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The 100th anniversary of the introduction of Bacille–Calmette–Guérin (BCG) as a
tuberculosis (TB) vaccine is an occasion warranting further investigation of the early
attempts which culminated in the introduction of BCG as a TB vaccine, as well as of
subsequent recognition of failures, new findings that broaden its applications, outstanding
questions, and approaches towards the development of novel vaccine candidates [1,2].

It all started with the announcement by Robert Koch in 1890 that he had developed a
remedy to prevent and treat TB, which, in less than two years, turned out to be a disastrous
failure [3]. Subsequently, various approaches were attempted with no success (low doses
of Mycobacterium tuberculosis (Mtb), short-term attenuation of M. tuberculosis by biophysical
methods, and inactivated whole cell and split vaccines based on M. tuberculosis or other
mycobacteria). Ultimately, Albert Calmette and Camille Guérin combined the strategy of
Edward Jenner, i.e., to use a pathogen of different host specificity, and that of Louis Pasteur,
i.e., to employ attenuated pathogens, using long-term in vitro passage of Mycobacterium
bovis, the agent of cattle TB, for attenuation. Eventually, Bacille–Calmette–Guérin (BCG), as
it was termed, was shown to be successful. Originally, the vaccine had been given orally,
but was soon found to be more efficacious with intradermal inoculation. The success story
of BCG was profoundly affected by the so-called Lübeck disaster. In 1930, 251 neonates
had been vaccinated with BCG preparations that were accidentally contaminated with
fully virulent M. tuberculosis, ultimately leading to the death of 75 babies [4,5]. Over the
years, however, BCG stood the test of time, and it remains the only licensed vaccine against
TB today.

On the other hand, it is increasingly being recognized that BCG can no longer be
considered as one vaccine. In fact, due to varying culture conditions, the different BCG
strains currently used have given rise, over the years, to many substrains. These substrains
have shown a variety of different genetic characteristics and immunological properties.
Furthermore, several different culture media formulations are currently used worldwide
for production of the different strains, a circumstance that can substantially influence the
expression of BCG surface molecules, thereby modifying their interaction with host cells [6].

Yet, it has become clear that BCG primarily protects against extrapulmonary TB in
infants and is of variable efficacy against pulmonary TB in all age groups. Hence, improved
vaccines to protect infants, adolescents, adults, and the elderly against the most prevalent
disease form, pulmonary TB, are urgently needed. In addition, future TB vaccines should
be safer than BCG.

Among the various strategies currently investigated for improving anti-TB efficacy,
there exist four promising approaches. These include subunit vaccines composed of one
or few antigens and whole cell vaccines comprising a multitude of antigens. The four
strategies are:
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• Mycobacterial proteins combined with potent adjuvant formulations (as presented
in refs. [7,8]);

• Viral vectors (such as MVA and Adenovirus) expressing mycobacterial antigens [9,10];
• Inactivated whole cell vaccines, in general using related mycobacteria [11];
• Viable mycobacterial vaccines comprising either recombinant BCG (rBCG) overex-

pressing different mycobacterial antigens or proteins that can modulate the immune
response (see for instance ref. [12]), or attenuated Mtb (such as MTBVAC [13]).

An rBCG strain expressing a detoxified E. coli toxin showed improved efficacy against
TB in animal models, but also a better capacity to induce a non-specific innate/inflammatory
response in human macrophages [14]. Further advanced is the rBCG-expressing Listeri-
olysin O (VPM1002) to perturbate phagosomal membranes, which has already successfully
passed safety and immunogenicity trials [15,16].

This reawakening of TB vaccine development has also led to the reevaluation of BCG
itself. It was revealed that in non-human primates BCG could induce sterilizing immunity
after intravenous inoculation [17], although splenomegaly was observed as an adverse
event. In human trials, compelling evidence was obtained suggesting that revaccination of
adults with BCG can prevent stable infection by almost 50% [18].

Today, a dozen vaccine candidates have entered clinical testing based on these four
approaches. The only novel vaccine candidate that has shown preliminary efficacy data in a
phase IIb trial is the subunit vaccine M72:AS01E (protein + adjuvant), which demonstrated
around 50% prevention of disease after booster vaccination of individuals with latent TB
infection [4]. The most advanced vaccine candidate is VPM1002 (an rBCG with improved
immunogenicity and safety) [15,16], which is currently being tested in three phase III clinical
trials for prevention of infection, prevention of disease, and prevention of recurrence in
different study populations (for review see ref. [2]).

Additional new attributes in the use of BCG include its non-specific innate/inflammatory
effects, encompassing the generation of an innate memory able to protect against non-
related infections [19–21]. This property has herein been demonstrated to extend to rBCG
strains. A recombinant strain expressing a detoxified pertussis toxin antigen displayed an
enhanced capacity to induce innate memory, both in vitro, in macrophages, and in vivo,
in response to unrelated infectious challenges [22]. Beyond infections, BCG is also being
used successfully for therapy of non-muscle-invasive bladder cancer [23]. BCG, however,
is not accepted by all bladder cancer patients and VPM1002 has recently been shown to
significantly prolong survival time in such patients [24].

Recombinant BCG has also been used as a strategy to develop vaccines against non-
related pathogens, joining its capacity to non-specifically enhance immune responses
with the stimulation of an antigen-specific response. Thus, the expression of protective
antigens in BCG has shown the induction of potent immune stimulation in response to the
heterologous pathogens (see for instance ref. [25]). The use of complemented auxotrophic
BCG strains improves vaccine stability, and there are several examples of its applicability
both for new anti-TB vaccines and as live vectors for vaccines against different diseases
(reviewed in ref. [26]).

What is the future for BCG? Its use as a vaccine can be effectively complemented
by a thorough exploitation of its immunostimulatory capacities, which can be directed
to targeted adjuvanticity, to the amplification of specific secondary responses, and to
broaden the spectrum of vaccine efficacy, as well as to the stimulation of a localized
inflammatory/cytocidal innate immune reaction against tumors (reviewed in ref. [27]).

With the celebration of the first 100-year anniversary of the most employed vaccine in
the world prior to COVID-19, there have been a few special topic issues and several articles
published in the last year in a variety of journals. Scientific progress in vaccine research
and development has accelerated with an enormous speed, but what we have learned
from BCG discovery more than 100 years ago will remain the basis of vaccine research and
development forever. Confirming Isaac Newton’s phrase, “Standing on the shoulders of
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giants”, we can assuredly say: “Today’s research and development stands on the shoulders
of the giants who solved the key issues more than 100 years ago”.
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