted to a 1-mL syringe (BD, Franklin Lakes, NJ, USA) and
inserted perpendicularly into the skin to control delivery depth [28]. The total volume
injected per mouse was 100 µL. For serum extraction, mice blood samples were collected
and centrifuged at 4000 rpm to separate the sera. Collected sera were heat inactivated
at 56 ◦C for 1 h for complement deactivation before they were used for ELISA and HI
experiments. The vaccinated mice were then challenged on the 42nd post-immunization
day, intranasally (i.n.) with 10 MLD50 of the highly virulent mouse-adapted Inf A/Puerto
Rico/8/34 (PR8) virus. Similarly, in another set of experiment recombinant HA-immunized
mice, n = 5 (30 µg intradermally given twice (0 prime and 21 days boost) were challenged on
42nd day of immunization with 105 TCID50/mL of homologous virus Inf A/Guangdong-
Maonan/SWL1536/2019 (H1N1) virus through intranasal administration. Subsequent
body weight changes, clinical score, and total survival were followed up for the next
14 days thereafter.

2.4. Antigen Binding ELISA

An indirect ELISA was performed for testing the immune response against HA-T-AGM
as described earlier [29] with minor modifications. Briefly, MaxisorpTM ELISA plates (Nunc,
Roskilde, Denmark) were coated either with 1 µg of HA-T-AGM, or commercially available
known antigen (IRR FR695, Influenza A H1) using carbonate–bicarbonate buffer (pH 9.6)
and phosphate buffer (pH 7.4) separately and incubated overnight at 4 ◦C. The plates
were washed twice with washing buffer (0.1 M PBS containing 0.05% Tween 20; PBST)
and blocked with blocking buffer (5% skimmed milk in PBST) at 37 ◦C for 1 h. The serum
samples were added at two-fold dilutions from 1/200 to 1/25,600 in sample buffer (0.5%
skimmed milk) and incubated at 37 ◦C for an hour. After incubation, the plates were
washed four times with PBST and anti-mouse horseradish peroxidase (HRP) conjugate
antibody (Jackson Immuno Research) was added to all the wells at a dilution of 1:2000 and
incubated for 1 h. After washing four times with wash buffer, the plates were developed
with TMB (3,3′,5,5′-Tetramethylbenzidine), and the reaction was stopped after 10 min with
1 M H2SO4. The absorbance was read at 450 nm.
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2.5. Hemagglutination Inhibition (HI) Assay

Hemagglutination inhibition assays were performed as described earlier [30] with
minor modifications. Briefly, the serum samples were pre-treated with receptor-destroying
enzyme (RDE) (Denka Seiken, San Jose, CA, USA) in a proportion of 1:3 volume of sera
to RDE for 16 h at 37 ◦C before inactivation at 56 ◦C for 30 min. The serum samples were
diluted serially from 1/4 to 1/1024 with PBS. An equal volume (50 µL) of serum and
Influenza virus of different subtypes (4 HA units) were mixed and incubated for 30 min at
room temperature. After incubation, an equal volume of 1% (v/v) freshly prepared chicken
red blood cells in PBS was added and the plates were observed after 45 min. The results
were interpreted by observing button formation for different dilutions without tilting the
plate as considered appropriate by Wilson et al. [31]. The hemagglutination inhibition
titer was calculated as the reciprocal of the highest serum dilution showing clear button
formation and lattice formation as hemagglutination.

2.6. Circular Dichroism (CD) Assay

The stability studies were carried out at ambient temperature (25 ◦C) in phosphate
buffer using a Jasco J-815 spectropolarimeter from 195 to 250 nm wavelength, using a 1-mm
path length quartz cell. Data were collected at a rate of 100 nm/min for each protein,
averaging 3–5 scans as necessary. The concentration of protein used ranged between 5
and 10 mM. The wavelength dependence of molar ellipticity was monitored at 24 ◦C as
the average of five scans, using a 5-s integration time with 0.5-nm bandwidth at 1.0-nm
wavelength increments. For collecting CD spectral data for thermal melt (range 25 ◦C
to 90 ◦C), the Peltier-controlled cuvette holder attachment of the spectropolarimeter was
used, with 8-mm spacers for heat transfer to 2-mm cuvettes. Background spectra from the
buffer were electronically subtracted and for each spectrum, mean residual ellipticity was
calculated and plotted. The fractions of the secondary structure elements were calculated
by minimizing the difference between the theoretical and experimental curves by varying
the impacts of the α-helixes, β-sheets, turns, and nonstructured forms. Theoretical values
at every wavelength were the linear combination of the basis spectra of every type of
secondary structure.

2.7. Dynamic Light Scattering (DLS)

The synthesized HA-T-AGM protein was further characterized for its size, zeta poten-
tial, and polydispersity index through Malvern Zetasizer UK (Nano ZS). Briefly, 1–5 mg/mL
of HA-T-AGM protein was prepared in PBS (pH 7.0) and sonicated for 4–5 min. The pre-
pared samples were then monitored for size, zeta potential, and polydispersity index
using a Nano ZS analyzer in a triplicate manner, and the observations were represented as
Mean± SD.

