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Abstract: The sentiment analysis of social media for predicting behavior during a pandemic is seminal
in nature. As an applied contribution, we present sentiment-based regression models for predicting
the United States COVID-19 first dose, second dose, and booster daily inoculations from 1 June 2021
to 31 March 2022. The models merge independent variables representing fear of the virus and vaccine
hesitancy. Large correlations exceeding 77% and 84% for the first-dose and booster-dose models
inspire confidence in the merger of the independent variables. Death count as a traditional measure
of fear is a lagging indicator of inoculations, while Twitter-positive and -negative tweets are strong
predictors of inoculations. Thus, the use of sentiment analysis for predicting inoculations is strongly
supported with administrative events being catalysts for tweets. Non-inclusion in the second-dose
regression model of data occurring before the 1 June 2021 timeframe appear to limit the second-dose
model results—only achieving a moderate correlation exceeding 53%. Limiting tweet collection to
geolocated tweets does not encompass the entire US Twitter population. Nonetheless, results from
Kaiser Family Foundation (KFF) surveys appear to generally support the regression factors common
to the first-dose and booster-dose regression models and their results.

Keywords: COVID-19 vaccination; vaccine hesitancy; Twitter & CDC datasets; sentiment analysis;

daily vaccine inoculations

1. Introduction

From June 2011 to April 2019, access to commentary by individuals on social media
enabled researchers to study the controversial influence on public sentiment and behavior
generated through global social media channels with a particular focus on vaccine hesi-
tancy [1]. Other researchers in Korea [2], Turkey [3], India [4], and the United States of
America [5,6] expanded social media sentiment analysis; in particular, using Twitter tweets
as a significant resource of data and analysis to rapidly track and quantified public opinions,
beliefs, or behavior regarding critical events, pandemic-related events, personalities, or
subjects including quickly and effectively measuring vaccine hesitancy.

In the early stages of the COVID-19 pandemic, online contributors put forth predic-
tions through various social media channels with one of the more infamous declarations
of an “eradication” phase ending the pandemic in June 2021 [7]. Like so many other com-
mentaries through social media during the pandemic, the prediction was proven wrong
despite its widespread distribution and possible influence on the public. Staying abreast of
rapidly changing COVID-19 events during the first half of 2021 [8,9], inferred that similar
levels of social media positive and negative sentiments toward vaccines indicated that
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Vaccine acceptance

proportionally equal segments of the population were either inclined or not inclined to-
ward being vaccinated. Declining cases and deaths from 14 January 2021 until 23 June
supported the “eradication” prediction, leading to a decrease in fear of the virus [10]. The
US situation changed rapidly with the emergence of the Delta variant. The sudden increase
in the number of cases, the severity of symptoms as evidenced by increasing deaths, and
changing social sentiment appeared to change behavior toward vaccine acceptance and
inoculation. Researchers similarly extended vaccine social media sentiment analysis [6-8].
The health belief model (HBM) asserts that people’s particular beliefs, such as their
perceptions of the disease’s severity and susceptibility as well as the benefits and risk of
vaccination, are related to their behavior in terms of their health [11-13]. The notion that
acquiring (contracting) the disease will have severe consequences for both the patient and
others is referred to as perceived severity (i.e., the absolute risk) or the level of “fear of
the virus”. People who view themselves as being in danger or as having a high risk of
contracting COVID-19 are more likely to express strong intentions to get the COVID-19
vaccine [14]. The level of fear of post-vaccination side effects is a significant factor in
determining the level of vaccine hesitancy among significant segments of the public [13].

2. Statement of Contribution

This research starts with two premises, the first being that the level of vaccine accep-
tance or inoculation is driven by the level of fear of the virus with higher fear-of-virus
threats (e.g., illness, death), theoretically resulting in increasing vaccine acceptance or in-
creasing inoculation (Figure 1a). The second premise is that the level of vaccine acceptance
or inoculation is also driven by the level of fear of vaccine side effects resulting in vaccine
hesitancy, with higher vaccine hesitancy theoretically resulting in a decrease in vaccine
acceptance and a decrease in inoculations (Figure 1b) [15].
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Figure 1. (a): Fear of Virus and Vaccinations Acceptance. (b): Vaccine Hesitancy and Vaccine Acceptance.

