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Abstract: Chlorophylls and carotenoids are natural pigments that are present in our daily diet,
especially with the increasing tendency towards more natural and healthy behaviors among consumers.
As disturbed antioxidant homeostasis capacities seem to be implicated in the progress of different
pathologies, the antioxidant properties of both groups of lipophilic compounds have been studied.
The objective of this review was to analyze the state-of-the-art advances in this field. We conducted a
systematic bibliographic search (Web of Science™ and Scopus®), followed by a comprehensive and
critical description of the results, with special emphasis on highly cited and more recently published
research. In addition to an evaluative description of the methodologies, this review discussed different
approaches used to obtain a physiological perspective, from in vitro studies to in vivo assays using
oxidative biomarkers. From a chemical viewpoint, many studies have demonstrated how a pigment’s
structure influences its antioxidant response and the underlying mechanisms. The major outcome
is that this knowledge is essential for interpreting new data in a metabolic networks context in the
search for more direct applications to health. A promising era is coming where the term “antioxidant”
is understood in terms of its broadest significance.

Keywords: ABTS; antioxidant activity; antioxidant capacity; carotenoid; chlorophyll; chlorophyllin;
DPPH; LDL; liposomes; Nrf-2

1. Introduction

The term “antioxidant” has various different definitions; the concept has been subject to a
continuous evolution as research advances [1,2]. For example, the original chemical definition of
antioxidant, “any substance that, when present at low concentrations compared to that of an oxidizable
substrate, significantly delays or inhibits oxidation of that substrate” [3], has now been overtaken by a
biological perspective, i.e., “natural or synthetic substances that may prevent or delay oxidative cell
damage caused by physiological oxidants having distinctly positive reduction potentials, covering
reactive oxygen species (ROS)/reactive nitrogen species (RNS) and free radicals” [4]. One main reason
for this gradual change from chemistry to biology is the progressive and emerging evidence that
supports the involvement of oxidative stress in the development of various diseases like diabetes
mellitus, cancer, Alzheimer’s disease, etc.

The differences in how the terms “activity” and “capacity” are applied in the context of antioxidants
should be considered. Antioxidant activity is the constant rate of the reaction between an antioxidant
and reactive species (radicals and non-radicals); thus, activity correlates with the interaction of that
pair of reactive compounds and the quantitation of the structure–activity relationship. Therefore,
antioxidant activity is preferentially measured in model systems (homogeneous solutions), and this
approach is useful for establishing mechanism(s) of reaction and ranking the antioxidant activity of a
family of compounds. That is, we obtain information concerning the chemistry of the process, but that
information is not provided within a biological context. Additional terms can be found in the literature,
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such as “antioxidant power”, “antioxidant potential”, “antioxidant performance”, “antioxidant status”,
and “antioxidant effect” [1].

Chlorophyll and carotenoid levels and variability in the diet can be increased through the regular
ingestion of fruits and vegetables as well as via the intake of seaweeds, microalgae, functional drinks,
and food supplements, as a consequence of new and healthy trends in food habits. Carotenoids
and, to a lesser extent, chlorophylls have been investigated regarding their abilities to decrease the
oxidation of other molecules. The objective of the present review was to critically construct an updated
compilation of the main findings regarding the capability of chlorophylls and carotenoids to decrease
oxidative stress. This review encompassed research conducted at the in vitro (outside of the normal
biological context, commonly called test-tube experiments), ex vivo (assays in cells/tissues/organs
developed outside of a biological environment for up to 24 hours and with minimal alterations of
natural conditions), and in vivo levels (experiments developed using the whole organism).

2. Methods Used to Determine the Antioxidant Capacity of Lipophilic Pigments

Many protocols for determining the antioxidant capacity of chlorophylls and carotenoids have
been published; however, we review herein the methods most commonly applied to lipophilic
pigments. Initially, the methods were classified by considering whether the protocol focused on
primary or secondary antioxidants. The term “primary” refers to chain-breaking antioxidants,
assessed through hydrogen atom transfer-based assay (HAT), single-electron-transfer-based assay
(SET), ROS-scavenging activities, metal chelation, or preventing lipid peroxidation, whereas the term
“secondary” refers to preventive antioxidants acting through a neutralization reaction [1]. We have
introduced how the protocols correlate within a biological context, where detoxifying enzymes,
gene expression, transcription factors, or biomarkers are essential indicators of the in vivo antioxidant
capacity. Clinical/biochemical biomarkers are, when properly determined, the most direct in vivo
measurement of antioxidant status and consequently the most straightforward method with which to
determine the impact of an ingested target compound in the health status of a subject. Despite the fact
that in vivo results are required to make any health claims (see Section 2.4), there is an open debate
in the scientific community regarding the relative significance of each methodology. Several reviews
support the utility of total antioxidant capacity (TAC) measurements [5], describing the advantages
and limitations of these methods. It has been pointed out that the influence of an antioxidant in health
could be independent of the direct effect on human cells and tissues [6]. The presence of an antioxidant
in food could prevent or inhibit the oxidation of other food components. Ultimately, the selection of
the methodology used to determine antioxidant activity/capacity will depend on the objective being
pursued, being aware of the major drawbacks of the selected assay to avoid obtaining inaccurate
conclusions. Although numerous classifications have been proposed, we followed an integrated
approach [1], starting from pioneer works [7–12] and continuing to more recent biochemical assays.

