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Abstract: Lassa virus (LASV) causes a severe, often fatal, hemorrhagic fever endemic to 
West Africa. Presently, there are no FDA-licensed medical countermeasures for this disease. 
In a pilot study, we constructed a DNA vaccine (pLASV-GPC) that expressed the LASV 
glycoprotein precursor gene (GPC). This plasmid was used to vaccinate guinea pigs (GPs) 
using intramuscular electroporation as the delivery platform. Vaccinated GPs were protected 
from lethal infection (5/6) with LASV compared to the controls. However, vaccinated GPs 
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experienced transient viremia after challenge, although lower than the mock-vaccinated 
controls. In a follow-on study, we developed a new device that allowed for both the vaccine 
and electroporation pulse to be delivered to the dermis. We also codon-optimized the GPC 
sequence of the vaccine to enhance expression in GPs. Together, these innovations resulted 
in enhanced efficacy of the vaccine. Unlike the pilot study where neutralizing titers were not 
detected until after virus challenge, modest neutralizing titers were detected in guinea pigs 
before challenge, with escalating titers detected after challenge. The vaccinated GPs were 
never ill and were not viremic at any timepoint. The combination of the codon-optimized 
vaccine and dermal electroporation delivery is a worthy candidate for further development. 

Keywords: Lassa fever; Lassa virus; arenavirus; guinea pigs; dermal electroporation; 
vaccination; vaccine  

 

1. Introduction 

LASV, a member of the family Arenaviridae, is carried by persistently infected multimammate rats 
(Mastomys natalensis). Humans can become infected by inhalation of aerosolized virus shed in rodent 
excreta or by person-to-person or nosocomial exposure [1]. LASV is a category A pathogen on the 
National Institute of Allergy and Infectious Diseases list of biodefense and emerging infectious 
diseases and is considered a select agent by the U.S. Centers for Disease Control. LASV is endemic 
throughout western Africa where it is responsible for significant human morbidity and mortality. 
Among all hemorrhagic fever viruses, LASV is second only to dengue virus in human impact, with an 
estimated 100,000 to 300,000 LASV infections and 5,000 deaths occurring annually [2]. It is likely the 
LASV disease burden is greater than estimated as routine surveillance of endemic disease is not 
performed. Also, approximately 80% of people infected with LASV develop mild symptoms and may 
not seek medical treatment. Symptoms include fever, malaise, severe headache, and sore throat. 
Bleeding occurs in about one-third of patients and is a poor prognostic indicator. Pulmonary edema 
and respiratory distress are common in fatal cases [1]. Mortality among pregnant women is higher than 
other patients and can reach 30–70% [3]. Hearing loss is observed in about 30% of hospitalized patients 
with approximately 50% of those patients developing permanent deafness [4]. Although Lassa fever is 
severe and widespread, there is no evidence of repeat infection in survivors, suggesting an effective 
vaccine could be developed [2]. Challenges for developing a LASV vaccine include genetic diversity 
of virus strains [5] and an incomplete understanding of what constitutes a protective or cross-protective 
immune response. Additional challenges include LASV tropism for dendritic cells and macrophages, 
which likely interferes with the adaptive immune response, making it difficult to identify appropriate 
correlates of protection [6,7]. Lassa fever patients and experimentally infected nonhuman primates 
(NHP) develop strong antibody responses to LASV; however, those antibodies are not neutralizing 
antibodies and have not been found to correlate with viral clearance. Low levels of LASV neutralizing 
antibodies, if detected at all, are usually only present after recovery in both humans and nonhuman 
primates [2]. In contrast, virus clearance has been correlated with the appearance of cytotoxic T cells 
in LASV-infected nonhuman primates (NHP), with those animals surviving infection displaying 
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stronger and earlier T-cell responses than those that succumbed to LASV infection [6]. Despite these 
correlations, it is not clear whether or not antibodies are important for protective immunity or recovery 
if present before LASV infection. 

