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Abstract: Methylglyoxal (MG) is a dicarbonyl compound, the level of which is increased in the
blood of diabetes patients. MG is reported to be involved in the development of cerebrovascular
complications in diabetes, but the exact mechanisms need to be elucidated. Here, we investigated
the possible roles of oxidative stress and mitophagy in MG-induced functional damage in brain
endothelial cells (ECs). Treatment of MG significantly altered metabolic stress as observed by the
oxygen-consumption rate and barrier-integrity as found in impaired trans-endothelial electrical
resistance in brain ECs. The accumulation of MG adducts and the disturbance of the glyoxalase system,
which are major detoxification enzymes of MG, occurred concurrently. Reactive oxygen species
(ROS)-triggered oxidative damage was observed with increased mitochondrial ROS production and
the suppressed Akt/hypoxia-inducible factor 1 alpha (HIF-1α) pathway. Along with the disturbance of
mitochondrial bioenergetic function, parkin-1-mediated mitophagy was increased by MG. Treatment of
N-acetyl cysteine significantly reversed mitochondrial damage and mitophagy. Notably, MG induced
dysregulation of tight junction proteins including occludin, claudin-5, and zonula occluden-1 in brain
ECs. Here, we propose that diabetic metabolite MG-associated oxidative stress may contribute to
mitochondrial damage and autophagy in brain ECs, resulting in the dysregulation of tight junction
proteins and the impairment of permeability.

Keywords: methylglyoxal; hypoxia-inducible factor 1 (HIF-1α); mitophagy; oxidative stress;
brain endothelial cells

1. Introduction

Vascular complications are the main causes of death in patients with diabetes [1]. There has
been great interest in elucidating the mechanism underlying vascular dysfunction under diabetic
conditions [2–4]. High glucose significantly increased the generation of reactive oxygen species
(ROS) and apoptosis in endothelial cells (ECs) [4]. We have recently observed autophagy activation
accompanying the increased intracellular ROS, mitochondrial dysfunction, and angiogenic impairment
in high glucose exposed endothelial progenitor cells [3]. Notably, it has been suggested that
methylglyoxal (MG), a dicarbonyl glycolysis by-product, may contribute to diabetic vascular endothelial
damage. Higher plasma levels of MG have been observed in patients with diabetes than in
non-diabetics [5–7]. MG can penetrate cells and react with arginine, lysine, and cysteine residues in
proteins to form advanced glycation end products (AGEs). Previous studies have focused on several
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mechanisms, such as oxidative stress, inflammation, apoptosis, and involvement of AGE/the receptors
for AGE (RAGE) signaling to explain MG-induced endothelial dysfunction [8–11].

Interestingly, hyperglycemia is one of the major risk factors for the development of cerebrovascular
diseases [1]. Several studies have demonstrated the accumulation of ROS in high glucose-
or MG-exposed brain ECs to elucidate the mechanisms underlying diabetic cerebrovascular
impairment [12–14]. Brain ECs are functionally specialized cells composing the blood–brain barrier
(BBB), which restricts the permeability of substances from the blood to the brain [15,16]. Several tight
junction (TJ) proteins such as claudins, occludin, and zonular occludens (ZOs), tightly seal the junctions
between adjacent brain ECs [17,18]. We have recently shown that impairment of TJ proteins by
excessive autophagy may lead to ischemic EC damage, suggesting that the potential role of autophagy
in BBB dysfunction [19,20].

Oxidative stress is known to play important roles in MG-induced endothelial damage [13–15].
The suppression of the antioxidant systems including hypoxia-inducible factor 1 (HIF-1) and the
increase in mitochondrial ROS contribute to the enhancement of ROS formation [21,22]. Recent studies
suggest that oxidative stress and mitochondrial damage associates BBB permeability alteration [23,24].
However, the role of oxidative stress and the crosstalk between mitochondrial damage and autophagy
in MG-induced brain EC dysfunction has never been demonstrated.

In this study, we investigated the effects of MG on brain EC function and the underlying
mechanisms of MG toxicity, including the imbalance of MG detoxification mechanisms, the suppression
of adaptive responses, and the activation of mitochondrial oxidative stress and mitophagy associated
with bioenergetics disturbance, which could ultimately affect TJ integrity and permeability impairment
in brain ECs.

2. Materials and Methods

2.1. Materials

MG, 3-methyladenine (3-MA), N-acetyl-L-cysteine (NAC), bafilomycin A1 (Baf A), albumin from
bovine serum (BSA), thiazolyl blue tetrazolium bromide (MTT), propidium iodide (PI), fluorescein
isothiocyanate (FITC)-dextran, and other chemicals were purchased from Sigma Aldrich (St. Louis,
MO, USA). MitoTracker Red CMXRos was purchased from Invitrogen (Burlington, ONT, Canada).
FPS-ZM1, a specific antagonist for RAGE, was from Millipore (#553030; Temecula, CA, USA).