The selection of a suitable protocol depends on factors such as the polarity and structure of
the compound, the characteristics of the medium in which the determination is being performed,
the feasibility, etc., which are summarized in Table 1. It is important to highlight the case of
antioxidant measurements in water/lipid systems that use detergents to produce micellar dispersions
of the lipophilic pigments. Some pigments are ineffectively incorporated into micelles under some
experimental conditions, and the location of the pigment (in the core or the shield of the aggregates)
produces a different result in the radical-scavenging process. Some of the differences attributed
to the structural arrangements of pigments and observed in homogeneous systems disappear in
heterogeneous systems, whereas other new factors governing the antioxidant process may occur,
promoting different and unexpected behavior [11–19].

In addition to the results obtained from this milieu of protocols and applications, other controlling
factors have emerged, including the spatial distribution of carotenoids and chlorophylls in molecular
aggregates or membranes, the heterogeneous and rigid characteristic of the environment surrounding
the molecule, the restriction of molecular mobility in the space, and the co-existence of molecules able
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to interact in the same frame. That is, antioxidant action in heterogeneous environments is a completely
different behavioral system, where the concepts and schemes obtained with basic homogenous
chemistry are the starting point for ascertaining the actual antioxidant values of lipophilic pigments
and any other antioxidant substance.

We have highlighted the influence of the polar paradox in the interpretation of the results when
working with chlorophylls and carotenoids as antioxidants. Both families of pigments are, as a
general rule, lipophilic pigments, but chlorophylls can also be considered amphipathic molecules.
The term “polar paradox” [20,21] refers to polar antioxidants being more active in lipophilic ambient
environments than nonpolar antioxidants and, vice versa, nonpolar antioxidants are more effective in
oil-in-water emulsions than polar environments. However, recent studies [22] extended the concept
with new bases, proposing theories such as the association colloid hypothesis, the cut-off effect, reduced
mobility, internalization, or the self-aggregation hypothesis. These new theories have increased the
number of factors needed to understand and explain the different behaviors of antioxidant compounds,
currently at the in vitro level but with practical applications in the near future.

2.1. Hydrogen-Atom-Transfer-Based (HAT) Assays

HAT methods determine the capacity of an antioxidant to quench free radicals by donating a
hydrogen atom (H), such as oxygen-radical-absorbance capacity (ORAC) or total radical-trapping
antioxidant parameter (TRAP) assays. Although these are considered conventional methods,
their applicability is restricted to carotenoids, as this protocol has not yet been applied to
chlorophylls. In the ORAC test, peroxyl radicals generated by the thermal decomposition of 2,2′-azobis
(2-amidinopropane) dihydrochloride react with a dye and decrease the fluorescence of the target
compound, such as fluorescein or a phycoerythrin derivative. The antioxidant capacity of a molecule
is measured by its ability to prevent loss of the fluorescence signal by neutralizing peroxyl radicals [7],
and this method is especially useful for investigating the efficacy of chain-breaking antioxidants.
Antioxidant capacity is generally expressed as Trolox equivalents, abbreviated as Trolox-equivalent
antioxidant capacity (TEAC). Opposing results have been reported when comparing ORAC and DPPH
methods. For example, a given food might exert a high antioxidant activity with the ORAC test but
not with the DPPH assay [8,23], and vice versa.

The TRAP protocol, developed by Wayner [24], has been the most widely used method for
measuring the total antioxidant capacity of plasma or serum samples in the last decade. However,
its main drawback regarding the oxygen electrode end-point is that the electrode does not maintain its
stability over the required time [25]. The TRAP method is characterized by the simultaneous presence
of a pro-oxidant molecule, an oxidizable substrate (the target fluorescent protein), and the antioxidant
fluid. However, TRAP is not appropriate for the direct measurement of the TAC of lipophilic
antioxidants, and is consequently not recommended for nonpolar chlorophylls and carotenoids.
However, an alternative (luminol−chemiluminescence-based peroxyl-radical-scavenging capacity
(LPSC)) using luminol as the endpoint measurement has been successfully applied for carotenoids [26],
comparing antioxidant activity values using different methods. The study noted 10-fold lower
antioxidant activity with FRAP, TEAC, and DPPH assays than with the LPSC method.