This research merges these two inconsistent drivers of inoculation behavior into data-
driven models. The resulting models extend social media sentiment analysis by applying
regression to predicting the United States daily vaccine inoculations during the research
timeframe of 1 June 2021 to 31 March 2022. Spanning this timeframe, this research creates
predictive regression models for each of the three vaccine inoculation types—first dose,
second dose (fully vaccinated), and booster. The models encompass the three phases of
the COVID-19 pandemic in the United States during this timeframe including a portion of
the errant COVID-19 “eradication phase” as the Baseline phase, the Delta variant phase,
and the Omicron variant phase. The regression research approach uniquely incorporates
positive and negative sentiment analysis of virus fear and vaccine hesitancy from Twitter
tweets supplemented by CDC data to predict future CDC first dose, second dose, and
booster inoculations.

Further, the research indicates the degree to which different fears, factors, and lev-
els impact the daily vaccine inoculation count by segmenting the pandemic timeframe
into phases based on CDC VOC announcements. The research revealed that each phase
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impacted the vaccine inoculation models based on phase characteristics and events and
the public response to those characteristics and events. Inconsistent correlations between
traditional indicators of fear of the virus and traditional indicators of fear of the vaccine
were also accompanied by rapid changes in the vaccine inoculation trend. Likewise, first-,
second-, and booster-dose inoculations” perceived value vs. risks during a phase im-
pacted the vaccine inoculation models. In order to more accurately quantify and predict
inoculation trends, the research extends Twitter sentiment analysis by classification and
quantification of the nature and strength of the association between opinions on Twitter
and daily vaccination and inoculation spikes. Overall, the regression models provide the
means for predicting first-, second-, and booster-dose daily vaccination inoculation in the
USA. Regression results are consistent with KFF vaccination opinion surveys and with the
Technology Acceptance Curve [16]. Comments on limitations and future research goals
are provided.

3. Materials and Methods

To predict vaccine inoculations in light of fear of the virus and vaccine hesitancy, this
research methodology used three primary US population datasets. First, the Center of
Disease Control (CDC) identifies virus and variant threats relevant to the US population
through virus alerts and subsequent Variant of Concern (VOC) alerts [17]. The FDA in
coordination with the CDC approves vaccines and associate vaccine inoculation guidelines
for state and local health agencies. [18]. The CDC reports daily virus cases (a traditional
measure of the level of threat of becoming sick from the virus), virus deaths (a traditional
measure of the level of threat of dying from the virus), and inoculations (a traditional
measure of dose acceptance) [19]. The CDC also identifies COVID-19 treatments and
medications used to mitigate virus effects but does not report daily outcomes [20]. In
terms of vaccine side effects, the CDC also reports “Selected Adverse Events Reported
after COVID-19 Vaccinations” but the reports are not a daily occurrence, have significant
latency between events and reports, and do not claim to represent a collection of all adverse
events [21]. As a supplemental measure to account for CDC virus mitigation and vaccine
side effect reporting limitations and as demonstrated previously by [6].

Techniques for accessing social media vary. Our method involved the use of a Twitter-
provided database of millions of users” data who previously released their data to Twitter.
Twitter provided the data to the approved researchers in a format without personally identi-
fiable information and did not require engagement with users for access, thus avoiding the
federally regulated Institutional Review Board review. The sentiment analysis of Twitter
users’ geolocated tweets, while limited [8,22], may be used to identify levels of fear of
the virus and levels of vaccine hesitancy in a given population during a pandemic. To
explain, geolocated tweets do not represent all Twitter populations as not all users provide
their location information. Furthermore, given the linguistic diversity of the USA, another
limitation of our study is that we only looked at English-language tweets [22,23]. Twitter’s
API provides access to 1% of the public tweets by random sampling in near real-time.
Despite the potential concern about biased or imbalanced data for collecting only 1% of
all tweets, it has been demonstrated that sentiments found from API samples and the full
tweet dataset shows the same sentiment levels with very small deviation (1.8%) [8,24].

Within the 1 June 2022 to 31 March 2022 timeframe, data collection focuses on three
pandemic phases determined by the CDC virus and VOC alerts (“SARS-CoV-2 B.1.617.2
(Delta) variant COVID-19 outbreak...”, 2021; “Coronavirus disease 2019 (COVID-19)”, 2022)
(Figure 2). The Baseline phase encompasses 1-15 June 2021 and represents the state of
fear caused by the COVID-19 virus and as mitigated by the existing vaccines just prior to
the CDC alerting the public on 15 June 2022 of the Delta VOC. The Delta variant phase
follows the Delta VOC alert and spans the period from June 16th to CDC Omicron VOC
issued on 30 November 2022. The Omicron variant phase follows the Omicron VOC alert
on 1 December 2021 until the end of the research study on 31 March 2022.
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Delta variant phase
(June 16 — Nov 30)
2021

Figure 2. Pandemic Phases within the Research Timeframe.

