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Abstract: Using levels of neutralizing antibodies (nAbs), we evaluate the successful Chilean SARS-
CoV-2 vaccine campaign, which combines different vaccine technologies and heterologous boosters.
From a population-based study performed in November 2021, we randomly selected 120 seropositive
individuals, organized into six groups of positive samples (20 subjects each) according to natural
infection history and the five most frequent vaccination schemes. We conclude that the booster dose,
regardless of vaccine technology or natural infection, and mRNA vaccines significantly improve
nAbs response.

Keywords: neutralizing antibodies; vaccines; BNT162b2; CoronaVac; AZD1222; COVID-19;
SARS-CoV-2; cross-sectional design; vaccine-preventable diseases; viruses

1. Introduction

The SARS-CoV-2 pandemic has unprecedented challenges for its global, regional, and
national control. The continuous emergence of the SARS-CoV-2 variants, jointly with the
waning antibody titers from natural and vaccine-induced immunity, generates scenarios
that maintain population susceptibility and risk of outbreaks [1,2]. Chile is not an exception,
presenting one of the worst outbreaks in the world by mid-2020, but also with a globally
successful vaccine campaign. The Chilean vaccination strategy combined different vaccine
technologies (i.e., inactivated, viral vector and mRNA) and heterologous boosters [3].

The determination of nAbs is a well-known strategy for understanding the evolution
of immunity against certain diseases. During the last two years, nAbs have been widely
used to explore the progression of SARS-CoV-2. Recent studies have focused on comparing
infection-induced, vaccine-induced, and hybrid immunity, and on analyzing the immune
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response to the SARS-CoV-2 variants of concern (VOC). This new evidence shows that
vaccines and disease generate neutralizing antibodies, but nAbs are higher for individuals
with heterologous and homologous vaccination schemes than those with natural immunity.
Hybrid immunity protects better against severe outcomes of different VOCs. Additionally,
nAbs titers varied significantly according to VOC and elapsed time from vaccination [4–6].

Despite the increasing literature covering this topic, only a few have analyzed inac-
tivated vaccines. In this research, we aimed to compare the various Chilean vaccination
schemes, using the presence of neutralizing antibodies (nAbs) as a correlate of immune
protection against SARS-CoV-2 [7,8].

2. Materials and Methods

Serum neutralization capacity was measured using a pseudotyped vesicular stomatitis
virus with a sequence encoding the enhanced green fluorescent protein as a reporter gene
(VSV-GFP-Spike SARS-CoV-2 original Wuhan strain), kindly donated by Dr. Kartik Chan-
dran [9]. Samples tested came from individuals enrolled in a population-based SARS-CoV-2
seroprevalence study performed by the same research team [10–12]. In November 2021,
we collected 2198 serum samples from seven-year-old and older people, finding 97.3% of
seropositivity. We used six groups of positive samples according to natural infection history
and the five most frequent vaccination schemes, randomly selecting 20 individuals from
each group (Table 1). Finance restrictions limited our ability to perform a higher number of
nAbs analyses.

Table 1. Vaccination schemes and sample distribution, Chile 2021.

Vaccine Scheme Acronym Description N

CC (CoronaVac CoronaVac) Basal scheme = two doses of Sinovac’s CoronaVac 20
PP (Pfizer Pfizer) Basal scheme = two doses of BNT162b2 20
CCO (CC plus Oxford Astra-Zeneca) Basal CC plus booster with ChAdOx1-S (heterolo-gous) 20
CCP (CC plus Pfizer) Basal CC plus booster with BNT162b2 (heterologous) 20
PPP (Triple Pfizer) Basal PP plus booster with BNT162b2 20
Natural infection Non-vaccinated, but seropositive (Natural Infection) 20

The amount of nAbs response was measured as the inhibitory concentration where
50% of the viral entrance is inhibited (IC50). IC50 was calculated for each serum by
measuring the viral entrance of the VSV-GFP-Spike SARS-CoV-2 pseudotype capturing
the amount of GFP fluorescence in each serum dilution. Briefly, serum serial dilutions
from 1/50 to 1/51200 were incubated with VSV-GFP-Spike SARS-CoV-2 pseudovirus for
30 min, and then VEROE6 cells (ATCC) were infected with this virus. After 20 h, cells were
washed, fixed in 4% paraformaldehyde, and GFP intensity was measured in a Cytation
3 (BioTeK). The resulting curve of each serum was analyzed through a dose-response
nonlinear regression in Prism v9 Software (Graphpad) to calculate the IC50.