There are no FDA-licensed vaccines for Lassa fever, and therapy is generally limited to supportive 
care. Although intravenous treatment with the antiviral drug ribavirin was found to reduce mortality if 
given early in the course of Lassa fever, it does not prevent deafness [8]. LASV vaccine development 
efforts have yet to result in a clear candidate for advanced development due to ineffective protection in 
animal models or safety concerns. Due to the pathogenicity of LASV, as well as the requirement for 
handling infectious virus in high-containment laboratories, a recombinant DNA-based vaccine is an 
attractive alternative to conventional vaccine approaches. To date, several experimental vaccines for 
LASV derived from recombinant DNA have been tested in guinea pigs and NHP [9,10]. Replication 
competent viral-vectored candidate vaccines include recombinant vaccinia virus [11], recombinant 
vesicular stomatitis virus (VSV) [12], and recombinant yellow fever virus [13,14]. Replication-deficient 
candidate vaccines include a Venezuelan equine encephalitis virus replicon [15] and a virus-like 
particle (VLP) [16]. Of these candidates, the VSV replicon showed the most promise, in that four 
vaccinated NHP remained clinically healthy after LASV challenge, although they did develop low-level 
viremia [12]. Despite these promising results, safety concerns with the VSV live vector remain. With 
this study, we report the development of a plasmid DNA LASV vaccine delivered via either intramuscular 
or intradermal electroporation. Additionally, we present immunogenicity and protective efficacy of this 
vaccine in a lethal guinea pig challenge model. Our data indicate that DNA vaccination offers a safe 
and potentially effective means to induce protective immunity against LASV. 

2. Experimental Section 

2.1. Construction of the Non-Optimized Lassa Josiah GPC Vaccine Plasmid 

The Lassa virus glycoprotein precursor (GPC) fragment was amplified by PCR using Platinum Taq 
High Fidelity DNA polymerase (Invitrogen) from a LASV, Josiah strain template using GPC-specific 
primers. The LASV GPC fragment was then cloned into the NotI site of expression vector pWRG7077 
(Powdermed) using T4 DNA ligase (New England Biolabs), generating pLASV-GPC. The gene is 
flanked by a cytomegalovirus immediate early promoter (CMV IE) and a bovine growth hormone 
polyadenylation signal (BGH pA). The vector contains a kanamycin antibiotic-resistance gene (KAN). 
Resulting clones were screened for orientation and sequenced using an ABI 3100 genetic analyzer. 
Plasmid DNA was purified using Purelink HiPure Mega plasmid purification kit (Invitrogen). 

2.2. Construction of Codon-Optimized Lassa Josiah GPC Vaccine Plasmid 

The published sequence for LASV GPC gene (Genbank Accession number AY628203.1) was 
optimized by GeneArt using a proprietary algorithm. In addition to codon usage optimization, negative 
cis-acting sites (such as splice sites, poly (A) signals, TATA boxes, etc.) which may negatively 
influence expression, were eliminated where relevant. The GC-content of the LASV GPC gene was 
adjusted to prolong mRNA half-life. Codon usage was adapted to the bias of Cavia porcellus resulting 
in an improved codon adaption index (CAI) value of 0.97 (a value of 1.0 being perfect adaption) from 
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a value of 0.68 in the original sequence. For this analysis, any CAI value above 0.9 is considered 
optimal to ensure robust and stable expression rates in target organisms. The optimized sequence was 
synthesized and subcloned into the NotI/BglII site of expression vector pWRG7077 (Powdermed) by 
GeneArt (Germany). The cloned plasmid was sent to Aldevron (Fargo, ND, USA) for scale-up and 
was provided as a 1 mg/mL solution. 

2.3. Immunoprecipitation 

To confirm expression, radioimmunoprecipitation assays (RIPA) of the non-optimized vaccine 
construct were carried out as follows. COS-7 cells at 80% confluency in T25 cell culture flasks were 
transfected using the FuGene 6 transfection reagent (Roche) with 5 μg of either pWRG7077 or 
pLASV-GPC plasmid DNA. After 24 hours, monolayers were washed, then treated with 200 μCi 
Promix ([35S]-methionine and [35S]-cysteine, Amersham) for 4 hours at 37 °C. Once again, monolayers 
were washed, the cells harvested, lysed, and supernatant collected for immunoprecipitation analysis. A 
negative control cell lysate was similarly prepared, excluding the Promix incubation. A volume of 5 μL of 
anti-LASV antibody was preincubated for 2 hours on ice with 500 μL of the negative control lysate. A 
volume of 10 μL/mL of 10% SDS was added to the radio-labeled lysate, then 200 μL of this mixture was 
added to the preincubated negative control lysate. The mixture was incubated overnight on ice. The 
lysate/antisera mixture was then combined with 150 μL protein G sepharose and incubated for 30 minutes 
on ice. Images were obtained after protein gel electrophoresis and transfer by using a Cyclone 
phosphorimager (Packard). 