Figure 3 shows the relationships between the datasets used to conduct the research and
analysis. Shown on the left side of the figure, the CDC issued virus and VOC alerts while
the FDA approved three vaccine doses with the first dose and the second dose available
for inoculation throughout the entire research window. The booster dose became available
for general inoculations on 22 September 2021. Additionally, as shown in the center of the
figure, the CDC reported daily a running total of vaccine inoculations, virus cases, and
deaths. To complete the right side of Figure 3, Twitter datasets provide positive, negative,
and neutral tweets about the virus and the vaccine. Twitter data extraction is discussed
in more detail below. Finally, the bottom of the figure shows that the KFF vaccination
survey outputs and Rogers Technology Acceptance Curve population segment descriptions
provided third party analysis and benchmarks of public opinions and traditional behaviors
that may relate to the research.
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Figure 3. Research Methodology.
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CDC variant of concern announcement establish phases (Baseline, Delta, Omicron);
CDC vaccine approvals establish dose intervals (first dose, second dose, booster dose);
CDC case, deaths, and inoculation data collection and segmentation;

Twitter data collection and sentiment analysis;

Linear regression models;

Correlation analysis.

3.1. Twitter Data Extraction

Twitter data may be extracted based on user location and demographics that exist
on their profiles. Data extraction from Twitter focused on the United States users and
their tweets about inoculation and vaccine hesitancy for the three COVID-19 vaccine types
available (Pfizer, Johnson and Johnson, and Moderna). Users’ tweets were extracted from
the Twitter feed using the technique described in Table 1 below, and were demonstrated
by [25,26]. We built and coded our Tweepy library crawler following the [26] approach
to extract tweets containing words identified in Table 2. “Tweepy is an open-source
Python package that gives one a very convenient way to access the Twitter Application
Programming Interface (API) with Python” [27] “in order to compose tweets, read profiles,
and access your followers” data and a high volume of tweets on particular subjects in
specific locations” [28].

Table 1. Twitter Data Extraction, Preprocessing, and Sentiment analysis Steps.

Step Description
Using Tweepy library to extract tweets from the Twitter API that relevant to COVID-19
Vaccination tweets extraction vaccine and vaccinations keywords [9,26]. In addition, using the geolocation features to

extract tweets that were posted by the USA users.

Tweets preprocessing

The retweets and URLs were removed in the preprocessing step, emojis were converted
into words, and the dataset was cleaned. We also removed stop words and performed
tokenization. Stemming and lemmatization were carried out as well [29-31].

Sentiment analysis

Using Vader library to classify tweets into positive, neutral, and negative [32-36], where
tweets classifications are defined as follows:

- Positive tweets represent the opinions that in favor of taking the
COVID-19 vaccines.
- Negative tweets represent the opinions that are against or hesitant to take the vaccines.
- Neutral tweets represent the opinions that are not in favor or against the vaccines,
where tweets cannot represent positive neither negative opinions.

Table 2. Vaccination keywords used to extract the Twitter datasets.

Vaccine Keywords Timeframe
Pfizer, Pfizer-BioNTech,
Pfizer-BioNTech vaccine BioNTechpfizer, vaccine, 1 June 2021-31 March 2022

vaccination, dose

Johnson & Johnson, Johnson
and Johnson, Janssen, Janssen, 1 June 2021-31 March 2022
vaccine, vaccination, dose

Johnson & Johnson's
COVID-19 Vaccine

Moderna, Moderna_tx,
Moderna-NIAID, NIAID,
NIAID-Moderna, vaccine,

vaccination, dose

Moderna vaccine 1 June 2021-31 March 2022

3.2. Modeling Construction

Modeling involved correlations and linear regressions to predict daily first dose, second
dose, and booster vaccination inoculations. Regression independent terms included a constant
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associated with each dose type and variables associated with phase, daily virus cases, daily
deaths, daily positive tweets, and daily negative tweets on day x. Respective regression
equation outputs included first-dose vaccination inoculation for day x + 1, second-dose
vaccination inoculation for day x + 1, or booster-dose vaccination inoculation for day x + 1.

4. Results
4.1. CDC Results and Analysis

As context to the research, on 31 May 2021, the day prior to the start of this research, the
CDC reported that 173,531,874 (52.3% of a 331,800,000 population) had received first-dose
inoculations. A total of 146,813,131 (44.2%) had received a second-dose inoculation, making
them “fully vaccinated” at the time. Since the booster shot had not been authorized for the
general public on 31 May 2021, only 9318 people had received the booster, representing 0%
of the population.

The graphic displays in Figures 4-6 summarize daily virus cases and death counts and,
respectively, the first, second, and booster doses reported by the CDC during the duration
of the research. Beneath the graphic display of daily CDC data reported, the colored bar
indicates the three phases of the pandemic identified by the CDC through their initial
COVID-19 virus alert and subsequent Delta VOC and Omicron VOC alerts, as discussed in
the Methods and Material section above.