2.2. Cell Culture

Immortalized mouse brain endothelial cells (ECs), bEnd.3 cells (ATCC, Manassas, VA, USA),
were cultured in Dulbecco’s modified Eagle’s medium (DMEM, 4500 mg/L D-glucose, L-glutamine,
110 mg/L sodium pyruvate, 1.5 g/L sodium bicarbonate; Welgene, Daegu, Korea) supplemented
with 10% fetal bovine serum (FBS, Mediatech Inc., Manassas, VA, USA), 100 units/mL penicillin,
and 100 µg/mL streptomycin (Welgene). bEnd.3 cells were incubated in a humidified incubator
containing 5% CO2 at 37 ◦C until confluence.

2.3. PI Fluorscence and MTT Reduction Assay

The bEnd.3 cells were seeded on 96-well plates at a density of 5 × 103 cells/well and incubated to
confluence. To measure the non-viable bEnd.3 cells after MG exposure, PI (25 µg/mL), a fluorescent
DNA-binding dye that freely penetrates cell membranes of dead or dying cells, was used. Cells treated
with membrane lysis buffer (Promega, Madison, WI, USA) were used as a positive control. After 10 min
of incubation, the fluorescence of PI was measured using an excitation and emission wavelength of
493 and 632 nm, respectively, in EnSpire multimode spectrophotometer (PerkinElmer, Santa Clara,
CA, USA). To evaluate the MTT reduction potential of bEnd.3 cells after MG exposure, we added
0.5 mg/mL MTT at the end of the stimulus exposure [25]. After 2 h of incubation, formazan was
dissolved in dimethyl sulfoxide. The absorbance was measured at 570 nm using EnSpire multimode
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spectrophotometer. In experiments with inhibitors including NAC, 3-MA or Baf A, inhibitors were
pretreated for 1 h, and MG was added in the presence of inhibitors for 6 h.

2.4. In Vitro Permeability Assay

The bEnd.3 cells were seeded on a 6.5 mm Transwell®with a 0.4-µm pore polycarbonate membrane
insert (Corning, New York, NY, USA) at a density of 2 × 104 cells/well and incubated for six days until
confluence. Old media were replaced with fresh media every 2–3 days and the cells were treated with
MG on day seven. Transendothelial electrical resistance (TEER) and fluorescence-based permeability
assay were used to evaluate the effects of MG on the permeability of endothelial barriers. For the
fluorescence-based permeability assay, 20 µg/mL of FITC-dextran (Sigma-Aldrich) was added to the
upper chamber of the Transwell®, and fresh phosphate-buffered saline (PBS) was plated in the lower
chamber. After 30 min of incubation (37 ◦C, 5% CO2), the fluorescence of FITC-dextran in the lower
chamber was measured with an Enspire plate reader (PerkinElmer, Santa Clara, CA, USA) using an
excitation and emission wavelength of 490 and 520 nm, respectively. TEER was measured immediately
after MG treatment using an EVOM2 voltohmmeter and STX2 electrode (World Precision Instruments,
Sarasota, FL, USA). Data were subtracted by the value of the cell-free inserts of each treatment group.

2.5. Immunofluorescence Staining

The bEND.3 cells were seeded on Lab-Tek™ 8-well chambered coverslips (Thermo Fisher Scientific,
Rochester, NY, USA) at a density of 9 × 103 and incubated to confluence. After MG treatment, cells were
fixed and permeabilized with ice-cold methanol and acetone, respectively, blocked with 5% normal
donkey serum (Sigma Aldrich) in PBS, and incubated for 1 h. The cells were then incubated with
primary antibodies diluted in PBS containing 1% normal donkey serum before attaching fluorescent
secondary antibodies diluted in 1% BSA for visualization. Fluorescence was recorded using a K1-Fluo
confocal laser scanning microscope (Nanoscope Systems, Daejeon, South Korea), and the co-localization
of the proteins was analyzed with the ImageJ plug-in JACoP (Just Another Co-localization Plugin).

2.6. Cellular ROS Detection Assay

To measure the total amount of cellular ROS, we used the 2’,7’-dichlorofluorescein diacetate
(DCF-DA) cellular ROS detection assay kit (Abcam, Cambridge, MA, USA) according to the
manufacturer’s instructions. Briefly, bEND.3 cells were seeded on 96-well plates or Lab-Tek™ 8-well
chambered coverslips at the same density as described above and incubated to confluency. DCF-DA
(25 µM) was added to the cells 30 min before MG treatment. After MG treatment, the fluorescence
of DCF, which is the oxidized form of DCF-DA, was measured using an excitation and emission
wavelength of 485 and 535 nm, respectively. Data were calculated as fold change compared to time
point 0 in each group.

2.7. Mitochondrial ROS Detection Assay

MitoSOX Red mitochondrial superoxide indicator (Invitrogen) was used to visualize mitochondrial
ROS in bEND.3 cells. bEND.3 cells were seeded and maintained on a Lab-Tek™ 8-well chambered
coverglass as described above. At the end of treatment, the old medium was discarded, and the
cells were incubated with MitoSOX (5 µM) at 37 ◦C for 10 min. The cells were then fixed in 2%
paraformaldehyde and permeabilized with ice-cold acetone for counterstaining with 0.15 µg/mL
4′,6-diamidino-2-phenylindole (DAPI; Vector Laboratories, Burlingame, CA, USA). Fluorescence was
recorded using a K1-Fluo confocal laser scanning microscope (Nanoscope Systems) and quantified
with ImageJ.