2.4. Electroporation Devices 

2.4.1. Intramuscular Electroporation Device (IMEP) 

The intramuscular electroporation device was an ELGEN Twin Injector (Inovio Pharmaceuticals), 
which consists of an outer housing with an inner wagon carrying two standard 1 mL syringes with needles, 
4 mm apart [17]. A gearing system presses the piston of the syringes when the wagon slides forward in the 
housing to inject DNA during the insertion. The needles subsequently serve as electrodes. The needles 
penetrate to a depth of approximately 1.6 cm in the targeted muscle, distributing the DNA in a columnbular 
fashion throughout the muscle and perfectly co-locating the electrical field with the delivered plasmid. 
The device operates at an applied voltage of 60 and pulses twice, each pulse of 60 ms duration. Upon 
completion of the electrical pulses, internal motors retract the needle electrodes from the muscle and 
re-house them in the enclosed wagon. The ELGEN Twin Injector is directly linked to the ELGEN 
1000 pulse generator (Inovio Pharmaceuticals), which supplies power to the unit. 

2.4.2. ELGEN-Minimally Invasive Dermal Electroporation Device (ELGEN-MID) 

The ELGEN-MID EP device allows for dermal/subcutaneous DNA delivery at a penetration depth 
of 5 mm using a four electrode invasive needle array. This minimally invasive intradermal device 
penetrates the full depth of the skin spanning the epidermis, dermis, and into the subcutaneous space. It 
operates at standard EP electrical parameters and standard pulse lengths (50 V, 3 pulses, 100 ms). A 
rectangular electrode configuration (10 mm spacing by 5 mm) and 5 mm depth penetration ensure the 
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distribution of the electric field over a wider skin surface and depth area. Specifically, the EP applicator 
consists of four gold-plated stainless steel needle electrodes with trocar grinds. The electrodes administer 
a synchronized pulse. The ELGEN-MID device was built with attachment cord for linkage to the 
ELGEN 1000 pulse generator (Inovio Pharmaceuticals), which supplies power to the unit. 

2.5. Pilot Study: IMEP with a Non-Optimized DNA Construct 

Strain 13 guinea pigs were randomly divided into two groups consisting of six animals each. Group 1 
received 100 µg of the mock vaccine (two sites at 50 µg per site) via IMEP. Group 2 was IMEP-vaccinated 
with 100 µg of plasmid pLASV-GPC, which encodes the GPC gene of LASV, Josiah strain. At each 
vaccination, approximately 100 mg of plasmid DNA was injected intramuscularly, followed immediately 
by a two-pulse delivery of 250 mA current. Three vaccinations were administered at 3-week intervals. 
To collect sera for analysis of virus-specific antibody titers, phlebotomy was performed on all animals 
before the vaccination series was initiated (pre-bleed) and just before each vaccination session (prime, 
boost 1, or boost 2). Viral infection was carried out under biosafety level (BSL)-4 conditions. Each 
animal was administered subcutaneously a single target dose of 1,000 pfu/mL of LASV (strain Josiah) 
in a total volume of 100 μL physiological saline. After viral infection, phlebotomy was performed at 
days 7, 14, 21 postinfection and at euthanasia or the study endpoint for survivors. Animals were 
monitored daily and assigned morbidity scores corresponding to the development of disease signs. 
Animals were euthanized when moribund, and surviving animals were euthanized on day 28 postinfection. 
Research was conducted under an IACUC approved protocol in compliance with the Animal Welfare 
Act, PHS Policy, and other Federal statutes and regulations relating to animals and experiments 
involving animals. The facility where this research was conducted is accredited by the Association for 
Assessment and Accreditation of Laboratory Animal Care, International and adheres to principles 
stated in the 8th Edition of the Guide for the Care and Use of Laboratory Animals [18]. 

