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Abstract: We report the safety and immunogenicity results in participants administrated with a
booster dose of protein subunit vaccine MVC-COV1901 at 12 (Group A) or 24 (Group B) weeks after
two doses of AZD1222 (ChAdOx1 nCoV-19). The administration of the MVC-COV1901 vaccine as
a booster dose in both groups was generally safe. There were no serious adverse events related to
the intervention as adverse events reported were “mild” or “moderate” in nature. In subjects fully
vaccinated with two doses of AZD1222, waning antibody immunity was apparent within six months
of the second dose of AZD1222. At one month after the MVC-COV1901 booster dose, those who were
vaccinated within 12 weeks after the last AZD1222 dose (Group A) had anti-SARS-CoV-2 spike IgG
antibody titers and neutralizing antibody titers which were 14- and 6.5-fold increased, respectively,
when compared to the titer levels on the day of the booster dose. On the other hand, fold-increase a
month post-booster in people who had a booster 24 weeks after the last AZD1222 dose (Group B)
were 19.5 and 14.0 times for anti-SARS-CoV-2 spike IgG antibody titers and neutralizing antibody
titers, respectively. Among those who were vaccinated within 12 weeks after the last AZD1222 dose,
we also observed 5.2- and 5.6-fold increases in neutralizing titer levels against ancestral strain and
Omicron variant pseudovirus after the booster dose, respectively. These results support the use of
MVC-COV1901 as a heterologous booster for individuals vaccinated with AZD1222. Furthermore,
regardless of the dosing schedule, the combination of AZD1222 primary series and MVC-COV1901
booster can be cost-effective and suitably applied to low- and middle-income countries (LMIC).

Keywords: COVID-19 vaccine; SARS-CoV-2; heterologous booster; protein subunit vaccine; MVC-COV1901;
AZD1222

1. Introduction

The COVID-19 pandemic is claiming millions of lives worldwide, and the negative
economic and public health impacts may have been far greater without the currently ap-
proved vaccines, including the two mRNA- and two adenovirus-based anti-SARS-CoV-2
vaccines from Moderna or Pfizer/BioNTech and Oxford/AstraZeneca or Johnson and
Johnson, respectively. These vaccines are highly efficacious in preventing severe disease,
hospitalization and death and have demonstrated good safety records overall [1]. Never-
theless, as with all vaccines, there are rare but severe safety signals that have led to limited
applicability to specific patient subgroups. Examples are the mRNA vaccines associated
with rare events of myocarditis in younger males and thrombosis related to adenoviral
vector vaccines [2,3].

New evidence shows challenges with increased infectiousness and immune evasion
of emerging variants of concern (VCs), including Delta and Omicron variants, and the
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discovery of a relatively short duration of protection conferred by COVID-19 vaccines [4,5].
These concerns developed with the resurgence of cases and the observation that vaccinated
people show increasing rates of infection starting about 6 months post-vaccination [6].
Thus, the consensus is building that long-term COVID-19 control may be achieved by
booster shots that may become annual events [7].

AstraZeneca AZD1222 has the lowest cost amongst approved vaccines. Since there
is no need for an extreme-cold chain infrastructure such as the one needed for the mRNA
vaccines, it is ideal for use in lower and middle-income countries [8,9]. However, AZD1222
is of weaker immunogenicity than other widely used mRNA vaccines, but boosters with
different vaccines (heterologous boosting) may compensate for this potential deficiency,
as shown in the COV-BOOST trial in the UK [10]. If proven, this may lead to a truly
cost-effective vaccine-booster combination.

MVC-COV1901 is a subunit vaccine based on the stable prefusion spike protein
(S-2P) of SARS-CoV-2 adjuvanted with CpG 1018 and aluminum hydroxide and has been
approved for use after a large phase 2 clinical trial demonstrated a favorable safety and
immunogenicity profiles [11]. An EUA was granted to MVC-COV1901 in July 2021, and the
vaccine was rolled out in Taiwan since the end of August 2021. Based on a post-marketing
safety surveillance system run by the Taiwanese Centers for Disease Control, no alarming
safety signals have been reported for MVC-COV1901 [12]. Thus, we are investigating if
MVC-COV1901 boosters can attain optimal immunogenicity after waning immunity from
initial immunization(s).