Cases numbers, death counts, and First dose vaccine inoculations
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Figure 4. First-dose vaccine inoculations versus Virus Daily Cases & Deaths.

Within each figure, a red dot indicates a trough inflection point and a green dot
indicates a peak inflection point for a given curve. Common to all three figures are two
virus case peaks that precede lagging death count peaks, corresponding, respectively,
to the Delta and Omicron phases. Inoculation ups and downs for a given dose infers,
respectively, a rising level of virus fear or rising level of vaccine hesitancy among the
remaining populations for each dose type.
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Figure 5. Second-dose vaccine inoculations versus Virus Daily Cases & Deaths.
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Figure 6. Booster-dose vaccine inoculations versus Virus Daily Cases & Deaths.

Common to all three inoculation curves is an overall decline toward zero for new
inoculations at the end of the research timeframe. At the conclusion of the research,
the CDC reported 256,144,043 (77.1%) first-dose, 219,319,838 (66.1%) second-dose, and
100,230,127 (45.7%) booster-dose inoculations. The declining inoculation percentages with
each dose type as well as the failure of any of the dose types to exceed 78% coverage raises
the notion of population segments with different levels of acceptance of new technology
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(e.g., different vaccine doses), as identified in the Technology Acceptance Curve (Rogers,
1995), where acceptance would be expressed as a sentiment. The variability in virus fear
and vaccine hesitancy for each inoculation type (first, second, booster) varies significantly
and is discussed in the next section in terms of correlations with objective virus case and
death count measures. The nature and degree of change in inoculation behavior attributed
to changing social sentiments are deferred to the Twitter Sentiment Results and Analysis
section below.

4.2. Correlations between Inoculations and Virus Cases and Death Counts

A visual inspection of Figure 4 indicates a rapid drop in first-dose inoculations, virus
cases, and virus deaths during the Baseline phase, at that time supporting the “eradication”
theory. For the Baseline phase, correlation analysis confirmed large correlations between
declining first-dose inoculations, declining death counts (0.886), and declining virus cases
(0.766). In terms of the two theoretical premises, the correlations support the notion that
the overall declining fear of sickness from the virus and declining fear of death from the
virus resulted in declining inoculations among the remaining undosed population.

Despite the 15 June 2021 CDC Delta VOC alert and contrary to the theoretical ex-
pectation of an increase in the fear of the virus a VOC might cause, the public appeared
to ignore the VOC as inoculations continued to drop even after the VOC. Inoculations
also continued to drop inversely to rising virus cases (—0.872), until the inoculation trend
reversed at an inflection point 23 days (8 July) into the Delta phase coincident with, not
preceded by, an increase in the death count. The VOC alert, the long increasing virus cases,
and the existence of a preceding increase in death count do not appear causal to the change
in inoculation trend; the trend change is discussed below in the Twitter Sentiment Results
and Analysis section. Between the inoculation trough and subsequent 8 July 2022 peak,
large correlations were observed between rising first-dose inoculations and rising virus
cases (0.987) as well as rising death counts (0.928). After the first peak and as also discussed
in the Twitter Sentiment section below, inoculation behavior, inconsistently correlated with
virus cases and death count, peaked before the Thanksgiving Holiday and again before the
Christmas Holidays.

Based on a visual observation of the data, one might assume that the data exhibit
an underlying persistent periodic signal similar to autocorrelation, which is typical of
a harmonic frequency. As revealed in the regression equations below, up and down waves
correlate with the Variant of Concern announcements, and not with an underlying persistent
autocorrelation. Specifically, though the virus may mutate over time, mutations do not
occur in a consistent pattern nor within a consistent timeframe. Further, biologically, the
variants also tend to become less virulent over time to the point of becoming endemic, not
pandemic. Less virulent variants cause less fear of the virus, resulting in fewer vaccinations.
The tending toward zero may be noticed in the January through March data as each series
persistently approach zero, which is not characteristic of autocorrelation. In summary,
each series of data is dependent on factors to the degree correlated in the regression
models below.