2.6. Follow-On Study: IMEP versus ELGEN-MID with a Codon-Optimized Construct 

Strain 13 guinea pigs were randomly divided into three groups consisting of eight animals each 
(IMEP-vaccinated group, ELGEN-MID-vaccinated group, and a virus only group) and two mock-
vaccinated control groups consisting of five animals each (IMEP Mock-vaccinated group, ELGEN-MID 
Mock-vaccinated group). Each animal was implanted with IPTT-300 microchip transponders (BMDS) 
to measure body temperature. Each group received approximately 100 µg of the mock or authentic 
vaccine (two sites at 50 µg per site) via IMEP or ELGEN-MID. Three vaccinations were administered at 
3-week intervals. To perform the vaccinations, the abdominal fur was shaved, and each animal received 
two administrations of either an intramuscular injection or shallow dermal injection of DNA-containing 
solution. For the IMEP group, animals were administered the vaccines via electroporation as described 
above. To collect sera for analysis of virus-specific antibody titers, phlebotomy was performed on all 
animals before the vaccination series was initiated (pre-bleed) and just before each vaccination session 
(prime, boost 1, or boost 2). Viral infection was carried out under BSL-4 conditions. Each animal was 
administered subcutaneously a single dose of 1,000 pfu of LASV (strain Josiah) in a total volume of 
100 μL of physiological saline. After viral infection, phlebotomy was performed at days 7, 14, 21, and 
28 postinfection. Animals were monitored daily and assigned morbidity scores corresponding to the 
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development of disease signs. Animals were euthanized when moribund, and surviving animals were 
euthanized at day 28. Research was conducted under an IACUC approved protocol in compliance with 
the Animal Welfare Act, PHS Policy, and other Federal statutes and regulations relating to animals and 
experiments involving animals. The facility where this research was conducted is accredited by the 
Association for Assessment and Accreditation of Laboratory Animal Care, International and adheres to 
principles stated in the 8th Edition of the Guide for the Care and Use of Laboratory Animals [18]. 

2.7. Backchallenge of Codon-Optimized LASV-GPC Vaccine Survivors 

Four surviving animals from the ELGEN-MID vaccinated group were held in BSL-4 for 120 days 
after the vaccination study endpoint to participate in a backchallenge experiment to assess if they could 
survive re-infection. These animals were re-challenged with a subcutaneous dose of 1,000 pfu LASV 
120 days after the end of the vaccination study and monitored for weight, body temperature, and 
symptom development daily for 30 days postinfection. 

2.8. Analysis of Viremia and Neutralizing Antibody Titers 

Serum samples collected pre and after infection were screened for viral titers via a standard plaque 
assay. Vero cells, seeded in 6-well cell culture plates, were adsorbed with gentle rotation at 37 °C 5% 
CO2 with 10-fold serial dilutions of serum for 1 hour, then an overlay of 0.8% agarose in EBME 
fortified with 10% fetal bovine serum and 20 μg/mL gentamicin was applied to each well and allowed 
to solidify. Cells were incubated at 37 °C, 5% CO2 for 4 days, then stained with 0.001% neutral red 
solution in PBS. After an overnight incubation, plaques were counted and recorded. Neutralizing 
capabilities of antibodies in the serum were analyzed by a standard plaque reduction/neutralization test 
(PRNT), as follows [19]. Twofold serial dilutions of heat-inactivated guinea pig sera were pre-incubated 
for 1 hour at 37 °C with LASV diluted to approximately 100 pfu. Each serum dilution/virus mixture 
was then added to confluent Vero cells seeded in 6-well cell culture plates. The remainder of the 
procedure is as described above for the standard plaque assay. Plaques were counted and compared to 
control wells containing cells infected with LASV pre-incubated with naïve guinea pig or primate 
serum. Neutralizing antibody titers (PRNT50, PRNT80) values were identified as the highest dilution of 
serum yielding a 50% (PRNT50) or 80% (PRNT80) reduction in plaques. 