In this study, we report results from an MVC-COV1901 booster shot after two initial
immunizations with AZD1222. We used data to quantify anti-SARS-CoV-2 spike IgG
antibody titers and neutralizing antibody titers boosted by an MVC-COV1901 booster
dose and describe the initial safety findings of the booster dose. We also investigated the
enhancement in immunogenicity of a booster dose of MVC-COV1901 against the Omicron
variant pseudovirus.

2. Methods
2.1. Study Design

This study is a parallel, prospective, randomized, open-label clinical study to evaluate
the immunogenicity, safety, and tolerability of MVC-COV1901 as a booster vaccine in
participants that have received two doses of AZD1222. It was conducted from 7 October
2021 to 22 April 2022, during which a global transition of the most prevalent strain from
Delta to Omicron was observed [13]. In this case, 201 healthy adults aged 23 to 66 years
who received two doses of AZD1222 within 6 months of study initiation were randomized
into two groups. Participants in Group A were scheduled to receive a booster dose of
MVC-COV1901 (15 mcg of S2-P adjuvanted with 750 mcg of CpG 1018 and 375 mcg of alu-
minum hydroxide) administered intramuscularly 12 weeks after the last dose of AZD1222,
whereas those in Group B were scheduled to receive a booster dose of MVC-COV1901
administered intramuscularly 24 weeks after the last dose of AZD1222. For analysis of
the immunogenicity, 73 participants for Group A and 43 participants for Group B were
included. The study design and flowchart are presented in Figure 1. The timeline of the
study is outlined in Figure 2. Day 1 is the day that Group A participants received the
dose of MVC-COV1901 booster. Therefore, in Group B participants, the MVC-COV1901 is
administered on Day 85. Blood samples were taken at immunization and during additional
study visits (Days 29, 85 and 169). At the time the study was conducted, there were no
endemic cases of COVID-19 in the community. Enrolled participants have no previous
history of COVID-19 infection. Based on PCR results, no breakthrough cases have occurred
throughout the course of the trial.
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Figure 2. Study timeline and key time points.

2.2. Outcomes

Safety was assessed by monitoring for solicited and unsolicited adverse events (AEs)
for the first 14 days after the booster dose, and 28 days and 12 weeks after the booster dose.
Immunogenicity was assessed by measuring anti-SARS-CoV-2 spike IgG antibody and live-
SARS-CoV-2 neutralizing assay against the ancestral strain as previously performed [11].
Additionally, a pseudovirus neutralization assay was also conducted against the Omicron
variant. An electronic case report form (eCRF) was used to record the actual date and time
of sample collection. Unique sample identification was used to maintain blinding at the
laboratory and allow for automated sample tracking and storage.

2.3. Laboratory Methods

The detection and characterization of antigen-specific immunoglobulin were per-
formed by a central laboratory using a validated enzyme-linked immunosorbent assay
(ELISA) method using customized 96-well plates coated with S-2P antigen, as previously de-
scribed [11]. The GMT of the anti-spike IgG titer for NIBSC 20/136 was 109,609, which was
calculated from seven repeated tests. The NIBSC 20/136 was assigned as 1000 BAU/mL,
and from this, a conversion factor of 0.0912 (1000/109,609) was derived to estimate the
BAU/mL values from antigen-specific immunoglobulin titer.

Live-SARS-CoV-2 neutralization assay was performed as previously with ancestral
strain SARS-CoV-2, Taiwan CDC strain number 4 (hCoV-19/Taiwan/4/2020; GISAID
accession ID EPI_ISL_411927) [11]. The serum samples underwent a total of eight two-fold
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dilutions, starting from a 1:8 dilution to a final dilution of 1:1024. Diluted serum samples
were then mixed with an equal volume of 100 TCID50 per 50 µL of virus and incubated
at 37 ◦C for 1 h. After incubation, the mixture was added to Vero E6 cells and incubated
at 37 ◦C in a 5% CO2 incubator for 4–5 days. The neutralizing titer (NT50) was estimated
as the reciprocal of the highest dilution capable of inhibiting 50% of the cytopathic effect.
The NT50 results were calculated with the Reed-Muench method. Anti-spike IgG titers
and neutralizing antibody titers were converted to the WHO Standardized Unit, BAU/mL
and IU/mL, respectively. The conversion is based on the WHO-validated NIBSC reference
panel. The results are expressed as a geometric mean titer (GMT) and converted to binding
antibody units (BAU/mL) for IgG titer and international units (IU/mL) for neutralizing
antibody titer as we have performed in our phase 2 clinical study [11].