2.8. Immunofluorescence Microscopy

MDCK-London cells (0.2 million/well) were seeded in a 12-well plate. The next day,
cells were infected with different influenza variants: PR8 (Inf A/Puerto Rico/8/1934(H1N1),
Guangdong (Inf A/Guangdong-Maonan/SWL1536/2019 (H1N1)), X-31 (Inf A/Hong
Kong/X31(H3N2)), X-79 (Inf A/Philippines/2/82 (H3N2) and Cal09 (Inf A/California/04/
2009 (H1N1)) at an m.o.i. of 0.5. After 1 h of adsorption, the plate was washed once with
Advanced Modified Eagle Medium, and virus growth media (VGM) was added to the
infected wells. Cells were fixed after 24 h of infection in 4% paraformaldehyde for 15 min,
then penetrated with 0.1% triton-X in PBS for 10 min. Non-specific binding was blocked us-
ing 3% goat serum in PBS for 1 h at room temperature. Cells were then incubated overnight
at 4 ◦C with the Guangdong anti-HA polyclonal sera (1:200). Next day, cells were washed
three times with PBS and incubated for 1 h at room temperature with Alexa488-labeled
rabbit anti-mouse IgG (1:1000). Three washes were given and the cell nuclei were counter-
stained with DAPI (D9542, Sigma-Aldrich, Burlington, MA, USA) for another 10 min at
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room temperature. The expression of proteins was observed by fluorescence microscope
(IX-71, Olympus).

2.9. Molecular Modelling and Protein-Protein Docking

To generate the 3D structures of identified Influenza A AGM serotype soluble protein
(HA-T-AGM), the crystal structure 4LXV (chains A and B, both) was selected. There were
multiple templates identified through BLAST (search against PDB) that were closer to AGM
serotype, though, we have picked PDB-id 4LXV (Crystal Structure of the Hemagglutinin
from an H1N1pdm A/Washington/5/2011 virus taken from www.rcsb.org) considering it
as wild type. The multi-template-based molecular modeling was carried out using Modeller
software to generate the 3D structure of HA-T-AGM [32,33].

The modeled structure was used for protein-protein docking studies. The PIPER
module of Schrodinger suits was used to identify the most likely poses of the complex
between trimer HA and monoclonal antibody (3SDY). To find the most likely binding
pose. The top three highly enriched conformations and docking energy was picked for
pose analysis.

2.10. Ethics Statement

The animal studies were carried out in strict accordance with the recommendations in
the Guide for the Care and Use of Laboratory Animals of THSTI, Faridabad, India. The
protocol was approved by the Committee on the Ethics of Animal Experiments and all
experiments related to the influenza viruses were performed in an approved biosafety level
2 (BSL-2) laboratory or ABSL-2 small animal facility.

2.11. Statistics

Statistical Analysis Values were presented as mean with SE. Statistical significance
among different groups for analysis of titer was calculated by one-way ANOVA using
Graph Pad prism 8.0 statistical software. The data sets obtained from different groups
in the challenge study were subjected to a test for normal distribution of the samples by
the Shapiro-Wilk normality test; statistical analysis was then performed using Student’s
t-test or Dunnett’s multiple comparison tests where necessary. A p-value less than 0.05 was
considered significant.

3. Results
3.1. Generation of Recombinant Soluble Hemagglutinin Immunogens in Expi293F Cells to
Preserve the Native-like Structure