2.9. Immunohistochemisty 

Immunohistochemistry was performed on replicate tissue sections for all animals using an 
Envision-PO kit. A mouse monoclonal antibody against LASV virus (L52-2074-7A) was used at a 
dilution of 1:15,000. After deparaffinization and peroxidase blocking, tissue sections were incubated 
with the primary antibody at room temperature for one hour. The sections were then rinsed and 
incubated for 30 minutes with the peroxidase-labeled polymer (secondary antibody). The sections were 
rinsed, covered, and incubated with substrate chromogen solution for 5 minutes. The sections were 
then rinsed, stained with hematoxylin, and rinsed again. Sections were then dehydrated, cleared with 
Xyless and coverslipped. 
  



Vaccines 2013, 1 268 
 

 

3. Results and Discussion 

3.1. GPC Expression from the pLASV-GPC Plasmid 

The LASV GPC product was successfully expressed in COS-7 cells from the pLASV-GPC 
plasmid. Using guinea pig LASV immune serum, it was possible to immunoprecipitate GPC and GP2, 
which is released from GPC by post-translational cleavage through the action of a host cell subtilase 
SKI-1/S1P (Figure 1B, Lane 2) [20]. A plasmid map is provided as Figure 1A.  Bands for GPC and 
GP2 do not appear in the untransfected COS cell lysate Figure 1B, Lane 1).  

Figure 1. Plasmid Map and Immunoprecipitation and polyacrylamide gel electrophoresis 
(PAGE) of radiolabeled LASV strain Josiah glycoprotein precursor (GPC, 76 KD). (A) Map 
of pLASV-GPC cloned into the pWRG7077 vaccine plasmid. (B) Radioimmunoprecipitation 
and PAGE of LASV GPC and GP2 from COS-7 cell lysate. Expression products from 
COS-7 cells transfected with (Lane 1) empty vaccine plasmid pWRG7077 or (Lane 2) 
recombinant pLASV-GPC, and immunoprecipitated with LASV-immune guinea pig 
serum. The sizes of molecular weight markers M and the location of bands corresponding 
to GPC and GP2 are indicated. 

  

3.2. A Non-Optimized Lassa Virus DNA Vaccine Prevents Death but not Illness in Guinea Pigs When 
Administered by IMEP 

For the pilot study, we produced a candidate LASV DNA vaccine by cloning cDNA encoding the 
GPC gene of LASV (Josiah strain) into the plasmid vector pWRG7077 [21]. Approximately 4 weeks 
after the final vaccinations, the guinea pigs were challenged by SC administration of 1,000 pfu of 
LASV, a standard lethal challenge dose. All of the mock-vaccinated guinea pigs succumbed to LASV 
infection whereas all but one of the IMEP-vaccinated guinea pigs survived. The IMEP-vaccinated 
animal that died showed a delayed time to death as compared to controls (Figure 2A). Although the 
DNA vaccine prevented death in most animals, the challenged guinea pigs developed transient viremia 
(Figure 2B) and showed mild clinical signs of disease (Figure 2C). 
  

A B
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Figure 2. Outcomes for IMEP study using the non-optimized LASV DNA construct.  
(A) Survival curve; (B) Serum viremia as measured by plaque assay; (C) Morbidity score 
based on observed disease signs. 

 

Although neutralizing antibodies were not detected in vaccinated guinea pigs before challenge, they 
were detected on day 30 after challenge in the vaccinated animals that survived to the study endpoint, 
indicating that a specific immune response was elicited by the DNA vaccine (Table 1). We next sought 
to assess whether route of delivery might play a role in the induction of antibody responses, and in 
particular if we could enhance antibody responses by (a) using an optimized DNA construct and (b) by 
delivering the optimized LASV vaccine to the dermal tissue [21,22]. 

Table 1. Plaque-reduction neutralization test (PRNT) titers following vaccination (Day 0) 
and infection with LASV (Day 30) a. 

Treatment Group 
Day 0 Postinfection Day 30 Postinfection 

PRNT50 PRNT80 PRNT50 PRNT80 

Mock Vaccine None None - - 
IMEP None None 256 16 

a Neutralizing titers are listed as the reciprocal of the dilution resulting in either 50% or 80% reduction in 
plaques compared to control. 