Pseudoviruses with spike proteins of ancestral strain and Omicron variant (BA.1)
were constructed and neutralization assays performed. Two-fold serial dilution of serum
samples was mixed with an equal volume of pseudovirus and incubated at 37 ◦C for
1 h before adding to the HEK-293-hAce2 cells. In this case, 50% inhibition dilution titers
(ID50) were calculated with uninfected cells as 100% neutralization and cells transduced
with the virus as 0% neutralization. The mutations for the Omicron variant used in the
spike sequence for pseudovirus construction are A67V, del69-70, T95I, G142D, del143-
145, del211, L212I, ins214EPE, G339D, S371L, S373P, S375F, S477N, T478K, E484A. Q493R,
G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, D796Y, N856K,
Q954H, N969K, L981F.

3. Results

A total of 202 participants were initially recruited. Figure 1 shows the study flowchart
and subsets used for the safety and immunogenicity analyses. The demographic character-
istics of the population are summarized in Table 1. As expected from the randomization
process, Group A and B have similar properties. The median age for both groups is 40 years
with an Interquartile range (IQR) of 13.0 and 18.0 years, respectively, for Group A and
B. Approximately 32% and 29% are males and females, respectively. In terms of Body
Mass Index (BMI), both groups have approximately 13% of the sample BMI greater than
30 kg/m2.

Injection of the third shot of MVC- COV1901 in both groups was generally safe and
no adverse effects greater than mild (grade 1) to moderate (grade 2) were reported. No
serious adverse event was reported after a booster shot with MVC-COV1901 in participants
who had received two immunizations with AZD1222. Administration of a booster shot of
MVC-COV1901 24 weeks after the last AZD1222 dose was also shown to have favorable
safety, reactogenicity and tolerability with slightly fewer adverse events than in those
receiving the vaccine 12 weeks after the second AZD1222 dose. Reported adverse events
were also mostly mild with some moderate events. Table 2 presents the safety profile of
the third dose of MVC-COV1901. Among recipients of the MVC-COV1901 booster shot,
approximately 72% and 69% experienced pain or tenderness at the site of injection within
14 days after the shot for groups A and B, respectively. A noticeably lower proportion (i.e.,
46% for group A and 26% for group B) of participants reported injection-site induration
or swelling. The majority of those who encountered local solicited side effects reported
grade 1 or mild effects while a small percentage experienced moderate reactions. In terms
of systemic solicited AE, 51% (in group A) and 38% (in group B) experienced malaise or
fatigue while none experienced fever. The most commonly reported systemic events in
Group A, were malaise or fatigue and myalgia (51% and 39%, respectively). Similarly,
malaise or fatigue (38%) and myalgia (36%) were also the most common systemic events in
Group B. Most systemic reactions reported were grade 1 with a few grade 2 reactions.

The results of immunogenicity are summarized in Table 3 and Figure 3. Figure 3A,B
show the anti-spike IgG titers while Figure 3C,D show neutralizing antibody titers at
different time points. For the illustration of anti-spike IgG levels among individuals in
Group A, V1: 4 weeks before booster; V2: day of vaccination for the MVC-COV1901 booster
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shot within three months after the last AZD1222 dose; V3: four weeks after a booster dose
of MVC-COV1901; V4: 12 weeks after a booster dose of MVC-COV1901 and V5: 24 weeks
after a booster dose of MVC-COV1901. Figure 3A shows that at V1, the anti-spike IgG
geometric mean was 144.7 BAU/mL and the levels dropped to 52.1 BAU/mL at V2. At
one month after the MVC-COV1901 booster dose (V3), anti-spike IgG levels increased to
724.9 BAU/mL or an almost 14-fold increase compared to that of the day of booster dose
(V2). Compared to V1, boosted by the third dose of MVC-COV1901 elicited a 5.0-fold
increase in anti-spike IgG immune response. At V4, the anti-spike IgG levels started to
decrease slightly with a 2.6-fold decrease compared to V3, while at V5, the anti-spike
IgG geometric mean titer (GMT) was reduced to 3.2 times its levels in V3. For group B
(Figure 3B), i.e., those who received a delayed booster dose of MVC-COV1901, Figure 3C
shows that anti-spike IgG GMT was 142.3 BAU/mL at V1 (28 days after the last shot in
the AZD1222 series or 4 weeks before the booster shot). It decreased to 52.9 BAU/mL
at V2 (12 weeks before the booster) and further dropped to 44.4 BAU/mL at V3 (the day
of the MVC-COV1901 booster). Administration of MVC-COV1901 as a booster greatly
increased IgG titers which peaked at V4 (4 weeks after the booster) to 866.8 BAU/mL or
almost 20 times its levels at V3. By V5 (12 weeks after booster), anti-spike IgG GMTs started
to decline with levels at 576.6 BAU/mL, equating to a 1.5-fold reduction when compared
to V4.