2.2. Single-Electron-Transfer-Based Assays

Single-electron-transfer-based assays (SET assays) are based on the capacity of an antioxidant
substance to transfer one electron to reduce metal ions, carbonyls, and radicals [27] through relatively
slow reaction kinetics and dependent on pH and solvents [4]. These methods are not frequently applied
for measuring chlorophyll and carotenoid antioxidant activity, although some determinations have
been developed through the FRAP or cupric-reducing antioxidant capacity (CUPRAC) protocols.

The FRAP methodology considers the ability to reduce the yellow ferric tripyridyltriazine
complex (Fe(III)-TPTZ) to a blue ferrous complex (Fe(II)-TPTZ) by the action of electron-donating
antioxidants [28]. The resulting blue color, measured spectrophotometrically at 593 nm, is considered
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to be linearly related to the total reducing capacity of electron-donating antioxidants [29]. The FRAP
assay is the only protocol that directly measures antioxidants (or reductants) in a sample, compared
to other assays measuring the inhibition of free radicals [30]. However, one of the inconveniences of
the FRAP assay is the need for acidic conditions (nonphysiologically low pH value = 3.6) to maintain
iron solubility. The consistency between the FRAP and the ORAC assay was assessed by determining
the antioxidant status of watercress, wild rocket, and spinach [31], and the study showed that both
methods provided comparable results.

Table 1. Chemical methods applied to measure the antioxidant activity of chlorophylls and carotenoids.

Method Advantages Disadvantages Mechanism

ORAC

• Related to in vivo conditions because it uses a
biologically relevant free radical source (peroxyl
radical) [10].

• To avoid underestimation of antioxidant capacity
and to account for potential effects of secondary
antioxidant products, the ORAC assay monitors
the reaction for extended time intervals (≥30 min).

• Limited to the measurement of antioxidant
capacity against peroxyl radicals and hydroxyl
radicals, not applicable against any other
ROS [10,32].

• Proteins in plasma or serum samples must be
removed as they can mask the response [12].

HAT1: Decrease of
luminescence of target

compound by
peroxyl radicals.

TRAP

• Involves the initiation of lipid peroxidation by
generating water-soluble peroxyl radicals and is
sensitive to any chain-breaking antioxidants [10].

• Particularly suitable for plasma samples [33].

• Relatively complex and time-consuming,
requiring a high degree of expertise and
experience [10].

• The long time required per sample (up to 2 h)
can lead to instability of the electrode [34].

• Not appropriate for direct measurement of
liposoluble antioxidants’ TAC [33].

HAT: Decay of fluorescent
target once peroxided.

FRAP
• Simple, rapid, inexpensive, and robust and does

not require specialized equipment [35].

• False high values can be obtained as an
electron-donating substance can contribute
to the FRAP value even without antioxidant
properties with redox potential less than that
of the redox pair Fe (III)/Fe (II) [36].

SET: Formation of a
reduced ferric compound

CUPRAC
• Low cost, reagent stability and accessibility,

and response to both hydrophilic and lipophilic
antioxidants [37].

• The selection of appropriate reaction time due
to the complex mixture of antioxidants [35].

SET:
Formation of a reduced

cupric compound

DPPH

• Fast and technically simple.
• Good repeatability and frequently used [38].
• Existence of a linear correlation between the

DPPH concentration and absorbance means the
DPPH method can be applied to chromophoric
compounds such carotenoids [39].

• Can only be accomplished in organic solvents,
typical for chlorophylls and carotenoids.

• The maximum absorbance is very close to that
of the carotenoids.

• Not appropriate for uncommon highly polar
chlorophylls and carotenoids [40].

• Sensitive to acidic pH.
• High stabilization periods [38].

Mixed-mode: Ability to
scavenge DPPH radical

ABTS

• Useful at different pH conditions.

*Short stabilization times.
*Applicable to geometric carotenoid isomers [41].

• The activity of the decomposition products
of the β-carotene isomers is double that of
α-tocopherol [26]; β-carotene does not lose its
antioxidant activity by degradation to long-chain
decomposition products.

• Soluble in water and organic solvents.
• ABTS working solutions can be kept in the dark

for 12 h and then used within 4 h [42,43].

• The reaction depends largely on the oxidizing
agent used [4].

Mixed-mode:
Formation of an oxidized

radical cation.