3.3. Codon Optimization of the DNA Vaccine Enhances Its Ability to Prevent Viremia and Illness as 
well as Death in Guinea Pigs 

In other studies, we found that optimizing codons of DNA vaccine constructs could improve both 
their expression and immunogenicity [23]. Subsequently, to determine if we could improve upon the 
protective efficacy of our DNA vaccine for LASV, we optimized the GPC construct to maximize 
mammalian codon availability in the guinea pig model and to remove viral elements shown to compromise 
expression. The optimized GPC sequence went from a codon adaption index (CAI) of 0.67 before 
adaption to a CAI of 0.97 after adaption, where a CAI value of 1 is considered perfect. Additional 
changes of note were an increase in the GC content from 43% before adaption to 60% after adaption to 
prolong mRNA half life and the removal of negative cis-acting sites (such as splice sites, poly A signals 
and TATA boxes). None of the changes in the GPC gene sequence resulted in changes at the protein level. 

To evaluate the affect of codon-optimization alone on vaccine efficacy, we vaccinated a group of 
eight guinea pigs with 100 µg of DNA three times at 3-week intervals, using the same IMEP device as in 
the pilot study. We also vaccinated groups of guinea pigs with the optimized vaccine using a newly 
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developed ELGEN-minimally invasive intradermal EP device (ELGEN-MID). For this study, we were 
able to monitor the development of fevers in control animals through the use of the IPTT-300 microchip 
transponders. These microchip transponders were not available for use in the pilot study. All guinea pigs 
mock-vaccinated with the empty plasmid or not vaccinated (virus only) became febrile, displayed signs 
of illness, lost weight, and succumbed to infection between days 15 and 18 postchallenge, whereas all 
guinea pigs vaccinated with the codon-optimized LASV DNA, regardless of the EP method used, survived 
challenge (Figure 3A). Unlike the pilot study in which guinea pigs vaccinated with the non-optimized 
LASV DNA vaccine demonstrated signs of illness, the guinea pigs vaccinated with the codon-optimized 
vaccine by ELGEN-MID EP did not develop any signs of illness, and remained afebrile (Figure 3B–D). 
We observed mild signs of disease in some of the guinea pigs that received the optimized LASV DNA 
vaccine by IMEP (4/8), including low fevers and slight viremias (Figure 3B,C), suggesting that dermal 
electroporation was more efficacious in this study.  

Figure 3. Outcomes for dermal versus muscle electroporation using the codon-optimized 
LASV DNA construct. (A) Survival curve; (B) Serum viremia as measured by plaque assay; 
(C) Average body temperature changes as a function of time postinfection, and (D) Morbidity 
score based on observed disease signs. The grey bar indicates the normal body temperature 
range for guinea pigs.  
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In addition to an improvement in outcome for vaccinated animals surviving challenge, we observed 
neutralizing antibodies generated as a result of vaccination before virus challenge. Unlike the pilot study 
in which we were not able to measure neutralizing antibodies by PRNT after three vaccinations, even at 
the highest serum concentration tested (1:4); detectable neutralizing antibodies were observed in all of 
the animals receiving the vaccine by IMEP, indicating that codon-optimization alone boosted production 
of neutralizing antibodies in the absence of virus (Table 2). However, the average neutralizing antibody 
titer for all animals in this group was just under the PRNT50 level for the highest serum concentration 
tested (1:8 dilution). Animals vaccinated via ELGEN-MID had consistently higher neutralizing antibody 
titers before challenge, which we believe contributed the absence of measureable viremia, fever, or other 
signs of disease in animals in this group. For both the IMEP and ELGEN-MID groups, at least a 20% 
reduction in plaque formation was maintained for dilutions out to 1:64 before challenge. After challenge, 
neutralizing antibody titers increased, but not significantly. We believe this is due to the vaccine 
protecting most of the animals from developing measureable serum viremia postchallenge, thereby 
mitigating the boosting affect of virus infection. The animals in the IMEP-vaccinated group that 
developed mild viremia and became transiently febrile (4/8) exhibited the lowest neutralizing antibody 
titers prechallenge (data not shown), strengthening our hypothesis that the presence of neutralizing 
antibodies before challenge contributed to preventing viremia in most vaccinated animals. None of the 
virus only (data not shown) or mock-vaccinated animals (shown in Table 2) developed measureable 
neutralizing antibodies before virus challenge or at euthanasia. For both the IMEP and ELGEN-MID 
groups, at least a 20% reduction in plaque formation was maintained for dilutions out to 1:128 at 30 days 
postchallenge. 