We designed and generated a full-length sequence, consisting of both head and stalk
domains, of HA from Inf A/Guangdong-Maonan/SWL1536/2019 (H1N1) pdm09-like
virus. The Inf A/Guangdong-Maonan/SWL1536/2019 (H1N1) pdm09-like viruses are
the circulating strains from the 2020–2021 northern hemisphere influenza season and
belong to the subclade 6B.1A5A [34]. The virus was shown to be 90% pathogenic in
mice [35]; in our study, we also found that among the NH2020 vaccine virus composition,
the A/Guangdong-Maonan/SWL1536/2019 virus is highly virulent in BALB/c mice and
intranasal inoculation (50 µL) of 105 TCID50 /mL of viruses resulted in 100% mortality
by 8th-day post-infection (dpi) (Figure S1). We predicted the 3-D homotrimer structure
representing the HA molecule (Figure 1A). The HA structure is a mixture of both α-helices
and β-sheets intermittently [36]. In this case, the transmembrane region of HA from Inf
A/Guangdong-Maonan/SWL1536/2019 (H1N1) virus is predominantly occupied with
α-helical secondary structure (shown in purple, Figure 1A) owing to the most preferred
conformation to accommodate hydrophobic residues whereas distal ends with receptor
binding domain (shown in green, Figure 1A) are abundant in β-sheets giving elongated
and extended surface areas for receptor interactions. Interestingly, the HA-T-AGM pro-
tein sequence also shows 97% sequence homology with Influenza A/Michigan/45/2015
(H1) protein (Data not shown). The A/Michigan/45/2015 strain did not lead to a pan-
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demic but its occurrence in humans and pigs suggests it could be a future threat. Hence,
we sought to make the soluble recombinant HA protein against the Inf A/Guangdong-
Maonan/SWL1536/2019 virus. The HA amino acid sequence 18–530 was used for the
generation of HA protein and linked to the fold on trimerization domain at the C-terminus
for trimer formation and to preserve the native-like trimeric conformation of HA [37–39].
The sequence was further linked with an avidin (avi) tag, cleavable tobacco etch virus (TEV)
protease site, and a His6 tag at the C terminus for ease of purification (Figure 1B). The
engineered construct was expressed in Expi293F mammalian expression cells for proper
glycosylation which would facilitate mimicking the native-like structure. The soluble
proteins (HA-T-AGM) were purified using affinity purification by passing over Ni-NTA
immobilized metal ion column and characterized further. We performed three batches of
small laboratory-scale purification and the yield of the soluble HA protein was ~6–8 mg/L.
We analyzed the expression of the purified protein on a 12% SDS-PAGE and found a single
band migrating around ~75 KDa (Figure 1C), [40]. The results confirm the expression of
trimeric HA, although the yield was moderate.
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Figure 1. Construct design and protein production scheme in mammalian cells. (A): Typical Influenza
virion structure along with a magnified view of HA-T-AGM 3-D structure (homo-trimer) as generated
by the Swiss-model ExPASy online tool based on secondary structure features (purple strands show
α-helices and green highlight are β-sheets). (B): Schematic representation of expression cassette
used in mammalian pcDNA3.1 expression vector (C): Schematic diagram showing expression and
purification of HA-T-AGM protein in Expi293F cells i.e plasmid transfection and protein production
and purification stages with final eluted fraction, dialyzed and run on 12% resolving gel.
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3.2. Comprehensive Antigenic Characterization of HA-T-AGM Soluble Protein Reveals Highly
Stable Antigen

Next, we assessed the soluble protein migration on SDS-PAGE under reduced and
non-reduced conditions. No difference in migration pattern was seen under reduced or
non-reduced conditions indicating no possible aggregate formation (Figure 2A). The protein
was expressed in Expi293F cells, followed by size exclusion chromatography using a Superdex
increase 200 10/30 column. An elution peak at volume ~11 mL corresponding to molecular
weight ~240 KDa was observed (Figure 2B). Although some minor peaks were observed in
the gel filtration chromatogram that may correspond to other oligomeric forms, however,
the trimeric population showed to be >90% population. We further test the trimeric
nature of the HA-T-AGM protein using the blue-native page electrophoresis. Under native
conditions, the protein was seen in its various oligomeric states ranging from molecular
weights from 480 KDa-720KDa (Figure 2C). To check the antigenicity of the recombinantly
produced soluble HA proteins, we performed western blot analysis using two different
-anti-HA-antibodies as a primary probe. Polyclonal homologous anti-HA-T-AGM mouse
sera raised in-house and a commercially available monoclonal antibody directed against
H1 of type A pdm09 Influenza virus (IRR FR 572); both polyclonal and monoclonal HA-
specific antibodies recognized the soluble HA-T-AGM protein (Figure 2D) (Figures S2 and
S3 for full blot images) Next, the binding of the HA-T-AGM soluble protein was further
checked by ELISA using the above antibodies. Results indicated high binding by the soluble
HA-T-AGM protein to both the homologous sera and heterologous mAb (Figure 2E). We
checked the binding capacity of the soluble HA-T-AGM at two different pH buffers, and
we found that pH 7.4 gave a better ELISA readout than pH 9.6 (Figure S4). This was
confirmed by several previous reports suggesting that pre-treatment of antigen at lower
a pH (<5.0) shows better ELISA readouts owing to the natural physiological events of
Influenza replication biology. This involves occurring of conformational changes in the HA
molecule to expose the HA1 region for better antibody binding [41]. Out of the two chosen
buffer systems for in-house developed ELISA, we found pH 7.4 functioning better than
pH 9.6 buffer.
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Non-reduced HA-T-AGM; M is a pre-stained marker (B): Elution profile after purification with
Superdex 200 Increase 10/300 column showing a peak at elution volume ~11 mL. (C): Native-PAGE
showing oligomerization states of HA-T-AGM soluble protein (D): Immunoblotting of the recombi-
nant HA-T-AGM protein onto PVDF membrane, probing with polyclonal mouse sera (1:500) as pri-
mary antibody and another blot with monoclonal antibody IRR FR572 (1:1000) followed by secondary
IgG-HRP tagged anti-mouse antibody (1:2000) to develop the blot with help of chemiluminescent
substrates (E): ELISA results showing the endpoint titers of HA-T-AGM protein and commercial In-
fluenza HA1 from Influenza A/California/07/2009 (H1N1) pdm09 [FR695]. The binding efficiency of
both proteins is tested against polyclonal mouse sera and mouse mAb FR572 raised against Influenza
Type A (H1) pdm09.