Table 1. Demographic profile of respondents.

Item
Vaccine Group

p Value
Group A Group B

Age (years)
n (Missing) 100 (0) 99 (0)

0.763
Mean (SD) 41.4 (10.3) 41.8 (10.8)

Median (IQR) 40 (13.0) 40 (18.0)
Q1–Q3 34.5–47.5 33–51

Min–Max 24–66 23–64
Gender

n (Missing) 100 (0) 99 (0)
0.679Male 32 (32.0) 29 (29.3)

Female 68 (68.0) 70 (70.7)
BMI (kg/m2)
n (Missing) 100 (0) 99 (0)

0.836
Mean (SD) 24.4 (4.4) 24.6 (4.2)

Median (IQR) 23.97 (6.03) 23.8 (6.3)
Q1–Q3 21.2–27.2 21.3–27.6

Min–Max 17.6–35.3 18.0–37.8
BMI group
n (Missing) 100 (0) 99 (0)

0.978<30 kg/m2 87 (87.0) 86 (86.9)
≥30 kg/m2 13 (13.0) 13 (13.1)

Comorbidity Category
n (Missing) 100 (0) 99 (0)

0.224Yes 32 (32.0) 24 (24.2)
No 68 (68.0) 75 (75.8)

Abbreviations: n= number of subjects in PPI population; SD = standard deviation; Q1 = first quartile (25th
percentile); Q3 = third quartile (75th percentile); IQR = interquartile range; BMI = Body Mass Index.
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Table 2. Solicited Adverse Effects 14 days after an MVC-COV1901 booster shot.

Item
Group A Group B

Event Subject Percentage Event Subject Percentage

N (missing) 100 (0) 99 (0)
At least one event 257 82 82% 208 76 78%

Local 120 74 74% 94 70 71%

Pain/Tenderness 72 72 72% 68 68 69%
Grade 1 71 71 71% 68 68 69%
Grade 2 1 1 1% 0 0 0%

Erythema/Redness 2 2 2% 0 0 0%
Grade 1 2 2 2% 0 0 0%
Grade 2 0 0 0% 0 0 0%

Induration/Swelling 46 46 46% 26 26 26%
Grade 1 46 46 46% 26 26 26%
Grade 2 0 0 0% 0 0 0%

Systemic 137 63 63% 114 54 55%

Malaise/Fatigue 51 51 51% 38 38 38%
Grade 1 48 48 48% 32 32 32%
Grade 2 3 3 3% 6 6 6%

Myalgia 39 39 39% 36 36 36%
Grade 1 35 35 35% 31 31 31%
Grade 2 4 4 4% 5 5 5%

Headache 30 30 30% 17 17 17%
Grade 1 29 29 29% 15 15 15%
Grade 2 1 1 1% 2 2 2%

Diarrhea 7 7 7% 12 12 12%
Grade 1 7 7 7% 11 11 11%
Grade 2 0 0 0% 0 0 0%

Nausea/Vomiting 10 10 10% 11 11 11%
Grade 1 10 10 10% 8 8 8%
Grade 2 0 0 0% 3 3 3%

Fever 0 0 0% 0 0 0%
Grade 1 0 0 0% 0 0 0%
Grade 2 0 0 0% 0 0 0%

Table 3. Immunogenicity on the day of MVC-COV1901 booster (V2 for Group A, V3 for Group B)
and one month after MVC-COV1901 booster (V3 for Group A, V4 for Group B) as measured by
anti-SARS-CoV-2 spike IgG titers and live virus neutralizing antibody titers. GMTs are shown as
GMT with a 95% confidence interval in the parentheses. Fold changes are calculated as the geometric
mean of the V3/V2 ratio (for Group A) or V4/V3 ratio (for Group B) of individual titer values with a
95% confidence interval in the parentheses.