Abbreviations: ORAC: oxygen-radical-absorbance capacity; ROS: reactive oxygen species; TRAP: total
radical-trapping antioxidant parameter; TAC: total antioxidant capacity; FRAP: ferric-reducing/antioxidant
power; CUPRAC: cupric-reducing antioxidant capacity; DPPH: 2,2-diphenyl-1-picryl-hydrazyl-hydrate;
ABTS: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); HAT: hydrogen-atom-transfer-based assays;
SET: single-electron-transfer-based assays.

The CUPRAC assay involves mixing the antioxidant solution with a copper chloride solution
(II), an alcoholic neocuproine solution, and an aqueous buffer of ammonium acetate at pH 7, and the
subsequent measurement of the absorbance at 450 nm after 30 min. The CUPRAC reagent is reasonably
selective, stable, easily accessible, and sensitive to thiol-type oxidizers, unlike the FRAP procedure.
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The CUPRAC method provides advantages over the FRAP protocol since the reaction is performed at
almost physiological pH, compared to the unrealistically acidic pH of FRAP [32], and copper redox
chemistry, compared to ferric ion chemistry, involves faster kinetics. However, this method is not
suitable for chlorophyll b determinations, as its maximum wavelength absorbance is very close to
450 nm.

2.3. Mixed-Mode Assays

In these methods, different mechanisms (HAT, electron transfer (ET), and proton-coupled
electron transfer) may be involved in the antioxidant scavenging of a stable radical
chromophore [1]. DPPH (uses 2,2-diphenyl-1-picrylhydrazyl as the radical) and ABTS (applies
2, 2′-azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid as the radical) are the most widespread methods
used to determine the antioxidant activity of lipophilic pigments.

The DPPH assay is one of the most widely used protocols, [44,45] and it is currently the
Association of Official Agricultural Chemists’ (AOAC) official method (standard 2012.04-2012) for the
total antioxidant determination in foods and beverages [46]. The DPPH radical is a long-lived organic
nitrogen radical in which purple chromogen is reduced by antioxidant/reducing compounds to the
corresponding pale yellow hydrazine. The reducing ability of antioxidants towards DPPH can be
evaluated by electron-spin resonance or by monitoring the absorbance decrease at 515–528 nm until
the absorbance becomes stable in organic media. A modification to the original protocol was proposed
to minimize the interference with carotenoids, shifting the monitoring wavelength to 585 nm [39].

ABTS, when oxidized by peroxyl radicals or other oxidants in the presence of H2O2,
generates a metastable radical cation ABTS•+, which is intensely colored and can be monitored
spectrophotometrically in the range of 600–750 nm. The evaluation is based on the ability of antioxidant
molecules to quench the long-lived ABTS radical cation [47], measuring the decrease in absorbance.
Normally, the activity is expressed relative to the Trolox standard [48] as TEAC. The method only
detects radical scavengers and is insensitive to other antioxidant effects.

2.4. Antioxidant Biomarkers Assessed by In Vivo and Ex Vivo Assays

Widespread chemical antioxidant activity/capacity assays such as ORAC [7], TRAP [49], TEAC [50],
LPSC [51], and FRAP [28], are relatively easy to apply and inexpensive, but they are limited by their
inability to represent the complexity of biological systems. They measure chemical reactions, and these
reactions are not directly correlated to in vivo activity, as they cannot account for the bioavailability,
stability, tissue retention, or reactivity of the compounds under physiological conditions. Biological
systems are much more complex than simple chemical mixtures, and antioxidant compounds may
operate via multiple mechanisms [52]. The different efficacies of compounds in the various assays attest
to their functional variation. The best measures are obtained from animal models and human studies;
however, these are expensive and time-consuming, and unsuitable for initial antioxidant screening of
foods and dietary supplements. Cell-culture models provide an approach that is cost-effective, relatively
fast, and addresses some issues regarding uptake, distribution, and metabolism. Wolfe et al. [53]
developed a quantifiable cellular antioxidant-activity assay (CAA) based on the peroxyl-radical
oxidation (by AAPH or H2O2) of a bioavailable fluorescent probe forming a fluorescent compound
(DCF) within the cells. This method has been successfully applied to carotenoid (Section 3.3.3) and
chlorophyll (Section 4.3) antioxidant capacity determination.