Antioxidants 2020, 9, 820 4 of 17

2.8. Mitochondrial Fractionation

Mitochondrial fractions from vehicle- or MG-treated bEND.3 cells were prepared using the
Mitochondria/Cytosol Fractionation kit (Biovision, Milpitas, CA, USA). Briefly, treated cells were
collected, washed once with cold PBS, and centrifuged at 600× g for 5 min at 4 ◦C. Cells were then
resuspended in ice-cold extraction buffer mix containing 1 mM DTT and protease inhibitor cocktail
and briefly sonicated for lysis. Cell lysates were incubated on ice for 10 min and centrifuged at 700× g
for 10 min at 4 ◦C. Supernatants were collected and centrifuged at 10,000× g for 30 min at 4 ◦C and
separated into cytosol (supernatant) and mitochondria (pellet) fractions. Pellets were resuspended in
extraction buffer and subjected to western blot analysis.

2.9. Measurement of Bioenergetic Function

The bioenergetic function in bEND.3 cells was measured by using the XFp analyzer and Mitostress
test kit (Agilent, Santa Clara, CA, USA) according to the manufacturer’s instructions. The real-time
oxygen consumption rate (OCR) was monitored with the sequential injection of modulators for the
mitochondrial electron transport chain (ETC). Briefly, bEND.3 cells were seeded on the XFp miniplate
(Agilent) at a density of 1.6 × 105 cells/well. At 6 h after MG treatment, the old medium was replaced to
assay medium (DMEM, pH 7.4; Agilent) containing 5.5 mM glucose, 1 mM sodium pyruvate, and 2 mM
L-glutamine. The cells were incubated for 1 h in a non-CO2 incubator to allow proper degassing
before analysis. During analysis, oligomycin, carbonyl cyanide-4-(trifluoro-methoxy)phenylhydrazone
(FCCP), and rotenone/antimycin A (Rot/AA) were sequentially injected at final concentrations of 2.5,
2.0, and 1.0 µM, respectively, through an XFp cartridge. Basal respiration, ATP production-linked
oxygen consumption, maximal respiration, proton leakage, and non-mitochondrial respiration were
calculated from the OCR profile, as shown in Scheme 1 below. OCR values were normalized by
the protein amount of each well, which was measured by bicinchoninic acid-protein assay (Pierce™
BCA Protein Assay Kit; Thermo Fisher Scientific, Rockford, IL, USA) [26]. In experiments with NAC,
NAC (5 mM) were pretreated for 1 h, and MG was added in the presence of NAC for 6 h.
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2.10. Mitochondrial Mass Analysis

To measure the mitochondrial mass, we used nonyl acridine orange (NAO; Molecular Probes,
Eugene, OR, USA) which is a fluorescent probe that accumulates in the mitochondria [27]. The bEND.3
cells were seeded on 96-well plates as described above. At the end of treatment, 1 µM NAO was added
to the cells. After 15 min of incubation, the fluorescence of NAO was measured using an excitation
and emission wavelength of 490 and 520 nm, respectively, in EnSpire multimode spectrophotometer.
The fluorescence intensity was normalized by protein amounts of each well.

2.11. Western Blot Analysis

Western blot analysis was performed as previously described [19]. Primary antibodies against
occludin (c-term), ZO-1, and claudin-5 and secondary antibodies, Alexa Fluor 488 donkey anti-mouse
and Alexa Fluor 555 donkey anti-rabbit, were purchased from Thermo Fisher Scientific. To detect the
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formation of AGE products with MG-modification, mouse anti-methylglyoxal monoclonal antibodies
(STA-011; Cell Biolabs, San Diego, CA, USA) were used. Primary antibodies against p-mTOR,
t-Akt, p-Akt, t-S6K1, p-S6K1, HIF-1α, COXIV, VDAC, and Parkin (Prk8) were purchased from
Cell Signaling Technology (4695S, Danvers, MA, USA). Primary antibodies against t-mTOR and
occludin (E-5) and the secondary antibody donkey anti-rabbit IgG-FITC were purchased from
Santa Cruz Biotechnology (Dallas, TX, USA). The primary antibody against LC3B was purchased
from Sigma Aldrich. Primary antibodies against Glo-1 and Glo-2 were purchased from Abcam.
To counterstain the total protein in the gel, Coomassie Brilliant Blue staining was used as previously
described [8].

2.12. Statistical Analysis

All experimental values were expressed as the mean and standard error (SEM). Statistical
significance between groups was determined by the Student’s t-test and one-way analysis of variance
(ANOVA) followed by Tukey’s post hoc test. SPSS Version 24 was used for data analysis. In all analyses,
a p value < 0.05 was considered statistically significant.

3. Results

3.1. MG induced Accumulation of MG-Adducts and Deterioration of the Glyoxalase System in bEND.3 Cells

MG is a potent glycating agent that induces the formation of advanced glycation end (AGE)
products in proteins. Accumulating evidence has shown that these products increase vascular
complications of diabetes [28]. To evaluate the effects of MG in the brain endothelial bEND.3 cell line,
the formation of MG adducts in the cell lysate and conditioned medium was investigated following
incubation of MG (0–1000 µM) for 24 h. MG adducts were increased in both the cell lysate and
conditioned in an MG concentration-dependent manner (Figure 1a,b). To investigate the effects of
MG detoxification systems, we measured Glo-1 and -2 enzyme levels. After 24 h of MG treatment,
there was a slight increase in the Glo-1 expression level compared to that in the vehicle control, but this
increase was not statistically significant (Figure 1c). In contrast, Glo-2 expression was significantly
decreased, and the expression level was approximately 79% of that in the vehicle control after 24 h of
MG treatment (Figure 1d).