A visual inspection of Figure 5 reveals a second-dose peak of 758,476 on 9 June 2021 in
the midst of the Baseline phase when virus cases and death count were both going down.
This inverse correlation during the first part of this phase infers that a large segment of
the population sought to be “fully vaccinated” despite the dropping virus cases and death
counts. After the initial inoculation peak, second-dose inoculations fell until 29 July 2021,
even though this was well past the 18 June 2021 virus trough and subsequent increase in
virus cases. The inversely correlated precipitous drop in inoculations with rising virus cases
potentially manifests higher levels of vaccine hesitancy among the remaining unvaccinated
population segments. From 29 July 2021 to the 31 August 2021 inoculation peak, rising
second-dose inoculations were highly correlated (0.943) with rising virus cases. After
the 31 August 2021 peak, second-dose inoculations varied due to the sentiment factors
discussed below.
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A visual inspection of Figure 6 reveals that the vast majority of the booster-dose
inoculations occurred entirely within the research timeframe and experienced multiple
peaks with the highest daily peak of 1,078,908 booster-dose inoculations occuring on
7 December 2021 alone. Factors driving booster-dose inoculations are discussed in the
Sentiment section below.

4.3. Twitter Sentiment Results and Analysis

Over the entire research timeframe, 949,529 tweets have been classified sentimentally.
Sentiment analysis identified 326,124 tweets that indicated a positive viewpoint toward
vaccines and 163,716 tweets that indicated a negative viewpoint toward vaccines, while
459,689 tweets indicted neutral sentiments toward vaccines.

A visual analysis of Figure 7 appears to show, and the analysis confirms, large positive
correlations between Twitter positive tweets and first-dose inoculations across the entire
Delta variant phase (0.607) and across the entire Omicron variant phase (0.804). Catalysts
for tweet activity include CDC, FDA, and other Biden administration announcement events.
Starting from July 2021, positive tweets increased slowly until the end of August 2021 when
there was a significant jump in positive tweets. Positives tweet levels spiked again in
September 2021 with approval events for the Pfizer booster dose for regular use, and again
in October 2021, which was coincident with approval events associated with the Moderna
booster and the approval of first-dose vaccinations for children. Negative tweets cited
recent press reports on vaccine side effects, which likely increased the level of vaccine
hesitancy sentiment. Nonetheless, paradoxically, a large correlation of 0.794 was observed
between negative tweets and first-dose inoculations during the Omicron phase.
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Figure 7. Positive and Negative Tweets toward First-Dose Vaccines and Vaccinations over Time.

Visual analysis of Figure 8 also appears to show, and the analysis confirms, a large
positive correlation (0.870) between positive tweets and second-dose inoculations during
the Omicron phase. Paradoxically, a large correlation of 0.892 was observed between
negative tweets and second-dose inoculations during the Omicron phase.
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Figure 8. Positive and Negative Tweets toward Second-Dose Vaccines and Vaccinations over Time.

Visual analysis of Figure 9 also appears to show, and the analysis confirms, a large
positive correlation between positive tweets and booster-dose inoculations during a portion
of the Delta phase (0.768) and across the entire Omicron phase (0.868). Paradoxically, a large
correlation of 0.845 was observed between negative tweets and booster inoculations during
the Omicron phase.
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Figure 9. Positive and Negative Tweets toward Booster-Dose Vaccines and Vaccinations over Time.
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4.4. Regression Models Outcomes

As indicated in the Methods section, regression models for predicting daily first-dose,
second-dose, and booster-dose vaccination inoculations quantify independent terms and their
coefficients. The terms include a constant associated with each dose type and variables associated
with phase, daily virus cases, daily deaths, daily positive tweets, and daily negative tweets on
day x. The respective regression equation output calculates the first-dose vaccination inoculation
for day x + 1 (Figure 10), second-dose vaccination inoculation for day x + 1 (Figure 11), or
booster-dose vaccination inoculation for day x + 1 (Figure 12). R-Squared is a statistical measure
that determines the proportion of variance in the dependent factor that can be explained by
a regression model’s independent factors. When considering the importance of the factors,
R-squared tends to reward overfitting a model with too many factors. Overfitted models
lack predictive capability. Adjusted R-squared and predicted R-squared address too many
factors and overfitting by, respectively, adjusting for the number of terms in the model and
evaluating how well the model predicts by repetitively removing data points and recalculating
the regression.

Regression Equation

First dose inoculations =

394926 - 112513 Phases + 0.2845 Cases - 50.53 Deaths
+ 328.4 Positive tweets + 165.1 Negative tweets

Coefficients

Term Coef SE Coef T-Value P-Value VIF
Constant 394926 19875 19.87 0.000
Phases -112513 7475 -15.05 0.000 1.44
Cases 0.2845 0.0227 12.55 0.000 1.61
Deaths -50.53 6.99 -7.23 0.000 1.91
Positive tweets 328.4 21.5 15.26 0.000 1.39
Negative tweets 165.1 33.2 4.97 0.000 1.61
Model Summary
S R-sq R-sq(adj) R-sq(pred)
58213.6 78.24% 77.87% 77.47%

Figure 10. First-dose prediction model. p values are significant for all five x variables.