Alternatively, multiple oxidatively modified biological molecules are applied as biomarkers of
oxidative stress, such as reactive oxygen species (ROS) or reactive nitrogen species (RNS). Along this
line and as noted below, the determination of lipid peroxidation products is one of the main methods
applied in the study of carotenoid oxidation. Biomarkers such as malondialdehyde (MDA) and lipid
hydroperoxides (LOOH), as well as antioxidant assays for estimating lipid peroxidation (β-carotene
bleaching assay or thiobarbituric-acid-reactive substances (TBARS)), have been successfully used (see
below). To provide a general perspective, in vivo studies frequently determine not only the oxidative



Antioxidants 2020, 9, 505 6 of 34

status of lipids by measuring oxidized low-density lipoproteins (LDL) particles, lipid hydroperoxides,
and F2-isoprostanes, but also damage to DNA/RNA using the comet assay and protein oxidation
products, e.g., protein carbonyls. Among the nucleic acid bases, guanine is the most susceptible to
oxidation, with 8-hydroxyguanosine (8-OHG) and 8-hydroxy-2-deoxyguanosine (8-OHdG) being the
main oxidative biomarkers determined. DNA damage is also frequently monitored using the comet
assay, which detects alterations such as single-strand breaks. The formation of protein carbonyls
determines the level of protein oxidation, being measured by HPLC, MS, or by immunochemical
detection. Carbonyl groups can form via direct oxidation of certain amino acids (Lys, Pro, Arg,
Thr, and His) or by scission of the peptide backbone [54]. Some of the oxidative biomarkers are
easily monitored through UV–visible spectrophotometry, whereas others require HPLC methods
for quantification.

The importance of these biochemical/clinical markers is supported by the requirements of
governmental and control organizations before their approval of a health claim. For example, the FDA
(Food and Drug Administration) regulates specific requirements for nutritional content claims using
the term "antioxidant” [55], while the EFSA (European Food Safety Agency) has published guidance
for the scientific requirements for health claims related to antioxidants and oxidative damage [56].
In general, the EFSA does not consider in vitro or even human plasma antioxidant determinations to be
sufficient, as these do not establish a beneficial physiological effect in humans. On the contrary, EFSA
establishes that “it is necessary at least one appropriate marker of oxidative modification on the target
molecule assessed in vivo in human studies,” as shown in Table 2, as a direct in vivo measurement for
approval. The EFSA also allows using alternative methods, but only in conjunction with any of the
“direct in vivo measurements” listed.

Table 2. Biomarkers approved by the European Food Safety Authority (EFSA).

Biomarker Direct In Vivo Measurement Alternatives Not Allowed

Protein
A method that allows separation and identification
of oxidative changes in amino acids (e.g., protein

tyrosine nitration products by LC-MS)

• Protein carbonyls assessed by
ELISA in blood or target tissue

• Conventional assays (e.g.,
colorimetric) in plasma samples

Lipid

• Changes in F2-isoprostanes in 24 h samples
assessed using GC-MS or LC-MS

• Oxidized LDL particles in blood assessed using
immunological methods

• Lipid hydroperoxides in blood or tissue assessed
by CL-LC

• Appropriate determination of
MDA concentration in blood or
tissues (e.g., LC)

• In vivo TBARS
• In vivo MDA
• In vivo

HDL-associated paroxonases
• In vivo conjugated dienes
• In vivo breath hydrocarbons
• In vivo LDL autoantibodies
• Ex vivo LDL resistance

to oxidation

DNA
• Modified comet assay (e.g., endonuclease III

plus FPG)
• Appropriate determination of

urinary 8-OHdG (e.g., LC)

• Traditional comet assay
• Ex vivo pro-oxidant comet

assay

3. Carotenoids as Antioxidants: From Magic Bullets to Dietary Trends

3.1. A Conceivable Basis to Consider Carotenoids as Dietary Antioxidants

As stated in Section 1, the understanding of carotenoids as antioxidant compounds has changed
in recent years from just molecules that interact with radical species to biomarkers associated with
decreases in different degenerative diseases, including lung, gastrointestinal tract, pancreas, breast, and
prostate cancers; cardiovascular disease; and age-related macular degeneration [57–63]. This change in
vision has promoted the study of the molecular mechanisms that allow carotenoids to be involved in
such multifactorial processes, with corresponding significant advances in knowledge regarding the
appearance of carotenoid metabolites [64–67], the absorption and transport processes responsible for
the accumulation of carotenoids in specific organs and tissues [67,68], and the increasing number of
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metabolic pathways in which carotenoids can act, resulting in a substantial benefit for health [56,69,70].
However, not all the processes through which carotenoids perform their activities have been clarified or
even envisaged, and some are not specifically correlated with antioxidant action (retinoid-dependent
signaling, enhancement of gap-junction communication, induction of detoxifying enzymes). Most of
these activities could be performed in a non-antioxidant manner; therefore, the association between
the terms “carotenoids” and “antioxidants” does not fully represent the capabilities of this family of
natural pigments.