We investigated if MG affected cell viability in bEND.3 cells using two different methods.
Staining with propidium iodide (PI), a fluorescent dye which freely penetrates dead or dying cells to
differentiate these cells from living cells [29], was not increased in brain ECs either 6 h or 24 h after MG
treatment (Figure 1e). On the contrary, MG significantly decreased the extent of MTT reduction to
formazan, which is proportional to the number of metabolically viable cells [29], in bEND.3 cells in
treatment time- and concentration-dependent manner (Figure 1f).

3.2. Mitochondrial and Total Cellular ROS Production Increases after MG Exposure with the Suppression of the
Akt/HIF-1α Pathway

Next, we measured MG-induced ROS formation at the mitochondrial and total cellular levels.
As measured by DCF fluorescence in fluorimeter, total cellular ROS formation gradually increased
with MG exposure time, and the difference relative to the control became significant 9 h after MG
treatment (Figure 2a). This result matched well to the fluorescence images showing an increased ROS
level in the MG-treated cells for 24 h compared to those in the control group (Figure 2b). To detect
mitochondrial ROS, we stained cells with MitoSOX Red mitochondrial superoxide indicators after
MG treatment. Red fluorescence was observed under a confocal laser scanning microscope, and cell
count-based normalization was used to analyze the fluorescence intensities. Mitochondrial ROS
increased over time, and the difference relative to time point 0 was significant 3 h after treatment
(Figure 2c). At 24 h post-treatment, the mitochondrial ROS production in MG-treated cells was higher
than that in vehicle-treated cells (Supplementary Figure S1).
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Figure 1. Formation of Methylglyoxal (MG)-adducts and alteration of cell viability in bEnd.3 cells after
MG treatment. (a–d) bEnd.3 cells were incubated with MG at different concentrations (0–1000 µM)
for 24 h. MG-adduct formation in (a) the cell lysate or (b) the conditioned medium was determined
by western blotting and Coomassie Brilliant Blue staining. Representative images were shown.
The expression levels of (c) glyoxalase (Glo)-1 and (d) Glo-2 were examined after cell treatment with
1000 µM MG for 24 h (n = 3~4). (e) The changes in cell viability after MG exposure (6 h or 24 h) were
determined by (e) PI staining or (f) MTT assay (n = 3). Data are presented as the mean ± SEM. * p < 0.05,
** p < 0.01 vs. control (CON).
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Figure 2. Total cellular and mitochondrial reactive oxygen species (ROS) production and suppression of
the Akt/HIF-1α pathway after MG exposure. (a) Total ROS formation was detected in DCF-DA-stained
bEND.3 cells at the indicated times (n = 3). (b) Confocal microscopy images of DCF-DA-stained bEND.3
cells 24 h after MG treatment. Scale bar: 20 µm. (n = 3). (c) Mitochondrial ROS formation was measured
at 0, 1, 3, and 6 h after MG treatment by confocal microscopy. Scale bar: 20 µm. Fluorescence was
quantified from three independent experiments. (n = 3). Representative images are shown. (d,e) The
protein levels of (d) phosphorylated and total Akt (p-Akt and t-Akt) and (e) HIF-1α were determined
by western blotting. Protein levels were normalized to β-actin levels (n = 3). Data are presented as the
mean ± SEM. * p < 0.05, ** p < 0.01 vs. control (CON).

Hypoxia-inducible factor 1α (HIF-1α) is known to control the oxygen demand through the
mitochondria affecting cellular and mitochondrial ROS status [30], and the expression of HIF-1 is
regulated by the phosphorylation of protein kinase B (Akt or PKB) [31]. After 1 h of MG exposure
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(1000 µM), the phosphorylation of Akt in brain ECs was significantly decreased by approximately 36%
compared to that in the vehicle control (Figure 2d). HIF-1 α expression was temporarily increased at
1 h post-treatment but decreased afterward with time (Supplementary Figure S2). At 24 h MG exposure
(1000 µM), HIF-1α expression was significantly decreased by approximately 77% compared to that in
the vehicle control (Figure 2e).