First- (Figure 10) and booster-dose (Figure 12) inoculation models both had large
predictive R-squares of 77.47% and 84.45%, respectively. First-dose and booster-dose
inoculation models had in common: all factors of interest, each factor was statistically
significant in predicting daily inoculations in both models, and each corresponding factor
was directionally the same in each model. Death counts for both inoculation models
actually had a negative impact on inoculation counts, inferring that death counts were
a lagging indicator. Differences between the first and booster inoculation models emerge
with sentiment-variable coefficients. Combined sentiment variables (positive and negative
tweets) impact the booster-dose inoculation model 3.23 times as great as the same variable
impacts the first-dose model. Of note, during the research timeframe, CDC and Biden
administration announcement events occurred more often in association with the first and
booster doses, with only one event associated with the second dose (Figure 11). Tweets
increase around such events, with positive tweet spikes observed in association with first-
and booster-dose events. Negative tweets increased with smaller spikes than positive
tweets during events except during the Baseline phase, where the negative tweets were at
the same level of positive tweets.
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Regression Equation

Second dose inoculations =

Coefficients

521506 - 166121 Phases + 0.0975 Cases + 330.0 Negative tweets

Term Coef SE Coef T-Value P-Value VIF
Constant 521506 30275 17.23 0.000

Phases -166121 11339 -14.65 0.000 1.32
Cases 0.0975 0.0318 3.06 0.002 1.27
Negative tweets 330.0 42.6 7.74 0.000 1.05

Model Summary

S

R-sq R-sq(ad))

R-sq(pred)

92269.4 55.07%

54.61% 53.83%

Figure 11. Second-dose prediction model. p values are significant for all three variables except the
positive tweets and deaths variables which have been removed as their p values were not significant.

Regression Equation

Booster dose inoculations =

Coefficients

360343 - 96714 Phases + 0.6427 Cases - 166.9 Deaths
+ 1220.9 Positive tweets + 378.7 Negative tweets

Term Coef SE Coef T-Value P-Value VIF
Constant 360343 68235 5.28 0.000
Phases 96714 20636 -4.69 0.000 1.21
Cases 0.6427 0.0520 12.35 0.000 1.55
Deaths -166.9 21.1 -7.91 0.000 1.56
Positive tweets 1220.9 77.8 15.69 0.000 2.24
Negative tweets 378.7 97.3 3.89 0.000 2.25
Model Summary
S R-sq R-sq(adj) R-sq(pred)
127698 85.29% 84.90% 84.45%

Figure 12. Booster-dose prediction model. p values are significant for all five variables.

The second-dose inoculation regression model (Figure 11) had a moderate predictive
R-square of 53.83%. Of immediate note between the three regression equations is the
32% and 44.7% respective differences between the 394,926 first- and 360,343 booster-dose
equation constants and the 521,506 second-dose constant. The significantly higher second-
dose constant highlights the aforementioned importance of being “fully vaccinated” for
significant segments of the population. Being “fully vaccinated” drives behavior for this
segment of the population even to the point of getting the second dose in the Baseline
phase despite numerous, although later proven false, indications of a waning pandemic.
Similarly, the much larger negative coefficient of the “phase” variable in the second-dose
equation infers a rapid drop off in inoculations across phases, highlighting this population
segment’s urgency during the Baseline phase in completing the series. Interestingly, neither
death count nor positive tweets had a significant impact on second-dose inoculations.
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Cases made a modest contribution toward inoculations. Negative tweets paradoxically
made a significant contribution to inoculation, inferring resoluteness of or perhaps even
indifference or defiance toward negative social media by this population segment for
getting the second dose and becoming “fully vaccinated”.

For the booster-dose model, the positive tweets were three times as many as negative
tweets. Drivers of the differences were: the Pfizer booster approval in September 2021
and Moderna & ].] booster-dose approvals in October 2021. In addition, the booster-dose
interval constant was lower in part due to the booster never being authorized for children,
but this also indicates a lower inclination on the part of subjects to get the booster than
observed with either the first dose or second dose.