Group A Unit V2 (n = 73) V3 (n = 73) Fold Change V3/V2 * p-Value

Anti-SARS-CoV-2 spike IgG
IgG GMT 571.4

(456.6–715.1)
7948.7

(6558.5–9633.6)
13.9

(10.5–18.4) <0.0001

BAU/mL GMT 52.1 (41.6–65.2) 724.9
(598.1–878.6) 13.9 (10.5–18.4) <0.0001

Neutralizing antibody
NT50 GMT 66.6 (56.6–78.4) 569.7

(471.7–688.0) 8.6 (7.0–10.5) <0.0001

IU/mL GMT 59.0 (51.2–68.0) 385.4
(326.8–454.5) 6.5 (5.5–7.8) <0.0001
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Table 3. Cont.

Group A Unit V2 (n = 73) V3 (n = 73) Fold Change V3/V2 * p-Value

Group B Unit V3 (n = 43) V4 (n = 43) Fold change
V4/V3 p-value

Anti-SARS-CoV-2 spike IgG
IgG GMT 487.4

(384.9–617.0)
9504.1

(7817.9–11,554.0)
19.5

(14.4–26.4) <0.0001

BAU/mL GMT 44.4 (35.1–56.3) 866.8
(713.0–1053.7) 19.5 (14.4–26.4) <0.0001

Neutralizing antibody
NT50 GMT 31.9 (25.4–40.1) 651.9

(535.1–794.2) 20.4 (15.2–27.5) <0.0001

IU/mL GMT 31.0 (25.4–37.8) 433.6
(364.9–515.4) 14.0 (10.8–18.1) <0.0001

* Using Wilcoxon signed rank test.
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Figure 3. Anti-SARS-CoV-2 spike IgG titers (in BAU/mL) and neutralizing antibody (nAb) titers
(in IU/mL) at different time points for both groups A and B. The results were presented by line
graph with bars representing geometric mean IgG and nAb titers with error bars for 95% confidence
interval values. The following graphs are featured in the figure (A) IgG titers in BAU/mL for group
A from V1 to V5; (B) IgG titers in BAU/mL for group B from V1 to V5; (C) nAb titers in IU/mL for
group A at different time points; and (D) nAb titers in IU/mL for group B at different time points.
Comparisons between two consecutive time points were made using Wilcoxon signed-rank test
(** p < 0.05, *** p < 0.01).
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As shown in Table 3, the neutralizing antibody (NAb) titer for group A increased
from 59.0 IU/mL at the time of the booster dose to 385.4 IU/mL one month after the
MVC-COV1901 booster dose. This amounted to a 6.5-fold increase in NAb levels at V3
compared to V2 in terms of IU/mL or an 8.6-fold increase in NT50. As in anti-spike IgG
titers, fold-increase in NAb titers after the booster dose was also higher in group B. At one
month after the booster dose, levels rose to 14-fold of pre-booster NAb levels in IU/mL
and a 20-fold increase in NT50 levels.

To test the neutralizing ability against the Omicron variant by antibodies induced by
the MVC-COV1901 booster, we randomly selected pre- and post-booster serum samples
from 30 participants of those who were vaccinated within 12 weeks after the last AZD1222
dose and subjected them to neutralizing assay against ancestral strain and Omicron variant
pseudoviruses. Before the booster, two doses of AZD1222 were largely ineffective in
neutralizing the Omicron variant pseudovirus at a 7.3-fold reduction in GMT compared
to the ancestral strain, with only two individuals having detectable levels of neutralizing
antibodies (Figure 4A). After the booster, about 90% of the individuals had detectable
neutralizing titers against the Omicron variant pseudovirus. Compared to pre-booster
levels, there were 5.2- and 5.7-fold increases in GMT levels against the ancestral strain and
Omicron variant pseudoviruses compared to pre-booster levels, respectively (Figure 4B).