3.3. Disturbnace of Bioenergetic Mitochondrial Function and Activates Parkin-Mediated Mitophagy by MG in
Brain ECs

Brain ECs have a very high-energy demand, and mitochondrial bioenergetic function is critical
to maintaining their unique and distinct barrier function [26]. We observed that MG increased the
generation of total and mitochondrial ROS along with the suppression of defense mechanisms of
p-Akt/HIF-1. Therefore, we next investigated if MG treatment disturbs mitochondrial function using a
measurement of oxygen consumption rate. The basal respiration and respiration after the sequential
addition of oligomycin (Oligo), FCCP, and combination of rotenone and antimycin A (Rot/AA) were
monitored. As shown in Figure 3a, the mitochondrial respiration of brain ECs was decreased by 6 h
incubation of MG. Basal respiration, ATP-linked respiration, proton leakage, and maximal respiration
were decreased by MG with a statistical significance (Figure 3b). The maximal respiratory capacity,
calculated from the oxygen consumption after FCCP stimulation, is known to be a strong indicator of
the potential of mitochondrial energetic dysfunction [32].
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Figure 3. Mitochondrial bioenergetic disturbance and activation of mitochondrial autophagy following
MG treatment in brain endothelial cells (ECs). (a,b) bEnd.3 cells were incubated with MG for 6 h
and applied to Seahorse MitoStress Assay (n = 3). (a) The profile of the oxygen consumption rate
was plotted. (b) The parameters for mitochondrial respiration were calculated. (c) The localization of
LC3B and mitochondria was examined at indicated times after MG treatment by confocal microscopy.
Mitochondria were labeled by MitoTracker. Pearson’s correlation coefficients were calculated from
three independent experiments (n = 3). Representative images are shown. Scale bar: 20 µm. (d,e) The
protein level of (d) Parkin-1 and (e) LC3B-II in the mitochondrial fraction was determined by western
blotting. Protein levels were normalized to that of cytochrome C oxidase subunit 4 (COXIV) (n = 3).
(f) Mitochondrial mass was determined by staining with NAO (n = 3). Data are presented as the
mean ± SEM. * p < 0.05, ** p < 0.01 vs. control (CON).
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Accumulating evidence indicates that mitophagy is activated as an adaptive response to oxidative
stress and mitochondria damage [33–35], and we investigated the activation of mitophagy in
MG-exposed brain ECs. The formation of autophagosomes was increased following MG treatment,
as measured by immunostaining of microtubule-associated proteins 1B light chain 3B (LC3B).
The autophagosomes were co-localized with mitochondria (Figure 3c), and the increased mitophagy
was continued at 24 h after MG stimulation (Supplementary Figure S3). Since Parkin-1 is involved
in the clearance of damaged mitochondria through LC3B recruitment [20,36], the protein level of
Parkin-1 or LC3B-II was investigated in isolated mitochondria. At 3 h post-treatment of MG, Parkin-1
or LC3B-II level was increased by approximately 1.13- and 2.29-fold, respectively, in the mitochondrial
fraction of brain ECs (Figure 3d,e). Next, we measured if mitochondrial mass in bEnd.3 was affected
by MG treatment for 24 h using nonyl acridine orange (NAO). While there is a statistical significance,
the mitochondrial mass decreased only by 8.98% in 1000 µM of MG-treated cells, compared to the
control cells (Figure 3f).

3.4. Restoration of Mitochondrial Function and Mitophagy by NAC

To examine the role of oxidative stress in mitochondrial damage by MG, we treated brain ECs with
NAC (5 mM), a well-established antioxidant, for 1 h before and during MG exposure (6 h). As shown in
Figure 4a, NAC pretreatment significantly reversed MG-induced mitochondrial energetic impairment.
Basal respiration, ATP-linked respiration, and maximal respiration, which were significantly impaired
by MG, were significantly restored by NAC treatment (Figure 4b). Next, we examined if NAC or
autophagic inhibitors, 3-MA or Baf A, affects MG-induced mitophagy. The co-localization of LC3B and
MitoTracker, an indicator for the formation of autophagosomes containing mitochondria, was increased
by MG in brain ECs, and the treatment of NAC or 3-MA reversed the co-localization suggesting the
mitophagy was inhibited by NAC or 3-MA (3 mM) (Figure 4c). Meanwhile, the restoring effect of Baf
A (25 nM) on the co-localization of LC3B and MitoTracker was not found. Baf A is known to block late
steps of autophagy after autophagosome formation by inhibiting fusion between autophagosomes and
lysosomes [37]. The significant inhibition by NAC was also observed in MG-attenuated MTT reduction,
which is an indicator of metabolic impairment [29,38]. The 3-MA and Baf A also demonstrated
a statistically significant inhibition against the MG effect on MTT reduction but to a lesser extent
compared to NAC (Figure 4d).

3.5. Activated Autophagy Might Contribute to Occludin Degradation

We recently demonstrated that autophagy contributed to occludin degradation in bEND.3 cells
under hypoxic conditions [19]. To examine if autophagy occurs in brain ECs following MG stimulation,
the total level of LC3B-I/II conversion was determined. Along with the enhanced mitophagy as
observed in Figure 3, the conversion of LC3B-I/II was significantly increased after MG treatment in a
time- and concentration-dependent manner (Figure 5a,b). To identify the involvement of autophagy in
occludin degradation, we investigated the correlation between autophagy activation and occludin
degradation at 24 h after MG treatment. An increase in autophagic puncta was found after treatment
with 1000 µM MG, as observed by LC3B immunostaining (Figure 5c). Besides, we observed a decrease
in occludin signals and a concurrent increase in the co-localization of LC3B with occludin after MG
treatment in bEnd.3 cells (Figure 5d).
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Figure 4. Effects of NAC and autophagy inhibitors on mitochondrial damage induced by MG in brain
ECs. (a,b) bEnd.3 cells were treated with NAC (5 mM) for 1 h before and during MG stimulation
(1000 µM) for 6 h. Cells were applied to Seahorse MitoStress Assay (n = 3). (a) The profile of
the oxygen consumption rate was plotted. (b) The parameters for mitochondrial respiration were
calculated. (c,d) NAC or autophagy inhibitors (3-MA or Baf A) were treated for 1 h before MG treatment,
and maintained for 6 h during MG treatment. (c) The localization of LC3B and mitochondria was
examined by confocal microscopy. Mitochondria were labeled by MitoTracker. Representative images
are shown. Scale bar: 20 µm. (d) The effects of NAC or autophagy inhibitors (3-MA or Baf A) on
MG-attenuated MTT reduction were determined (n = 3~4). Data are presented as the mean ± SEM.
* p < 0.05, ** p < 0.01 vs. control (CON). # p < 0.05, ## p < 0.01 vs. MG-treated cells.