3.3. Stability and Biophysical Characterization of Recombinant Soluble HA-T-AGM Protein

We evaluated the stability of the HA-T-AGM protein by incubating equal concentra-
tions of HA-T-AGM protein aliquots at 4 ◦C and 37 ◦C and their stability was checked on
12% SDS-PAGE w.r.t different time points (Figure 3A). The HA-T-AGM protein showed
better stability when stored at 4 ◦C and even after 21 days of storage, no degradation of
the protein was noticed and a compact single band of ~75 kDa was seen on SDS PAGE.
Whereas upon storage at 37 ◦C, the protein was found to be degrading after 72 h of incuba-
tion. Next, we assessed the secondary structure and stability of the HA-T-AGM protein by
circular dichroism spectra analysis. Far-UV CD spectra of the two proteins were collected
between 280 and 195 nm. The single negative peak at ~217 nm of HA-T-AGM suggested
that the protein adapts mostly to an antiparallel β-sheets structure for their secondary
orientation. However, this did not overlap completely with the standard graph indicating
there are other secondary structural forms also present such as α-helical structures in the
overall structure (Figure 3Bi). To test whether the stability is dependent on temperature,
the sample was heated from 25 ◦C to 90 ◦C gradually, and a fall in negative ellipticity was
measured. Results indicated that ellipticity remained almost unchanged until temperature
54 ◦C and thereafter, gradual decline in the negative values of ellipticity suggesting that
the protein has stability until this temperature range and no major structural loss till 54 ◦C
(Figure 3Bii). These results showed that the soluble protein is well-folded and functionally
stable over a good range of temperatures. The size distribution profiling of HA-T-AGM
was determined using dynamic light scattering (DLS) at 25 ◦C with light scattering at 90◦

for individual measurement and found to be 446.3 ± 3.05 nm with a PDI value of 0.46. The
estimated PDI value supports the narrow size distribution of the synthesized HA-T-AGM
in suspension. The observed larger size of HA-T-AGM could be explained by the presence
of a multimeric form (HA trimer) of the synthesized protein. The apparent zeta potential
of HA-T-AGM was analyzed in the PBS buffer (pH 7.0). The ionic strength and pH of
the diluents have a great impact on the magnitude of the zeta potential. The synthesized
proteins were negatively charged and zeta potential was depicted to be −40.86 ± 3.02 mV.
The observed values for zeta potential indicate the high colloidal stability of the synthesized
protein as high values for zeta potential lead to decreased attraction among the particles
and therefore show less agglomeration. The observed values for zeta potential and size
distribution profiling favor the synthesized HA-T-AGM protein’s high stability and narrow
size distribution (Figure 3C).
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Figure 3. Biochemical and biophysical characterization of HA-T-AGM. (A): Thermostability profile
of the protein after incubation at temperature for hours at 37 ◦C and days at 4 ◦C. (B) (i,ii): CD
spectroscopy of HA-T-AGM protein. (i) Far-UV CD spectra in the wavelength range of 195–280 nm.
(ii) Thermal unfolding of HA-T-AGM as monitored from 25 to 90 ◦C. (C): Biophysical characterization
of the synthesized HA-T-AGM protein. (i) Size distribution profiling, and (ii) Apparent zeta potential
distributions of the HA-T-AGM protein. (iii) Statistical analysis and quantifications of the size diame-
ters and zeta potentials. Here, different colors in the graph represent three independent experiments.
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3.4. Intradermal Administration of HA-T-AGM Soluble Antigens in BALB/c Mice Elicited Robust
Humoral Responses and Provides Complete Protection against High-Dose Lethal Challenge