Vaccines 2022, 10, 1701 9 of 13 
 

 

 
Figure 4. Neutralizing assay against ancestral strain and Omicron variant pseudoviruses. Serum 
samples on the day of the MVC booster dose and day 28 after the MVC booster dose from 30 ran-
domly selected individuals of the immunogenicity analysis subset from group A (i.e., 
MVC−COV1901 booster administered within 12 weeks from the last AZD1222 dose) were taken. (A) 
grouped according to the time of sampling; (B) grouped according to pseudovirus type. The results 
were presented by horizontal bars representing geometric mean titer with error bars for 95% confi-
dence interval values. Statistical significance was calculated with the Kruskal-Wallis test with cor-
rected Dunn’s multiple comparisons test. *** = p < 0.001, **** = p < 0.0001. 

4. Discussion 
The antibody quantifications presented here demonstrate that following a waning 

period post second immunization with AZD1222, a booster shot with MVC-COV19 sig-
nificantly raises binding antibody levels by as much as 14-fold. More importantly, the 
maximum antibody levels achieved with the booster exceed those achieved by two im-
munizations with AZD1222. Similar results have been observed in an extension of the 
MVC-COV1901 phase 1 trial that followed the same observation and vaccination time 
points as this study but used MVC-COV1901 for all three immunizations [14,15]. 

Figure 4. Neutralizing assay against ancestral strain and Omicron variant pseudoviruses. Serum
samples on the day of the MVC booster dose and day 28 after the MVC booster dose from 30 randomly



Vaccines 2022, 10, 1701 9 of 12

selected individuals of the immunogenicity analysis subset from group A (i.e., MVC−COV1901
booster administered within 12 weeks from the last AZD1222 dose) were taken. (A) grouped
according to the time of sampling; (B) grouped according to pseudovirus type. The results were
presented by horizontal bars representing geometric mean titer with error bars for 95% confidence
interval values. Statistical significance was calculated with the Kruskal-Wallis test with corrected
Dunn’s multiple comparisons test. *** = p < 0.001, **** = p < 0.0001.

4. Discussion

The antibody quantifications presented here demonstrate that following a waning
period post second immunization with AZD1222, a booster shot with MVC-COV19 sig-
nificantly raises binding antibody levels by as much as 14-fold. More importantly, the
maximum antibody levels achieved with the booster exceed those achieved by two im-
munizations with AZD1222. Similar results have been observed in an extension of the
MVC-COV1901 phase 1 trial that followed the same observation and vaccination time
points as this study but used MVC-COV1901 for all three immunizations [14,15].

The aggregated results from the phase 1 study and the study presented here suggest
that options of a booster vaccine may not be limited to the matching vaccines for the
primary series. More importantly, boosters may have the general property of efficiently
raising neutralizing antibodies to levels not achieved by prior immunizations [16,17]. Based
on the correlates of protection published from Phase III data of AZD1222, the predicted
vaccine efficacy against symptomatic infection against the ancestral strain at four months
after the second AZD1222 dose was below 60%, and after the booster the predicted VE
was raised to 89.7%. [18]. There is, however, an important follow-up question that is to
determine if the neutralizing antibody levels are better maintained long-term after one or
more boosters. The recent surge of infections driven by a new VoC, the Omicron variant,
was alarming in regards to the fact that two doses of the currently-available vaccines became
largely ineffective [4,18]. As more data came to light on the effectiveness of booster doses
to improve neutralizing against the Omicron variant and other VoCs, booster doses remain
one of the few viable options to mitigate the waves of infections [19–21]. In this study, we
have shown that a booster dose of MVC-COV1901 after two doses of AZD1222 can result
in similar increases in neutralizing titer levels against the ancestral strain and Omicron
variant pseudoviruses (Figure 4). Administration of booster dose restored the neutralizing
ability against the Omicron variant that was previously undetectable with only two doses
of vaccination, as in line with other booster studies [18–20]. Recent real-world results of
three doses of mRNA-1273 against the VoCs showed that the vaccine efficacies against
Delta and Omicron infection were 95.2% and 62.5%, respectively [18]. The immunogenic
response and favorable safety profile of the third booster shot might offer a viable option
for vaccination program designers to cope with the issue of waning immunity after the
two-dose schedule compounded by the emergence of variants of concern. The outcomes of
the MVC-COV1901 booster remain to be seen in the real-world efficacy study.