3.6. MG Induces Endothelial Dysfunction and Degradation of Tight Junction Proteins in bEND.3 Cells

To investigate the effects of MG on brain EC tight junction (TJ) proteins, which restrict the
permeability of the brain-blood barrier, we measured the protein level of TJ proteins and the functional
integrity of TJ. Western blot analysis showed that occludin was significantly reduced after treatment
with 1000 µM MG (Figure 6a). The protein levels of claudin-5 and zonula occludens-1 (ZO-1) were
significantly reduced after treatment with 750 and 1000 µM MG (Figure 6b,c). The integrity of TJ was
disrupted by MG treatment, as found in the decreased fluorescence level and impaired distribution
of these TJ proteins from the plasma membrane outlining (Figure 6d). Next, we investigated the
change of functional integrity in brain ECs after MG treatment. We measured the permeability of
FITC-conjugated dextran and TEER in MG-exposed ECs. The FITC-dextran permeability assay showed
that MG at a concentration of 1000 µM significantly reduced the integrity of brain ECs (Figure 6e).
TEER also significantly increased after treatment with 1000 µM MG (Figure 6f). These data demonstrate
that MG induced endothelial dysfunction in bEND.3 cells, resulting in the disruption of permeability
as a specialized barrier.
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Figure 5. Autophagy activity and co-localization of occludin with LC3B 24 h after MG exposure in
brain ECs. (a,b) The protein levels of LC3B-I/II were determined (a) at 0, 1, 3, or 6 h after treatment
with 1000 µM MG (n = 3) or (b) at 24 h after treatment with 0–1000 µM MG by western blotting (n = 4).
(c) MG-exposed bEnd.3 cells were stained with an antibody against LC3B and visualized by confocal
microscopy. Scale bar: 50 µm. (n = 4) (d) Co-localization of occludin with LC3B was analyzed after
MG exposure using confocal microscopy. Scale bar: 20 µm. Pearson’s correlation coefficients were
calculated from three independent experiments (n = 3). Representative images are shown. Data are
presented as mean ± SEM. * p < 0.05 vs. control (CON).
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Figure 6. MG induces endothelial dysfunction through tight junction degradation and permeability
destruction in bEND.3 cells. The protein expression levels of (a) occludin (n = 5), (b) claudin-5 (n = 4),
and (c) ZO-1 (n = 3) were determined 24 h after treatment with 100–1000 µM MG by western blotting.
(d) MG-exposed bEnd.3 cells were stained with an antibody against occludin, claudin-5, or ZO-1
and visualized by confocal microscopy. Scale bar: 50 µm. (e,f) Functional changes in endothelial
permeability were measured by (e) an in vitro FITC-dextran permeability assay (n = 3–7) and (f) TEER
measurements (n = 4) after MG treatment. Representative images are shown. Data are presented as
mean ± SEM. * p < 0.05, ** p < 0.01 vs. control (CON).
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4. Discussion

In this study, we demonstrated that MG, an endogenous toxic metabolite under diabetic condition,
induced dysfunction in brain endothelial bEND.3 cells. MG induced downregulation of Glo-2,
which may disrupt MG detoxification mechanisms. Mitochondrial and total cellular ROS formation
increased from the early stage of MG treatment. Akt was suppressed shortly after MG exposure,
which might have affected the expression of HIF-1α. Mitochondrial energetic function was impaired
by MG. Mitophagy and autophagy were activated, and autophagosomes were co-localized with
occludin after MG treatment. TJ proteins including occludin, claudin-5, and ZO-1 were decreased in
level and re-distributed from the plasma membrane leading to impairment of permeability of brain
ECs following MG exposure. Since vascular dysregulation is one of the most severe complications
associated with diabetes, there have been several attempts to elucidate the effect of MG on endothelial
dysfunction [8–11]. We believe that our current observations contribute to an integrated understanding
of the role of MG in diabetic endothelial impairment, especially in cerebrovascular dysfunction under
diabetic condition.