BALB/c mice were used for immunization with recombinant soluble protein HA-T-AGM
(30 µg) along with a squalene-based oil-in-water nano-emulsion based on the formulation of
MF59® known as AddavaxTM. The antigen-to-adjuvant ratio of 1:1 was used for intradermal
immunization. We followed one prime-boost strategy for the immunization with a gap of
21 days and challenged the immunized mice with a high lethal dose of mouse-adapted
InfA/PR8 virus (10 MLD50) on day 42 post-immunization (Figure 4A). The serum samples
were collected post-14 days of each dosing and used for serological assays to assess the
induction of serum-specific whole IgG (H+L). A significant rise in the whole IgG antibody
titer was seen in the sera from prime to single boost in the immunized mice against the
homologous HA-T-AGM proteins (Figure 4B). Further assessment of the type of immune
responses generated was determined in the immunized sera by measuring IgG1, IgG2a, and
IgG3. Th1:Th2 response index was calculated using the endpoint titer values in the formula
[(IgG2a + IgG3)/2]/[IgG1] and the determined value was 0.63 indicating a skewness
of immune response towards Th2 polarization. Anti-HA-T-AGM mouse sera were also
tested for binding with heterologous proteins of Influenza viruses. The two commercially
available proteins from Influenza A H1N1 and H3N2 strains, namely FR180 and FR401 were
tested. Endpoint titers for homologous protein binding were found to reach a maximum of
up to 106.5, whereas heterologous binding was only less by around 1 log value in the case of
the H1N1 strain’s protein and 2 log value in the case of the H3N2 strain’s protein binding
(Figure S5). The binding of immunized sera with different subtypes derived proteins
suggests a wide breadth of antigenicity.
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Figure 4. Immune response assessment after prime-boost of HA-T-AGM in mice. (A): Schematic
representation of antigen administration in BALB/c mice (n = 5) for each test group and n = 5 for naïve
control group). The black needle shows the dosage time point, while the red blood drop indicates the
time of blood collection. (B): IgG whole (H+L) binding with boost sera using homologous protein
and mice group sera. (C): IgG subclass IgG1, IgG 2a, IgG 2b, and IgG3 identification from mouse sera
as indicated by ELISA using anti-mouse IgG subtype secondary antibody tagged with HRP. Values
plotted are the geometric mean titers mean ± S.E. of triplicate wells.
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Next, we evaluated the protective efficacy in the HA-T-AGM mice by challenging
the immunized mice at 42nd post-immunization, intranasally (i.n.) with 10×mouse 50%
lethal dose (10 MLD50) of the highly virulent mouse-adapted Inf A/Puerto Rico/8/34 (PR8)
virus. The mice were monitored daily up to 14 days post-challenge for the development
of clinical signs. In the virus control group, all the mice developed clinical signs such as
dullness, shivering, piloerection, reduction in food intake, and hunched back. From the
3rd day post-infection, virus-challenged mice showed a loss in body weight, and by the
10th-day post-challenge, all the mice were dead (Figure 5A–C). However, we observed one
prime-one boost of HA-T-AGM immunogens was able to protect 100% of the immunized
mice against the lethal challenge with 0% mortality as compared to the control group that
succumbed fully by the 10th day of infection. We further performed the challenge study
with homologous virus Inf A/Guangdong-Maonan/SWL1536/2019. The mice (n = 5) were
immunized with HA-T-AGM similarly as above, and on the 42nd day post-immunization
mice were challenged with 105 TCID50 /mL of Inf A/Guangdong-Maonan/SWL1536/2019
intra nasally. The mice were monitored daily for body weight, survival, and clinical signs
(Figure S6. The immunized mice showed complete protection against the homologous
virus challenge.

3.5. Qualitative and Quantitative Evaluation of Magnitude and Breadth of Cross-Protection as
Exhibited by Immunized Mouse Sera

We used the gold standard test for quantifying anti-HA antibodies by using a Hemag-
glutination Inhibition assay which shows the correlation of protection. Our data shows
mouse sera protected against tested homologous virus i.e., Influenza A/Guangdong Mao-
nan/2019 strain with a high HI titer of >16,384 (Figures 6A and S7). For other heterol-
ogous viruses of the whole vaccine composition recommendation by WHO for NH2020
(Figure S8), the HI titer was 256 for Inf A/Hong Kong/2671/2019(H3N2) and 2048 for Inf
B/Washington/02/2019 (Victoria lineage); additionally, subtypes such as H1N1 Cal/04
strain, H3N2 X-31, and H3N2 X-79, the HI titer for these three subtypes was determined to
be around 1024 (Figures 6B and S9). The microneutralization ability of the mouse sera was
also tested along with immunofluorescence assay (IFA) and protection against homologous
and heterologous virus subtypes was shown (Figure 6C,D). The highest microneutral-
ization was shown against the homologous virus Influenza A/Guangdong Maonan//
SWL1536/2019, followed by heterologous Influenza A/Philippines/2/82 (H3N2) X-79
virus. Immunofluorescence was also conducted independently and readouts were mea-
sured separately as fluorescence intensity (Figure S10). Overall results from this study
show HA-T-AGM immunogen as a potent vaccine candidate.