A recent study in the UK for heterologous third dose booster regimen (COV-BOOST)
showed that at one month after the booster dose compared to the day of the booster dose;
there was a 2.6-fold increase in anti-spike IgG titer with two doses plus a booster dose
of AZD1222 and a 6.7-fold increase with two doses of AZD1222 and a booster dose of
Novavax NVX-CoV2373, also a protein subunit vaccine [10]. In our study, a booster dose of
MVC-COV1901 after two doses of AZD1222 showed a 14-fold increase in anti-spike IgG
titer, superior to that of the above two combinations and nearly equal to that of boosting
with BNT162b2 after two doses of AZD1222, which achieved a 16-fold increase in the
COV-BOOST study [10]. In terms of reactogenicity, we have observed no occurrence of
severe (grade 3) adverse events after booster administration, while severe solicited reactions
have been reported for all of the heterologous booster combinations in the COV-BOOST
study [10]. Most noticeably, no incidence of fever has been reported in this study, similar to
our previous clinical findings [11].
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The study did not investigate T cell responses. However, although not analyzed in
the study, the literature points out that many heterologous vaccination schedules produce
more immunogenic responses than homologous schedules, but T cell responses depend
on the platforms utilized and the sequence of the prime-boost regimen [22]. A study on
COVID-19 vaccines comparing a homologous schedule of an inactivated vaccine (I-I-I)
and a heterologous schedule with a recombinant subunit vaccine (I-I-S) reveal that the
two strategies differed significantly not only in the induction of neutralizing antibodies
but also in the composite pattern of neutralizing antibodies and the population of virus-
specific CD4+ T cells produced [23]. To date, there is limited evidence on the T cell
responses of a protein subunit booster to a primary regimen of an adenoviral vector vaccine
among COVID-19 vaccines. Evidence suggests that a single dose of AZD1222 induces a
Th-1 biased response characterized by interferon- γ and tumor necrosis factor-α cytokine
secretion by CD4+ T cells together with antibody production predominantly of IgG1 and
IgG3 subclasses [24]. Similarly, two doses of MVC-COV1901 have a Th1-skewed immune
response marked by the induction of substantially high numbers of interferon- γ producing
cells [25]. Lorin et al. [26], in an animal study of an HIV vaccine, found that a prime-boost
regimen involving a non-human adenoviral vector and an adjuvanted F4 protein elicits
good T cell responses in macaques. When administered in a heterologous schedule, both
candidate vaccines complemented each other and induced potent and persistent peripheral
blood HIV-1-specific CD4+ and CD8+ T cell responses. This provides evidence that a
heterologous schedule of an adjuvanted protein vaccine and non-human adenoviral vector
vaccine may be a feasible and attractive strategy for immunization.

For vaccines that confer transient protection, the timing of a booster dose remains a
crucial component of vaccination programs and could affect the long-term dynamics of
disease and immunity [26]. A longer interval between the prime series and booster has
been found to increase immunogenicity in general [27–29]. Even so, the optimal scheduling
of booster doses remains unclear and undetermined. Findings of the study indicate that
administration of MVC-COV1901 after 6 months of completion of an adenoviral vector
vaccine series is still optimal in terms of immunogenicity and safety. However, the decrease
in neutralizing antibodies between the two different schedules should be noted, especially
when deciding on the optimal booster schedule. Additionally, there is the question of lag-
ging vaccine coverage and delayed administration of booster doses in LMIC [30]. Current
problems such as supply constraints and threats to vaccine equity form the crux of these
issues, which, when unaddressed, pose a significant risk of infection and severe disease
in different populations. The results of this study bring important implications on issues
surrounding vaccine access among LMICs. They can provide policymakers in LMICs with
evidence and options in vaccine scheduling to sustain protection in the population.

The limitations of the study include the small sample size used to analyze histori-
cal immunogenicity data. Comparison of differences was, however, made through non-
parametric statistics. Furthermore, the study did not analyze cell-mediated immunity and
T cell responses. Additionally, a pseudovirus neutralization assay was used to test against
the Omicron variant. This may not accurately reflect the neutralizing ability against the
Omicron variant.

5. Conclusions

Our findings showed that administration of MVC-COV1901 as a third dose booster
could effectively and safely enhance immunogenicity nearly to the level seen in using
mRNA vaccine as a booster dose Our strategy could be aptly applied to lower- and middle-
income countries with difficulties in handling mRNA booster vaccines but desirable to
achieve a similarly high level of immunity against SARS-CoV-2.
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