Carotenoids are isoprenoid-based molecules distributed in all photosynthetic organisms, and
some non-photosynthetic bacteria and fungi. In these organisms, the initial steps of the biosynthetic
pathway aim to yield the 40 carbon phytoene intermediate. Once this common precursor is produced,
a considerable number of chemical and enzymatic processes (desaturation, cyclization, hydroxylation,
epoxidation, cleavage of the polyene chain, etc.) may occur several times and, alternatively combined,
can yield a wide range of structural arrangements of carotenoid products [71]. Hence, around
1100 carotenoids have been identified in nature, and they are classified into two groups: carotenes (pure
hydrocarbons) and xanthophylls (oxygenated products of carotenes). Figure 1 depicts the structures of
representative carotenoids, emphasizing those consumed regularly in the human diet, and denoting
the characteristic structural arrangements commonly present in these pigments. Carotenes and
xanthophylls can be arranged to form the common C40 structure, although biosynthesis of C30 and
C50 carotenoids has been described in bacteria, whereas apo-carotenoids are metabolites resulting
from shortening the C40 structure of the parent compound. Carotenoids are characterized by their
bright yellow to red colors, although some colorless precursors can contribute to the commonly diverse
carotenoid profiles that accumulate in organisms. The attractive colorful natures of these compounds
results from an extensive chain of conjugated double bonds (Figure 1), and this structural arrangement
is the first interactive center of carotenoids with other molecules in the environment [71]. Animals rely
on their diet to incorporate these pigments from natural sources, mainly fruits and vegetables, algae,
eggs, and fish [72]. The rich variety of carotenoids is far from accessible to us. Our dietary patterns
provide us with regular access to 40 carotenoids [73], although this number could significantly increase
via the rising inclusion of microalgae in our diet [74]. However, the carotenoid profile in human tissues
is mostly comprised of α-carotene, β-carotene, β-cryptoxanthin, lycopene, lutein, and zeaxanthin [75].
The analysis of human plasma has shown that it contains these and a few other carotenoids, depending
on the dietary habits of the study population, whereas even a small number of the pigments mentioned
above can accumulate in other tissues, such as lutein and zeaxanthin in the macula lutea, lycopene in
the prostate, or xanthophyll esters in human milk [76–78].

The function of carotenoids in a variety of animal species, including humans, is to act as the major
precursors of vitamin A, necessary for vision, growth, cell differentiation, and other physiological
processes [79]. Only carotenoids with at least one unsubstituted type β-ring and polyene chain
containing 11 carbon atoms (Figure 1) belong to the provitamin A category (β-carotene and its isomers,
α- and β-cryptoxanthin, γ-carotene, mutatochrome, β-zeacarotene, and β-apo-8′-carotenal are main
dietary carotenoid contributors to provitamin A activity). This function of carotenoids is key for
people that depend on fruits and vegetables to meet their daily required amounts of vitamin A both in
developed and developing countries [80,81]. The significance of this single function of carotenoids in
human nutrition does not overshadow some functions performed by carotenoids in photosynthetic
organisms that could also somehow be performed in animals.

Carotenoids are essential in photosynthesis for the light-harvesting process and protection against
photo-oxidative damage, so we expect carotenoids to function as antioxidants in any organism
independently of whether it is photosynthetic. The electron transfer from the characteristic conjugated
polyenic chain of carotenoids to the photosystem reaction centers produces an excited state that is
essentially dependent on the structural characteristics of the end-groups (Figure 2A). This function
in light-harvesting complexes could be exported to other environments, including both cellular and
organelle membranes, adipose tissue, and circulating plasmatic lipoproteins, where carotenoids from
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the diet are accumulated in animals. However, there are two issues. First, the antioxidant function of
carotenoids in photosynthetic organisms acquires the status of action or activity in non-photosynthetic
species, but carotenoids may behave as pro-oxidants under certain circumstances [82], a feature that has
not been described in the natural environment of these pigments so far. In line with this idea, we stress
that the natural antioxidant function does not necessarily mean an effective in vivo antioxidant action;
unexpected (deleterious) activities could occur.

Figure 1. Structure of carotenes and xanthophylls commonly present in dietary sources. The inset
represents the conjugated system double-bound through the central carbon atom chain, and the
structural requirements that a carotenoid must fulfill to produce vitamin A activity.