Glyoxalase (Glo) is the major detoxification enzyme of MG, and up to 99% of MGO is detoxified
by the glyoxalase system under physiological conditions [39]. Since the MG degradation process
consists of two steps involving Glo-1 and -2, the expression level of these two enzymes is crucial for the
whole MG detoxification mechanism [40]. Accumulating evidence has shown that the impairment of
the glyoxalase systems is correlated with various complications of diabetes, including macrovascular
disease in humans [41]. In this study, we observed that the intracellular accumulation of MG adducts
was considerably increased at an MG concentration of 1000 µM. There was a slight but not significant
increase in the Glo-1 level and a significant decrease in the Glo-2 level under the same conditions.
Interestingly, Zhang et al. [35] demonstrated that HIF-1 negatively regulated the gene expression of
Glo-1 in leukemia stem cells. Dafre et al. [33] demonstrated that autophagy inhibitors (bafilomycin A
and chloroquine) reversed Glo-2 degradation induced by MG. Since we have shown that MG treatment
induces HIF-1 degradation and autophagy activation, these mechanisms might affect the expression
levels of Glo-1 and Glo-2 in ECs. However, this should be further investigated in future studies.

Previous studies have shown that ROS formation may be the crucial mechanism for MG cytotoxicity
in endothelial cells (ECs) [42]. The cytotoxicity of MG was decreased by several compounds that reduce
ROS formation in ECs [43–45]. While ROS has been suggested to be a key mediator for MG-induced
EC damage, the role of mitochondrial oxidative stress or mitophagy has not been studied. Interestingly,
recent studies have shown that mitochondrial ROS contribute to the MG toxicity in other tissue
damage associated with diabetes. A recent report by Liu et al. [46] demonstrated that MG-induced
mitochondrial ROS in rat pancreatic beta cells. Mitochondrial ROS production is increased when
mitochondrial ETC systems are defective, leading to the upregulation of pathological mechanisms
contributing to MG-induced tissue damage [22]. Here we report that mitochondrial ROS, bioenergetic
disturbance, and mitophagy may play critical roles in dysfunction in brain ECs. Of note, the treatment
of a representative antioxidant, NAC, significantly reversed MG-induced bioenergetic impairment
and mitophagy, supporting the notion that ROS is the key mechanism for mitochondrial damage in
brain ECs. In addition to mitochondrial ROS, non-mitochondrial sources such as eNOS uncoupling,
iNOS activation, microsomal monooxygenases redox cycling, or lipid peroxidation products would
need to be further examined to understand more comprehensively the role and impact of increased
oxidative stress in brain ECs by MG [23,47].

Mitochondria are organelles that play an important role not only in energy production but
also in maintaining endothelial functions by regulating signal transduction against environmental
changes [48]. For example, in response to oxygen deprivation, the number of mitochondria can be
adjusted to reduce the oxygen demand of the cells [49]. Accumulating evidence has shown that HIF-1
is the key regulator not only in adaptive responses to hypoxia but also in attenuating oxidative stress
by regulating the number of mitochondria [30]. HIF-1 activates the autophagy of mitochondria to
remove damaged mitochondria when oxidative stress is increased [50]. When these adaptive responses
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fail, damaged mitochondria accumulate, and electron leakage from the ETC systems may amplify ROS
formation. Bento et al. [51] showed that, during hypoxia, HIF-1α expression was decreased in retinal
pigment epithelial cells after MG treatment. In the current study, we have shown that the alteration of
Akt/HIF-1 α, mitochondrial ROS generation, mitochondrial energetic impairment, and mitophagy in
MG-exposed brain ECs, suggesting that these interrelated phenomena simultaneously contribute to
the MG-induced functional disruption in permeability change in brain ECs.

In this study, using mitochondrial superoxide indicators, we observed increased mitochondrial
ROS levels in bEnd.3 cells at the early stages of MG exposure and until 24 h. Total cellular ROS formation
was concurrently increased with mitochondrial ROS. Furthermore, we showed that autophagy of
mitochondria was activated during MG-induced ROS formation and that HIF-1α expression was
temporarily increased 1 h after MG treatment, which might play a role in the activation of mitochondrial
autophagy. ROS-mediated mitochondrial functional damage, as observed in bioenergetic disturbance,
increased after MG treatment, and these damaged mitochondria may activate mitophagy. We tried to
elucidate if mitochondrial mass, which represents the changes in mitochondrial content [52], is affected
by MG treatment using a specific dye of nonyl acridine orange [27]. Despite a statistical significance,
we could only observe a very small reduction in mitochondrial mass (Figure 3f). Considering that the
mitochondrial dysfunction in type I and type II diabetic patients has been clinically emphasized in
a recent few years [53,54], further studies are warranted to study the effect of MG on mitochondrial
dynamics, including fusion, fission, and mitophagy [55]. Growing evidence has demonstrated that
mitochondrial dysfunction associated with ROS in the BBB is critical in BBB alteration in pathological
conditions of vascular and neurological diseases [23]. Considering that uncontrollable or inadequate
mitophagy can have detrimental effects on cells [56], studies to elucidate how MG-associated mitophagy
affects molecular mechanisms in BBB disruption should be further expanded.