The statistical analysis considered the description of the median nAbs titers, including
the 95% confidence interval for each category of analysis. We compared the median of
nAbs titers after infection and after different vaccination schemes, using a Kruskal-Wallis
test, with a p-value < 0.05. Additionally, we estimated the prevalence of positive nAbs
response in each variable of interest, considering positive the subjects with IC50 in titers
of 1/50 and over. Differences across subcategories were estimated using Chi2 statistical
test or Fisher’s exact test. Data were analyzed using STATA statistical software (StataCorp.
2017. Stata Statistical Software: Release 15. College Station, TX, USA: StataCorp LLC.).

The Ethics Committees of the Universities el Desarrollo and Talca and the Facultad
de Medicina of the Universidad Católica del Norte approved the study protocols. In-
formed consent was obtained from all subjects, if subjects were under 18, from a parent or
legal guardian.
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3. Results

We found nAbs response in 82.5% of the subjects, without significant differences by
sex or age. The presence of nAbs is significantly higher in people with booster doses
and non-smokers. Additionally, it varies according to vaccine platform used (inactivated,
mRNA or viral vector recombinant) (Figure 1 and Table 2).
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Figure 1. Neutralizing antibodies titration curves for the natural infection group and different
vaccination schemes, Chile 2021. CC (CoronaVac CoronaVac), PP (Pfizer Pfizer), CCO (CC plus
Oxford AstraZeneca), CCP (CC plus Pfizer), PPP (Triple Pfizer), with n = 20 for each group. The
curves were fitted as a dose-response three parameters analysis. Each curve represent a patient,
and the dots are the GFP fluorescence value for every serum dilution, using the GraphPad prism 9
software (Graphpad).

Table 2. Presence of Neutralizing Antibodies against SARS-CoV-2 among seropositive individuals
according to selected variables, Chile November 2021.

Variable n Median nAbs
(p25–p75) §

Positive Ab
Response

Prevalence
(%) p-Value

Total 120 730.7 (63.4–7757.1) 99 82.5%

Sex Male 43 485.4 (71.6–6939.6) 37 86.0% 0.31
Female 77 1640.2 (42.3–8333.3) 62 80.5%

Age group 7–19 16 336.1 (124.1–1084.1) 15 93.8% 0.20
20–59 81 668.9 (38.1–11,076.7) 63 77.8%
60+ 23 2637.1 (558–6939.6) 21 91.3%

COVID-19
diagnosis

No 108 698.9 (55.5–7283.7) 87 80.6% 0.09
Yes 12 2970.9 (141–12,809.6) 12 100.0%

Presence of
symptoms *

No 74 2293.3 (87.3–7627.8) 62 83.8% 0.41
Yes 46 356.2 (40.4–9615.4) 37 80.4%

Comorbidity † No 65 668.9 (60.8–6583.3) 54 83.1% 0.52
Yes 55 732.6 (66–9578.5) 45 81.8%

Tobacco No 83 800.6 (86.8–5274.3) 73 88.0% 0.02
Yes 37 558 (10–11,611.7) 26 70.3%

Vaccine No 20 75.4 (18–356.5) 15 75.0% 0.25
At least one dose 100 2522.4 (98.8–9845.5) 84 84.0%
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Table 2. Cont.

Variable n Median nAbs
(p25–p75) §

Positive Ab
Response

Prevalence
(%) p-Value

Vaccine doses
Basal scheme 40 80.8 (10–700.7) 27 67.5% 0.00

Booster 60 6172.3 (2522.4–12,346.1) 57 95.0%

Vaccine scheme ‡ CC 20 10 (10–132.2) 9 45.0% 0.00
PP 20 292.9 (68.8–1614) 18 90.0%

CCO 20 3305.1 (1184.5–7636.5) 20 100.0%
CCP 20 7105.5 (4456.6–24,035.9) 17 85.0%
PPP 20 9597 (4884.6–18,837.4) 20 100.0%

Natural infection 20 75.4 (18–356.5) 15 75.0%

* COVID-19 compatible symptoms including fever, cough, odynophagia, dyspnea, headache, myalgia, chest
pain, abdominal pain, diarrhea, fatigue, anosmia and dysgeusia. † Comorbidities including overweight and
obesity, diabetes, high blood pressure, heart diseases, chronic respiratory diseases (asthma, COPD), cancer and
hypothyroidism. ‡ Vaccine scheme acronym description in Table 1. § Interquartile range (p25–p75) = 25th and
75th percentile.