Table 2. Plaque-reduction neutralization test (PRNT) titers following vaccination (day 0) 
and infection with LASV (day 30) a. 

Treatment Group 
Day 0 Postinfection Day 30 Postinfection 

PRNT50 PRNT80 PRNT50 PRNT80 

Mock IMEP None None - - 
Mock ELGEN-MID  None None - - 
IMEP >8 b None 32 8 
ELGEN-MID 8 None 32 8 

a Neutralizing Titers are listed as the reciprocal of the dilution resulting in either 50% or 80% reduction in 
plaques compared to control. b The 1:8 dilution yielded an average 46% reduction in plaque formation, but 
two of eight animals reached the PRNT50 level at this dilution.  

3.4. Surviving ELGEN-MID-Vaccinated Animals Are Free from Disease Pathology Compared to 
Mock-Vaccinated Controls 

Necropsies were performed on animals that met criteria for euthanasia or who survived to the study 
endpoint with the exception of four of the ELGEN-MID-vaccinated animals. These four animals will be 
described in the next section. Pathologic findings in virus only or mock-vaccinated animals were 
consistent with previous reports of the disease process in strain 13 guinea pigs [24]. There was no 
observed difference in lesion type or severity between the animals in the virus only group and the mock-
vaccinated animals. Only mild lymphoid hyperplasia (cervical lymph node or mesenteric lymph node) 
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and/or splenic white pulp hyperplasia was noted in some pLASV-GPC-vaccinated animals at the study 
endpoint. These findings are consistent with recent viral infection. None of the tissues collected from 
pLASV-GPC-vaccinated animals, regardless of EP method, were positive for the presence of viral antigen 
by immunohistochemistry at the study endpoint. Figure 4 illustrates the differences observed in antigen 
staining for a selection of tissues. As shown, positive LASV antigen staining was present in the lymph 
node, spleen, adrenal gland, liver, and kidney (Figure 4A,C,E,G,I, respectively) of a mock-vaccinated 
animal and absent in the corresponding tissues (Figure 4B,D,F,H,J) of a ELGEN-MID-vaccinated animal. 

Figure 4. Immunohistochemistry staining for LASV antigen in selected tissues of  
mock-vaccinated or ELGEN-MID-vaccinated guinea pigs. (A) Viral antigen staining of a 
mock-vaccinated lymph node (40×); (B) lymph node of a ELGEN-MID-vaccinated animal 
showing lymphoid hyperplasia and a lack of viral staining (20×); (C) Viral antigen staining of 
a mock-vaccinated spleen (40×); (D) Splenic white pulp hyperplasia in a ELGEN-MID-
vaccinated guinea pig (40×); (E) Viral antigen staining of a mock-vaccinated adrenal gland 
(10×); (F) A lack of viral antigen staining of a ELGEN-MID-vaccinated adrenal gland (10×); 
(G) Viral antigen staining of a mock-vaccinated liver (20×); (H) A lack of viral antigen 
staining of a ELGEN-MID-vaccinated liver (10×); (I) Viral antigen staining of a mock-
vaccinated kidney (20×); (J) A lack of viral antigen staining of a ELGEN-MID-vaccinated 
kidney (10×). 

 

3.5. ELGEN-MID-Vaccinated Animals Survive Secondary Exposure to a Lethal Dose of LASV 

Four of the surviving ELGEN-MID vaccinated animals were kept at the end of the study in order to 
assess the ability of the vaccine to protect animals upon secondary exposure to virus after an extended 
period of time. These animals were maintained in the BSL-4 laboratory for 120 days after the end of 
the vaccine study, then were re-exposed to 1,000 pfu LASV by SC injection, along with four 
age/weight-matched control guinea pigs. These animals were observed daily for signs of disease. The 
vaccinated animals survived to the study endpoint (Figure 5A) and never developed signs of disease 
compared to the control animals, which lost weight (Figure 4B), were febrile (Figure 4C), and succumbed 
to disease (Figure 4A). 
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Figure 5. Outcome of backchallenge experiment. (A) Survival curve; (B) Average weights 
postchallenge; and (C) Average temperatures post-challenge for animals enrolled in the 
backchallenge experiment. 