The second step was establishing their mode of action, which was promptly formalized [83].
Authors determined carotenoids’ high ability to quench singlet oxygen, which is a physical phenomenon
through which the excitation energy of singlet oxygen is transferred to the carotenoid molecule and
then harmlessly released to the environment, so that the carotenoid finally reaches its original ground
state (Figure 2B). This quenching ability is limited and, after several quenching cycles, the carotenoid
is oxidized [84]. Carotenoids are nevertheless recognized as potent quenchers of singlet oxygen and
the triplet state of porphyrin structures (chlorophylls and protoporphyrin); this was potentially the
basis for searching for additional modes of action toward other oxygen free radicals (superoxide anion
radical, and hydroxyl and peroxyl radicals), measuring their antioxidant effectivity, and investigating
the possible effect of these pigments in the progression of diseases involving radical species [85–88].
The mechanisms and kinetics of these antioxidant process, generally denoted as radical-scavenging
chemistry (Figure 2C), have been mainly measured in vitro, ex vivo, and in cell culture models,
whereas representative animal studies and clinical trials that appropriately evaluate the in vivo
antioxidant effect of carotenoids are limited.
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Figure 2. Mechanisms of the antioxidant action exerted by carotenoid pigments in different processes.
The electron transfer from the characteristic conjugated polyenic chain of carotenoids to chlorophylls (A).
Physical quenching of singlet oxygen (B). Electron transfer, hydrogen abstraction, and radical addition
in the antioxidant activity against peroxyl radicals (C).

3.2. Antioxidant Activity of Carotenoids: In Vitro Approach of a Chemical Process

Carotenoids are lipophilic antioxidants, with a few exceptions such as crocin and its derivatives
which are water-soluble compounds (Figure 1), and they react via different mechanisms, e.g., electron
transfer, hydrogen abstraction/reduction, and formation of carotenoid–radical adducts, depending on
the redox potential of the radical species and the structural arrangement of the carotenoid.

The electron-transfer mechanism (Figure 2C) involves high-redox-potential radical species [88],
and the product of the process is a carotenoid radical cation that decays through dismutation by
second-order kinetics [89]. Carotenoid radical cations are long-lived intermediate products and they
have a strong oxidizing potential, easily damaging biomolecules (tyrosine, cysteine) [90]. Comparative
studies of the antioxidant activities of different carotenoids have reported relative one-electron
oxidation potentials that show how xanthophyll radical cations are regenerated to their parent state by
carotenes [91]. This repair capacity is also provided by other antioxidants (ascorbic acid, α-tocopherol)
to carotenoid radical cations [90,92]. The hydrogen abstraction mechanism is a consequence of
reduction processes that are correlated with the redox potential of the radical species and with the
structural arrangement of the carotenoid. Hence, carotenoids with hydrogen(s) in the allylic position
to a double bond react with radical species to yield a resonance-stabilized radical that may continue
the radical propagation chain (Figure 2C). This reduction process was extensively summarized in the
reviews published by Britton [93] and Edge et al. [94].
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These mechanisms were analyzed using a group of techniques specifically designed to monitor
fast reactions (pulse and laser flash photolysis, electron-paramagnetic resonance with spin-trapping
capture, and thermal decomposition). The production of carotenoid–radical adducts via radical
addition is in some ways the most interesting mechanism, because it involves radical species resulting
from the lipid peroxidation process (Figure 2C). In this case, the translation of the antioxidant activity
measurement from solutions to molecular aggregates and membranes is logical. The key step is the
addition of the radical species to the carotenoid molecule, yielding a radical intermediate through
which an unpaired electron is effectively delocalized through the polyene chain [82]. Here is where the
structural arrangements of the end-groups play a significant role in the fate of the carotenoid–radical
adduct, as the former’s characteristics could contribute to enhancing the resonance-stabilized process
of the latter species, and consequently its reactivity [95,96]. Methodologies based on the reaction chain
of the lipid autoxidation process are the basis for establishing protocols to determine antioxidant
activity [97,98].

As stated above, the structural arrangements of carotenoids point to the fate of the
carotenoid–radical intermediates, but experimental conditions also contribute to the prevalent type of
scavenging mechanism involved and the resulting observed effect. Burton and Ingold [82] showed
that β-carotene is an effective antioxidant at low oxygen tensions (<150 Torr), but when higher values
are experimentally set up, the behavior switches to a pro-oxidant activity. This indicates that a
close interaction exists between the carotenoid structure and oxygen, and that the carotenoid–radical
intermediates propagate the effect of the starting radical species under those experimental conditions.
However, oxygen tensions in normal physiological conditions are in the range of 145–165 Torr [99] for
the lungs and drop to 15 Torr or even less in other tissues [100], so the possible pro-oxidant effect of
carotenoids for in vivo systems should be attributed to factors other than oxygen tension.

3.3. Antioxidant Capacity of Carotenoids: A Further Step to Estimate the In Vivo Antioxidant Action

Antioxidant capacity is defined as the number of radical species that are removed or neutralized
from the environment by an antioxidant substance. That capacity action can be tested in homogeneous
environments, as are used to estimate the antioxidant activity. Thus, several protocols can be
used to assess how carotenoids scavenge radical species, as reviewed previously, mainly using
the oxygen-radical-absorbance capacity (ORAC) [7], total radical-trapping antioxidant parameter
(TRAP)-related protocols [24,49,101], ABTS assays [47], and DPPH testing [45]. The chemistry of
these methods is expected to predict the antioxidant capacity in in vivo systems with a relatively
high-throughput screening ability.