5. Discussion
5.1. Kaiser Family Foundation Surveys and CDC Self-Assessment Report

The results from the Kaiser Family Foundation (KFF) surveys indicate major reasons
for getting the COVID-19 vaccine during our research timeframe, of which were: an increase
in cases due to the Delta variant (39%), concern about hospitals filling up (38%), and
knowing someone that became seriously ill or died from COVID-19 (36%). These findings
appear to generally support the regression factors common to the first-dose and booster-
dose regression models and contribute to their large predictive R-square (“Surging delta
variant cases, hospitalizations, and deaths are biggest drivers of recent Uptick in US COVID-
19 vaccination rates”, 2021) [37]. For this research, inconsistencies are most notable between
KFF and the moderately predictive, second-dose regression model. Specifically, and most
notably, there is an absence of the death factor from the list of second-dose regression
factors. The moderate, rather than large, predictive R-square of the second-dose regression
model is likely an artificiality of the limitations of the research timeframe. Specifically, for
the large predictive R-squares for the first-dose and booster-dose regression models, the
vast majority or the entire total of inoculations taken within our timeframe occurred outside
the Baseline phase. For the second-dose regression model, a much larger percentage of
second-dose inoculations taken during our timeframe occurred during the Baseline phase.
Thus, motivation before the Baseline phase is more likely to have driven second-dose
inoculation behavior than driven either first-dose or booster-dose inoculations.

The CDC has carried out numerous self-assessment reports of their role in the COVID-19
pandemic. Ref. [38] studied the second-dose phenomenon and in part found that behavior
differed by population segments driven largely by age. Specifically, “Compared with first-
dose recipients 18-39 years of age, recipients 40-64 and >65 years of age were less likely to
have missed a second dose. Persons in older age groups had more time to complete their
primary series, given the prioritization when COVID-19 vaccine first became available. Older
adults also are at higher risk for severe COVID-19 illness and may have been more motivated
to become fully vaccinated (14,15)". If the findings from Meng et al. are accurate, the findings
support the notion that the most likely factor adversely impacting the second-dose regression
model resulting in a moderate rather than large predictive R-square was that the older segment
of the population disproportionately got inoculations during the Baseline phase. As Meng
et al. also further indicate, older population segments may have been driven to become “fully
vaccinated” with the second dose by fear of “severe illness” or death. Since the pandemic
began in the United States in March 2020 and without knowledge of the Delta and Omicron
VOCs, this fear would have been accumulated well before the Baseline phase and before
our research timeframe. Future research that included data reaching back to March 2020
would likely significantly change second-dose regression model factors and weights to be
more in line with first-dose and booster-dose regression models. Additionally, future research
may improve the predictive R-square of the regression equations by including a variable for
population segments, possibly identified by age and other demographics that may impact
vaccine acceptance. Furthermore, the future research can improve the prediction accuracy by
using machine learning modeling approaches, which have been proven to be more powerful
and effective than conventional approaches [39,40].
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A KFF survey also solicited feedback on sentiments about vaccine side-effect concerns
and the resulting vaccine hesitancy (Personal Concerns About COVID-19 Vaccination) [41].
For the booster dose, KFF identified significantly different sentiments among vaccinated
and unvaccinated population segments. Specifically, 78% of the vaccinated respondents
indicated that the booster dose “shows that scientist are continuing to find ways to make
vaccines more effective” [42]. In contrast, 71% of the unvaccinated respondents indicated
that the booster dose “shows that the vaccines are not working as well as promised”. KFF
also indicated that the Omicron variant only motivated about 12% of the unvaccinated to
get their first dose, while 87% remained unconvinced [43]. In contrast, among vaccinated
adults who had not gotten a booster, 54% indicated that the Omicron variant made it “more
likely” to “get a booster shot”, while 46% disagreed.

5.2. Considering Vaccine Acceptance Rates in Light of Rogers Technology Acceptance Curve

Given the aforementioned segmentation of the population, this research would be
remiss not to acknowledge similarities between population acceptance of and hesitancy
toward vaccines and the Rogers Technology Acceptance Curve. Specifically, the Rogers
Technology Acceptance Curve identifies five segments the US population and characterizes
2.5% as Innovators in accepting technology, 13.5% as the Early Adopters, 34% as the
Early Majority, 34% as the Late Majority, and 16% as Laggards. Laggard traits include
skeptical, resistance to change, and wary of accepting new technology. Assuming that each
inoculation is a new technology experiencing the Rogers estimates of acceptance, laggards
would represent the segment of the population predisposed toward vaccine hesitancy.
This assumption infers that approximately 84% of the population might voluntarily accept
a first-dose inoculation within the timeframe of the pandemic. As of 7 February 2023, and
remarkably consistent with the Rogers estimate of 84% acceptance, the CDC reports that
85.5% of the US population 5 years of age or greater are inoculated with one dose [38]. If
a second-dose inoculation is viewed as another voluntary acceptance challenge, then the
Rogers estimation of 84% of the first-dose recipients would yield that an estimate of 70.6%
of the total population will receive a second-dose inoculation. As of 7 February 2023 and
remarkably consistent with the Rogers estimate of 70.6% acceptance, the CDC reports that
73.2% of the US population 5 years of age or greater are inoculated with one dose [38].
The respective 1.5% and 2.6% higher observed inoculation rates over that estimated by
the Rogers Curve may be due to vaccination mandates imposed by government and/or
employers. Unfortunately, the Rogers statistical booster-dose estimation is confounded by
a replacement of the original booster with the updated (bivalent) booster dose. Further, as
of 7 February 2023, the CDC only reports updated (Bivalent) booster data, not the original
booster data discussed herein. The 31 March 2022 CDC reported 100,230,127 (45.7%)
original booster inoculations; applying Rogers 84% acceptance rate to the 70.5% who
actually accepted the second-dose inoculations yields an expected 59.3% acceptance rate for
booster inoculations among the total population. Clearly, the observed 45.7% acceptance
rate is well below the 59.3% estimated rate. Future research may reveal the reasons for
the inoculation shortfall, but the shortfall is likely due to the timeframe limitations of the
experiment or timeframe limitations due to the replacement of the booster with the updated
booster, but may also be due to rising vaccine hesitancy or fewer mandates.