Hypoxia-inducible factor 1 (HIF-1) is an intracellular oxygen sensor that reduces hypoxic damage
in cells by reducing the oxygen demand through the suppression of mitochondrial biogenesis and
activation of mitophagy [30]. Transcription, translation, and stability of HIF-1 can be regulated by
post-translational phosphorylation by the Akt/mTOR/S6k1 pathway [31]. We showed that the activation
of Akt was suppressed at 1 h post-treatment. Considering the role of Akt in the upregulation of the
HIF-1α expression level [57], it may affect the low HIF-1α level after MG exposure. Degradation
mechanisms reported by Bento et al. [51] may also be involved in the decrease of HIF-1α expression,
but additional studies are needed. Here we demonstrated that modulation of HIF-1α might be involved
in MG-induced ROS formation and functional impairment in brain ECs, and HIF-1α modulation may
be a preventive strategy in patients with diabetes to reduce cardiovascular complications. This is
in line with recent opinions that HIF prolyl hydroxylase (PHD) inhibitors may have a therapeutic
potential in neurological diseases such as stroke by modulating HIF and ROS [58].

We observed the accumulation of intracellular or released protein MG-adducts (Figure 1a,b).
MG produces AGEs by the binding to the arginine residue of the protein, and the most common
MG-derived AGEs form is MG-derived hydroimidazolone-1 (MG-H1), and this can be particularly
recognized by the receptors for AGEs (RAGE) mediating AGE toxicity [59]. We recently demonstrated
that MG induced angiogenic impairment in EPCs via the AGE/RAGE-VEGFR-2 pathway [8]. However,
when using FPS-ZM1, a RAGE antagonist, we could not observe any changes of MG effect on the
impaired metabolic capacity of MTT reduction (Supplementary Figure S4a). The protein level of RAGE
in brain ECs was not affected by MG treatment (Figure S4b). The role of the AGE/RAGE pathway is not
likely to be actively involved at least in metabolic perturbation induced by MG in brain ECs; however,
other potential effects on BBB function such as membrane TJ dynamics could not be excluded.

Our current study has significant limitations, especially in terms of the lack of clinical or translational
relevance of the concentration of MG used in our experimental system. Previous clinical observations have
demonstrated that the level of MG significantly increased in patients with diabetes [7,60]. Normal human
plasma levels of MG are in the range of 50–300 nM, and higher plasma levels of MG are found for
example, in patients with diabetic neuropathy, as high as 600–900 nM [61]. Wang et al. [7] reported
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that the range of plasma MG concentration could increase up to 5.9 ± 0.7 µM in patients with
diabetes compared to up to 3.3 ± 0.4 µM in non-diabetic subjects. Fleming et al. [62] has shown the
intracellular level of MG in erythrocytes as up to 25-fold higher in patients with diabetes compared
to individuals without diabetes. The concentration of MG used in this study was up to 1000 µM,
which is approximately at least 200-fold higher than the plasma concentration observed in patients
with diabetes. This could be partly justified by a limited in vitro experimental condition with relatively
short-time exposure. While vascular tissues under clinical diabetic conditions are chronically exposed
to MG for years, cultured brain ECs might be temporarily exposed to MG, i.e., for up to 24 h in our
case. This has been a limiting factor for studies on MG toxicity in cells, and similar ranges of MG
concentrations applied in this study were also used in previous in vitro studies [63,64]. Nevertheless,
we hope that our current observation could give insight into the BBB damage observed in diabetes,
in terms of mechanistically valid MG effects on ROS generation, mitochondrial damage/mitophagy and
barrier function alteration in a concentration and time-dependent manner in ranges without cell death
as observed by PI fluorescence (Figure 1e). Further studies with clinical observations for MG-associated
mitochondrial bioenergetic dysfunction or mitophagy in BBB would be interesting. Considering that
BBB damage can be induced by endogenous stimuli such as hypoxia [20] or exogenous chemicals such
as environmental pollutants [18], future studies regarding synergistic effects of the lower concentration
of MG on these effects would also be necessary.

Growing evidence has shown that basal autophagy is essential to maintain proper vascular
function [65], but at the same time, endothelial autophagy showed a detrimental role in the pathogenesis
of vascular diseases [20]. In a recent study, we explored the role of autophagy during ischemic
stress in brain ECs and showed that autophagy promotes endothelial dysfunction through occludin
degradation [19]. In the case of MG-related autophagy, Fang et al. [66] showed that autophagy was
activated at an early stage (1–6 h) of MG exposure in human brain microvascular ECs. In the same
study, diabetic rats showed increased permeability of brain ECs after permanent middle cerebral
artery occlusion, which means that brain ECs were more susceptible to ischemic stimuli under
diabetic conditions. While NAC, an antioxidant, significantly reversed both mitochondrial metabolic
dysfunction and mitophagy, 3-MA or Baf A, autophagy inhibitors, failed to reverse the metabolic
impairment. This suggests that oxidative stress might be a causative factor leading to mitochondrial
energetic disturbance and consequent mitophagy. In this study, we demonstrated that activated
autophagy is involved in the removal of damaged mitochondria. These results indicate a dual role for
autophagy in MG-exposed ECs, and the future studies exploring the contribution of MG-associated
autophagy activation in terms of the different time window and the extent of autophagic activation.

5. Conclusions

This study demonstrated that MG-induced endothelial dysfunction through ROS production
and increased mitochondrial damage, with high susceptibility to oxidative stress, contributes to the
amplification of MG toxicity. Suppressed Akt expression might have a role in the insufficient response
of HIF-1α to reduce oxidative damage. We also demonstrated the bioenergetic disturbance and
activation of mitophagy after MG exposure. Tight junction proteins were decreased and re-localized,
leading to impaired permeability in brain ECs.
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