3.6. In Silico Structural Analysis of HA-T-AGM Protein

To understand the HA-T-AGM structure we conducted the computational simulation as
described in experimental procedures. The crystal structure of the hemagglutinin from the
H1N1pdm A/Washington/5/2011 virus was taken as a template for the generation of a 3D
structure. We performed the sequence alignment between the target (HA-T-AGM serotype)
and 4LVX (Crystal Structure of the Hemagglutinin from an H1N1pdmA/Washington/5/2011
virus taken from www.rcsb.org. The sequences are highly conserved and the changes were
observed at N- and C-terminals of HA protein mainly (Figure S11). Furthermore, there are
some amino acid changes that are highlighted in the alignment file. The 3D structure of
HA-T-AGM was generated using Modeller. 200 models were generated and the topmost
model which has shown the lowest potential energy (in kcal/mol) was picked to compare
the structural changes with crystal structure using both chains A and B. The model was
optimized using the OPLS3 force field and optimization was carried out using Schrodinger
software. The optimized model was superimposed against chains A and B of 4LXV and
the RMSD was observed at 0.62 Å, indicating that the model is structurally similar to
crystal structure. Furthermore, we noticed the amino acid changes concerning crystal,
majorly occurring at positions 186-to-188 and 207-to-222. Some individual changes were

www.rcsb.org
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also observed in amino acids that are R98S, N108S, N121D, D153N, D284N, E307K, V319I,
and K523E. The optimized monomer models were used to establish the trimer model which
includes all three protomers (Figure 7A).
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Figure 5. Protection by HA-T-AGM antigen against virus challenge. (A): Weight change in immunized
mice followed for 14 days post virus challenge (Inf A/Puerto Rico/8/34 (PR8)), and comparison
made to the immunized vs. non-immunized (virus control) group along with normal naïve control
mice group. (B): Survival curve showing the number of dead mice after virus exposure with days
passing. (C): The animals were scored from day 1 to day 14 after the virus challenge. The scoring
scheme followed from 1–10 where 1 shows NAD (No abnormality), 2 was D (Dull), 3 was MP
(Mild piloerection), 4 was PE (Piloerection), 5 was RFD (Reduction in food intake), 6 was reduced
movement, huddling (RMH) 7 was H (Hunched), 8 was S (Shivering), 9 was SS (Severe shivering)
and 10 represents HLI (Hind limb injury).
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Figure 6. A broad range of cross-protection by HA-T-AGM boost sera against virus subtypes.
(A): HI titer of Anti-HA-T-AGM vaccinated sera against the homologous strain of the virus (Inf
A/H1N1/Guangdong Maonan) (B): HI titer of Anti-HA-T-AGM vaccinated sera against heterologous
strains of the virus (Inf A/H1N1/Cal 04; Inf A/H3N2/X-31; Inf A/H3N2/X-79) (C): Microneu-
tralization Assay showing MNT50 titer of HA-T-AGM boost sera against different virus subtypes
showing cross-protection. (D): Influenza A/Guangdong HA-T-AGM anti-sera cross-reactivity with
other Influenza viruses as shown with Immunofluorescence assay. The data represented here is mean
with SE. The normality of the samples was assessed with the Shapiro-Wilk normality test; statistical
analysis was then performed using Student’s t-test. * p < 0.05 and **** p < 0.0001.
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A (green) and chain b (cyan) (ii). Model of HA-T-AGM (blue) (iii) The overlay structure between
crystal and model and (iv) The overlay structure (in transparent), to show the changes in amino acids
(in licorice). (B). Molecular Docking of HA-T-AGM with reported mAb: (i) monomer chain (in green)
with the most likely pose of mAb (pdb-id 3SDY) (yellow and magenta) (ii). Trimer Model of HA in
protomer 1 (green), protomer 2 (cyan), and protomer3 (purple) highlighted the most likely pose is
consistent in trimer as well (iii) 2nd pose of mAb in trimer and (iv) 3rd pose of mAb in the trimer.

We next conducted the molecular docking studies of 3D generated HA-T-AGM with
trimer-specific CR8020 mAb reported PDB structure as 3SDY (Figure 7B). The mAb CR8020
was optimized using the protein preparation wizard of Schrodinger. The piper was used
for the docking between HA-trimer and mAb. Based on docking energy the top three poses
were filtered to explore their binding. The structures with docking energies of −317, −303,
and −282 kcal/mol were shortlisted. The most energetically favorable pose was localized
at the stalk region of HA-T-AGM; however, the other two poses belong to the tail and head
regions, respectively.

4. Discussion

Despite the extensive antigenic variability of Influenza HA structural protein, this is
the major antigen that confers protection against Influenza viruses [42]. Current licensed
seasonal vaccines are also focused on the protective ability of the HA glycoprotein to
elicit potent neutralizing responses, although these vaccines confer only strain-specific
protection [43]. An ideal vaccine for Influenza should have a greater breadth of protection
and should be suitable for all age groups. Novel and promising approaches are currently
under evaluation for the development of next-generation universal vaccines [44]. However,
the old paradigm of using recombinant subunit HA-based vaccine against the seasonal or
pandemic virus strain remains a lucrative approach [45,46]. The subunit vaccine eliminates
the concerns of some of the whole virus-based vaccines such as egg-based allergy, pre-
existing immunity, and improper inactivation [47]. For Influenza viruses, several HA-based
subunit vaccines have been evaluated which provide various levels of protection and
breadth [26,48,49]. It has been well-documented that the HA globular head-based vaccines
are more protective than stem-based vaccines alone [50].