Figure 2 shows the level of neutralizing antibodies represented as median and in-
terquartile values of the IC50 for each study group. In the left panel, when comparing nAbs
levels, the group with only a basal immunization scheme has nAbs levels similar to those
of the naturally infected patients (p value = 0.8425). In contrast, individuals who received a
booster dose have a significantly higher level of nAbs compared to the other two groups.
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Figure 2. All samples were plotted as individuals points and graphed the median and interquartile
for both panels. Left panel shows a comparison of nAbs titers between natural infection (n = 20),
two dose schemes (n = 40), and booster dose (n = 60). The right panel shows a comparison of nAbs
between the different vaccination schemes: CC (CoronaVac CoronaVac), PP (Pfizer Pfizer), CCO (CC
plus Oxford AstraZeneca), CCP (CC plus Pfizer), PPP (Triple Pfizer), with n = 20 for each group.
Symbols *, **, and **** denote statistically significant differences among the comparison groups;
p ≤ 0.05, p ≤ 0.01 and p ≤ 0.0001, respectively. The statistical differences were performed with
Kruskal-Wallis test, and a p-value < 0.05.

On the right panel of Figure 2, analyzing the schemes by the different vaccines used,
it is observed that the PPP scheme elicited the highest median nAbs response, without
significant differences with the heterologous CCP scheme, but higher than the CCO scheme.
On the other hand, all three booster schemes produced significantly higher nAbs levels than
the natural infection group and the two basal schemes studied (CC and PP). Among the
basal schemes, there are also significantly higher nAbs levels for the scheme with mRNA
vaccines (PP) compared to inactivated vaccines (CC).

Figure 3 is a scatter plot showing the relationship between nAbs titers and time, using
days since the last vaccine dose. It shows the waning of antibody titers for the groups
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with the basal vaccine scheme, but not for the groups with the booster doses, but also the
follow-up was shorter for the latter groups.
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4. Discussion

Our results demonstrate that vaccination with a booster dose significantly improves
the neutralization of the virus, and this effect may be associated with the relatively lower
impact of the circulation of the Delta variant observed in Chile compared to the previous
SARS-CoV-2 variants in terms of cases, hospitalizations, and deaths [13]. By December 2021,
84.1% of the Chilean population had received a basal scheme vaccination and 56.1% a
booster dose [13].

People with natural infection had a similar level of nAbs compared to people vac-
cinated with the basal schemes. However, nAbs levels in both groups, natural infection,
and basal schemes, were significantly lower than those with booster doses, reinforcing the
importance of universal vaccination, regardless of the history of the disease, as a strategy
that confers higher protection.

Likewise, our results demonstrate the higher immunogenic potency of the mRNA
vaccines, both in the basal and the booster dose schemes [8,14,15]. Other studies on
healthcare workers from Chilean institutions support the higher neutralizing titers triggered
by mRNA vaccines’ basal scheme [16]. A possible explanation might be the loss of antigenic
sites in inactivated vaccines which only are exposed on a pre-fusion architectonic state of
spike, which is necessary for infection dynamics [17].

Nevertheless, the heterologous booster scheme, combining inactivated and mRNA
vaccines (CCP), displayed a heterogeneous response, including 15% of subjects without
nAbs; this figure is zero in the other two booster schemes (CCO and PPP), and 10% in those
with the PP basal scheme. Interestingly, the CCP group is younger than the CCO group
(average 44 vs. 69 years old, respectively), but similar to the PPP group (average 44 years
old), because the Chilean Health Authority restricted the use of ChAdOx1-S recombinant
vaccine to people older than 55 years. A possible explanation for the proportion of non-
responders with the CCP scheme may be the short time elapsed since the last vaccination.
In fact, in two of the three subjects without nAbs, the sample collection was before 14 days,
and this occurred in just one of the seventeen nAbs responders. The neutralization analysis
detected significant differences according to vaccine technologies not seen in measuring
total SARS-CoV-2 antibodies [11]. This added value, provided by neutralization studies,
allows a deeper understanding of the antibody response to vaccines and natural infection
to guide the public health response to the pandemic. Despite high vaccination coverage,
we are still susceptible to new variants with the ability to evade the immune response, as
was observed with the circulation of Omicron.
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Finally, we found a lower nAbs response in smokers than non-smokers, consistent
with studies suggesting a more inadequate humoral response in smokers [18].

The strength of this study includes the analysis of different vaccine technologies. In
addition, it is a sample of subjects that comes from a population study and not from specific
groups of the population. As for weaknesses, the moderate number of samples analyzed
by vaccine technology does not include neutralizing antibodies against different variants
of SARS-CoV-2, such as Delta and Omicron. Although previous studies have shown a
correlation in neutralization for the different variants of SARS-CoV-2 [16], relevant changes
have been detected for those with a greater capacity to evade the immune response. Finally,
the short time elapsed since the application of the booster dose limited our ability to study
nAbs half-life, further research is needed to address this matter.

5. Conclusions

We conclude that the booster dose significantly improves the levels of neutralizing
antibodies against SARS-CoV-2, regardless of the vaccination scheme or the levels acquired
by natural infection. Additionally, mRNA vaccine technology is strongly associated with
higher neutralizing antibody levels than inactivated virus vaccines.
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