 

4. Conclusions 

The ability to produce high levels of neutralizing antibodies before challenge is often thought of as a 
hallmark of a strong vaccine candidate [25,26]. While this is true for many pathogens, protective immunity 
against LASV in humans is thought to be primarily cell-mediated, and the role of humoral immunity and 
antibody production in protection is currently unclear [2,6,27,28]. While other vaccination strategies have 
been undertaken for LASV, to our knowledge, these studies are the first report of a non-replicating 
LASV vaccine to completely prevent measureable serum viremia in an animal model [12,15,29]. Our 
data clearly show that a plasmid encoding a codon-optimized GPC gene of LASV, when administered 
by dermal electroporation, can completely protect guinea pigs from viremia, illness, and death. 
Although low to modest neutralizing antibody titers were detected in vaccinated animals before virus 
challenge, we do not believe these antibodies alone account for the protection that we observed. 

We demonstrated that codon optimization of the vaccine enhanced its efficacy and slightly 
improved its ability to elicit neutralizing antibodies. All guinea pigs receiving the non-optimized 
vaccine by IMEP became viremic and were mildly ill, but most survived (5/6). In contrast, guinea pigs 
receiving the codon-optimized vaccine by IMEP were well, experiencing only transient low-level 
viremia (4/8) and short-lived fever (4/8), fully resolving by the end of the study. Dermal delivery of the 
optimized vaccine and EP pulse was the most efficacious, with all animals surviving to the study 
endpoint with no viremia detected in any of the samples tested and with no observable signs of disease. 
Our data are consistent with what is currently known about the efficacy of different DNA vaccine 
delivery technologies. DNA vaccines delivered by needle injection into muscles have been shown to 
elicit strong cell-mediated responses but historically have not been as effective as other vaccine strategies 
in eliciting high levels of neutralizing antibodies in animal models [30]. In contrast, delivery of a variety of 
DNA vaccines to the skin of both animals and humans has been shown to elicit a more balanced humoral 
and cellular response and to effectively elicit neutralizing antibodies (reviewed in [21,31–36]). For 
example, the ability of gene gun vaccination to stimulate humoral immunity has been hypothesized to 
correlate with delivery of the DNA to the epidermis and specifically to the ability to target epidermal 
dendritic cells (Langerhans cells) [37–39]. Skin delivery by electroporation, similarly, and probably more 
efficiently, targets this same highly immunologically active site, as reflected by the improved protective 
efficacy observed when the LASV DNA vaccine was delivered via dermal electroporation. 
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Although we infer that the protective immunity observed was largely due to cell- mediated immune 
responses elicited by the LASV DNA vaccine delivered via electroporation, we are currently unable to 
provide supportive evidence for this in the guinea pig model. Unfortunately, there are few reagents 
available for testing the cellular immune response in guinea pigs, and the significance of correlative 
cytokine responses are not well defined for these animals. In ongoing studies, we are addressing this 
challenge by developing and incorporating gene-based array approaches to measure the guinea pig 
cellular responses to vaccination and virus challenge. Despite these limitations, our results clearly 
establish that DNA vaccination accompanied by EP is a viable strategy for inducing immunity to 
LASV infection and that genetic optimization of the LASV GPC sequence improves its efficacy in the 
guinea pig model. Further, our data provide preliminary evidence that dermal delivery by 
electroporation is the optimal method of vaccination with the LASV DNA vaccine. Future studies in 
the guinea pig model will incorporate dose and schedule refinements in order to establish the minimal 
protective dose for this vaccine. Additional studies in NHP are in progress, which will allow us to both 
obtain measurements of cell mediated immunity and to confirm our findings with the LASV DNA 
vaccine-dermal EP platform. 
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