In the present study, we have designed, expressed, and purified Influenza A HA
trimeric recombinant protein from a highly lethal strain of NH2020 circulating strain
Influenza A/Guangdong-Maonan/SWL1536/2019(H1N1) pdm09-like virus (Figure 1).
The ancestral 2009 pandemic virus strain Inf A/California/7/2009 was non-pathogenic
in mice and does not produce any disease symptoms when inoculated intranasally (data
not shown); however, Influenza A/Guangdong-Maonan/SWL1536/2019(H1N1) causes
high mortality in mice when inoculated intranasally and also the HA is found to be highly
stable [35]. In our study also the virus was found to be highly lethal in mice ( Figure S1).
Hence, the overall goal was to design the HA antigen by understanding the structure-
function relationship, where we hypothesize that soluble native-like HA protein derived
from a highly lethal virus and expressed in a suitable expression system might confer better
antigenicity and immunogenicity through a yin-yang mechanism.

The yield of the trimeric HA-T-AGM protein was ~6–8 mg/L in the laboratory con-
ditions in the Expi293F mammalian cells, which could be scalable and provides a rapid
methodology to adapt to the pandemic threat. The protein forms higher-order oligomers
and a highly stable structure and is further recognized by both homologous and heterolo-
gous antibodies (Figures 2 and 3).

The subunit protein-based vaccines are generally administered through intramuscular
or subcutaneous routes due to the safety and rapid absorption to the circulation [51],
however, this route of vaccination is often painful and also difficult to administer in needle
phobia patients. In contrast, intradermal administration provides an ideal site that is
rich in immune cells, mainly the antigen-presenting cells, and thus might allow longer
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duration, elicitation of antigen-specific strong memory response by the quick orientation
of antigens through draining lymph nodes [28,52]. The assessment of the vaccine efficacy
administrated through the intradermal route also allows the development of a microneedle
patch delivery system [53].

Thus, we further tested the efficacy of the HA-T-AGM immunogen along with Ad-
davax adjuvant in BALB/c mice when administered intradermally, using one prime-one
boost approach. The HA-T-AGM immunization elicited robust and potent HA-T-AGM
specific antibody responses even after single dose immunization and after boosting, the
peak IgG responses were substantially increased by 2 log (Figure 4B). The immunized
sera were also shown to induce a breadth of antibody responses, and shown to bind
with HA proteins of H1N1 and H3N2 viruses (Figures S8 and S9). A further challenge of
immunized mice with a high lethal dose of both homologous Influenza A/Guangdong-
Maonan/SWL 1536/2019(H1N1)viruse and mouse-adapted Inf A/Puerto Rico/8/34 (PR8)
showed complete protection in immunized mice. Furthermore, the immunized mice in-
duced high HI titer as measured in vitro against the homologous virus (Figure 5). This
is an interesting finding that showed the HA-T-AGM trimeric immunogen elicits high
neutralizing antibody responses not only against the homologous H1N1 virus but there
was also significant induction of neutralizing antibody responses against the H3N2 viruses
and also against the Influenza B virus (Figures 6 and S8). This virus is recommended as
a part of the northern hemisphere egg-based flu vaccine strain in the year 2020–2021, a
part of the Influenza trivalent vaccine (https://www.medicines.org.uk/emc/product/1044
4/smpc/print#gref, accessed on 21 December 2022), and FluBlok (https://www.sanofiflu.
com/flublok-quadrivalent-influenza-vaccine/, accessed on 21 December 2022); however,
in this trivalent vaccine, the recombinant protein was made in the baculovirus expression
system and this is administered intramuscularly. The glycosylation patterns of the protein
expressed in the baculovirus and mammalian expression systems are different. Our results
indicate, expressing the trimeric HA in the mammalian expression system might be allow-
ing proper folding and required glycosylation thus allowing the display of neutralizing
epitopes in the expressed HA protein which might be conserved across the strains, this
may have resulted in the induction of broadly reactive antibody responses.

Additionally, molecular docking studies with trimer-specific monoclonal antibody
group 2 CR8020 mAb showed binding to the stem of HA-T-AGM 3D structure (Figure 7).
The mAb CR8020 is a broadly neutralizing HA-stem-directed monoclonal antibody that
neutralizes the group 2 Influenza viruses which includes H3N2 and H7N7 viruses [54,55]
and this antibody targets the highly conserved stem region and is hence shown to be
effective in IAV viruses. The immunized sera were able to neutralize H3N2 viruses (X31
and X79). Hence, it is likely that the HA-T-AGM protein is capable of inducing broadly
stem-directed neutralizing antibodies.