5.3. Social Media Manipulation, Sentiment Analysis, Twitter Files, and United Nations
Assessment Reports

While we believe our sentiment analysis approach is sound and the results are accurate
to the degree cited above, manipulation by government agencies or large corporations may
have an impact on social media content and may therefore limit sentiment analysis where
such manipulation occurs. Social media content impacts sentiment. Revelation of content
manipulation will likely undermine the confidence in content found on social media and
thereby will undermine the value of social media sentiment analysis. As an example, with
the acquisition of Twitter by Elon Musk, a number of independent journalists investigated



Vaccines 2023, 11, 709

15 of 17

governmental and industrial manipulation of social media and released reports termed the
“Twitter Files”. Among those investigations, David Zweig released the 40-tweet Twitter
Files report titled, “How Twitter Rigged the COVID Debate” [44]. Zweig identified in that
report “that both the Biden and Trump administrations pressured Twitter and other social-
media platforms to elevate content that fit their narratives and to suppress information
that didn’t”. One of the more important and concerning findings was actual interference in
free speech by the silencing of Alex Berenson, a critic of the Biden administration COVID
policies. Specifically, “Berenson’s Twitter account was suspended hours after Biden alleged
that social-media companies were “killing people” for allowing vaccine misinformation.
Berenson later sued and eventually settled with Twitter”. Further, Lee Fang revealed how
“the pharmaceutical industry lobbied social media to shape content” related to the COVID
vaccine [45]. Even Pfizer board member Dr. Scott Gottlieb flagged tweets questioning
COVID vaccines [46]. An August 2021 email Gottlieb sent to Twitter’s senior public policy
manager Todd O’Boyle flagging a tweet written by former Trump administration official
Dr. Brett Giroir is but one example. Giroir had written “It’s now clear #COVID19 natural
immunity is superior to #vaccine immunity, by ALOT. There’s no scientific justification
for #vax proof if a person had prior infection”. “This is the kind of stuff that’s corrosive”,
Gottlieb told O’Boyle. “Here he draws a sweeping conclusion off a single retrospective
study in Israel that hasn’t been peer reviewed. But this tweet will end up going viral and
driving news coverage”. According to Berenson, O’Boyle forwarded Gottlieb’s email to
Twitter’s “Strategist Response” team, writing “Please see this report from the former FDA
commissioner”. Giroir’s tweet was later slapped with a “misleading” label and blocked
any ability to like or share the tweet, telling Twitter users “Learn why health officials
recommend a vaccine for most people”.

Besides the directed manipulation of social media content by governments and indus-
try, this research revealed that CDC and Biden administration announcements and events
precipitated considerable Twitter tweets. The nature of the tweet response directly im-
pacted the regression equations. Thus, two recent United Nation reports stating, “scientist
in China, the US and the UK have been accused of deliberately covering up the origins of
the coronavirus outbreak” [47], may also undermine social media sentiment analysis in the
future by creating further distrust. Epidemiologists Colin Butler, from the National Centre
for Epidemiology and Population Health in Canberra, Australia, and Delia Randolph, from
the University of Greenwich in London, were responsible for the reports. Both concluded
that high-risk experiments being carried out in the Chinese city of Wuhan were shrouded
in a cloak of suspicious secrecy, deception, and conflicts of interest. They argued that this
was ‘implemented not only by China but also by Western funding agencies and influential
Western scientists’.

While the sentiment analysis in this research did not consider the undermining of the
confidence of the fair, accurate, and equitable publishing of social media content, future
research must consider how potential social media content manipulation impacts behavior.
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