There were two major limitations in this study. Firstly, we showed protection in the
in vivo challenge experiments using the homologous and mouse-adapted strains which
were conducted in a low number of mice per group; although early studies have used a
similar number of mice in studying the efficacy of novel vaccine candidates [56,57]. How-
ever, additional in vivo studies to measure whether the immunized sera could provide
prophylactic and therapeutic protection against different Influenza viruses challenge would
strongly support these preliminary findings. Nonetheless, the present study directly com-
pares the protection against the high titer homologous and heterologous challenged viruses
and there were consistent findings that demonstrated the protection in the immunized mice.
Next, more biochemical and biophysical studies are required to further validate the binding
of CR8020 mAb to the HA-T-AGM protein to corroborate the molecular docking studies or
other broadly neutralizing antibodies binding at different sites on the HA-T-AGM. It will
be interesting to find out whether HA-T-AGM antigen could elicit broadly neutralizing
antibodies and identify the target domain which would further facilitate the structure-based
designing of novel vaccine candidates.

https://www.medicines.org.uk/emc/product/10444/smpc/print#gref
https://www.medicines.org.uk/emc/product/10444/smpc/print#gref
https://www.sanofiflu.com/flublok-quadrivalent-influenza-vaccine/
https://www.sanofiflu.com/flublok-quadrivalent-influenza-vaccine/
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Nevertheless, our study suggests HA-T-AGM is an effective subunit protein-based vac-
cine that showed potential breadth, which is an essential requisite of the current Influenza
vaccine development.

5. Conclusions

Altogether, our data demonstrates that native-like HA trimeric antigen derived from a
lethal strain (Influenza A/Guangdong-Maonan/SWL 1536/2019(H1N1)) is a novel subunit
recombinant vaccine candidate capable of inducing humoral and protective neutralizing an-
tibodies against homologous and heterologous strains when immunized through the intra-
dermal route. Although, in this study, we could not establish the linkage between lethality
and higher antigenicity and breadth of the immune response, however, in the future, the de-
velopment of soluble trimeric HA from virulent strains could further substantiate this phe-
nomenon. The currently used Influenza A/Guangdong-Maonan/SWL 1536/2019(H1N1)
HA sequence also has high similarity with two known highly pathogenic H1N1 strains
(Influenza A/Hawaii/2570/2019/H1N1 and H1N1pdm A/Washington/5/2011). Hence,
it is likely that the trimeric HA-T-AGM protein will be able to protect against heterologous
lethal viruses. Our results further suggest the usage of a protein expression platform might
play an important role in the development of suitable protein-based vaccine candidates
for Influenza. Here, the usage of the mammalian expression system might be resulting
in proper folding and display of glycosylation pattern that is resulting in suitable HA
conformation to elicit protecting antibody responses. Additionally, the most preferred route
of administration of the protein vaccine is the intramuscular route, in this study the intra-
dermal administration of the HA-T-AGM induced potent and broad antibody responses.
This soluble recombinant HA-T-AGM protein could also be a potential immunogen for the
development of microneedle patches form of vaccine that would offer the advantage of
self-administration with ease and less pain.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/vaccines11040780/s1, Figure S1: Survival curve showing high lethality of
Inf A/Guangdong-Maonan/SWL1536/2019 (105 TCID50) virus; Figure S2: Original blot of HA-T-
AGM protein probed with FR572 mAb as primary antibody; Figure S3: Original blot of HA-T-AGM
protein probed with anti-HA-T-AGM mice sera as primary antibody; Figure S4: ELISA results
showing the extent of binding of HA-T-AGM protein at difference coating concentrations reflected
by the absorbance Units at 450 nm and also at two different pH buffers for antigen coating; Figure
S5: ELISA showing binding of anti-HA-T-AGM boost sera with heterologous virus antigens of
subtypes H1N1(FR180) and H3N2(FR401) indicating cross reactivity; Figure S6: A: Schematic for
immunization schedule with antigen HA-T-AGM B–D: Post virus challenge studies showing weight
percentage change, survival curve and scoring graph indicating protection of the immunized group
against the homologous virus challenge; Figure S7: Plate showing Hemagglutination inhibition of
homologous sera against Influenza A Guangdong Maonan virus using 4 HAU. HI titre is >16384;
Figure S8: Hemagglutination inhibition (HI) assay by HA-T-AGM boost sera against the other NH2020
influenza vaccine component suggested virus strains showing protection against H3N2 strain as well
as against type B influenza virus; Figure S9: Plate showing HI titer of Anti-HA-T-AGM vaccinated
sera against heterologous strains of virus (HI titer for Inf A/H1N1/Cal 04; Inf A/H3N2/X-31 and Inf
A/H3N2/X-79 was ≤ 1024); Figure S10: Influenza A/Guangdong HA- anti-sera cross reactivity with
other Influenza viruses as shown with Immunofluorescence assay; Figure S11: Sequence alignment:
Sequences of target (AGM) and template (4LVX) was aligned using Schrodinger. The residual changes
are highlighted by arrow (yellow) and major change is shown by box (red).
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