However, some improvements in the design of antioxidant capacity measurements should be
introduced if we want to increase the reliability of the data and support the correlation of experimental
predictions with in vivo scenarios. The first notion to consider is the fact that carotenoids are
transported in lipoproteins and accumulate in the membranes of cells and organelles of tissues.
Therefore, experimental procedures with that aim should be combined into one protocol to reproduce
the natural surroundings in which carotenoids accumulate, i.e., membranes or molecular aggregates
of lipophilic compounds (lipoprotein particles), with one or various protocols used to measure the
antioxidant capacity in this mimicked system. Three approaches are commonly applied to build
carotenoid-rich domains: preparing artificial membranes or liposomal aqueous suspensions, isolating
biological samples (plasma) from a human or animal diet supplemented with antioxidants, or using
cell-culture models, which have some other issues in addition to the antioxidant capacity, such as uptake,
distribution, and metabolism of the tested antioxidant. Each of these approaches is complemented by
a protocol that induces the appearance of one or several radical species, which are scavenged by the
membrane antioxidant(s) being tested.
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3.3.1. Measurement of the Antioxidant Capacity in Liposomes

The liposome is the simplest approach for studying biological membranes, and is still a significant
tool used to manage issues regarding the biochemistry of membrane components. Liposome preparation
is easy, taking advantage of the spontaneous aggregation of phospholipids in aqueous environments
as closed membrane systems [102]. These membranes are relatively stable, produced with an exactly
known and “made-to-order” lipid composition, and may reproduce the fate of membrane lipids in
terms of the interfacial phenomena occurring inside and outside of the membrane structure.

Table 3 lists some relevant studies that focused on the antioxidant capacity of carotenoids in
liposomes, describing the main features of the experimental protocols and the observed effects. Most of
the studies reported a positive correlation between the presence of carotenoids in the membrane
system and a lower incidence of the radical-induction process. Additionally, several of the studies
included the appearance of synergistic effects in the antioxidant capacity. The method may provide an
efficiency ranking of the antioxidant capacity, but significant divergences may arise from the lack of
standardization of the protocols (liposomal membrane preparation and radical species strategy). Thus,
the following should be considered: diameter and number of lipid bilayers (small unilamellar vesicles,
large unilamellar vesicles, and multilamellar vesicles); ratio among lipid contents used to build the
artificial membranes; preparation parameters applied; and the presence of membrane antioxidants
that may influence membrane properties, such as fluidity, polarity, thermostability, and distribution of
lipid categories. All these variables make comparison between studies less than straightforward.

Some of the antioxidant studies of carotenoids performed using the liposome approach revealed
properties related to the orientation of these pigments in biological membranes and their ability to
suppress radical penetration of oxygen into such membranes. Another interesting lesson learned from
this kind of procedure is that the cooperative action between different antioxidant categories produces
a synergistic effect on the capacity, a significant result regarding the design of intervention trials and
clinical studies.

3.3.2. Measurement of the Antioxidant Capacity in LDLs

The ex vivo oxidation of LDL is a method used to evaluate the effect of dietary supplements or
food antioxidants on the oxidizability of lipoprotein particles using a fusion of test-tube protocols
with in vivo studies, so that the pros and cons of both approaches are joined in a single procedure.
The experimental animals or human volunteers participating in such studies follow a specific diet,
and the lipoprotein fraction is enriched in these pigments. The first advantage of this method is that
the natural particulate matter in which carotenoids are packaged and circulate through the body
is accessible. The efficacy of the metabolic processes required to reach the targeted accumulation
of carotenoids in lipoproteins is affected by several factors, so the heterogeneity of the biological
samples could be high and other antioxidants in addition to carotenoids could be targeted to the
lipoprotein fraction.

Another issue to consider is the protocol applied to induce the oxidation of lipids in the isolated
lipoprotein fraction and the corresponding selected biomarker for quantification. Here, as detailed
in the previous section, there are several options that follow the increase in the molecules that are
generated in reaction with radical species, such as the products from lipid peroxidation, including
aldehydes (malondialdehyde, 4-hydroxy-2-nonenal), conjugated dienes, and lipid hydroperoxides,
or products arising from the oxidation of lipoproteins, including carbonyl groups, and advanced
glycation end-products. In addition, antioxidant-capacity protocols such as FRAP or ABTS are directly
applied to the isolated lipoprotein fraction. Finally, the antioxidant status of the individual before and
after the intervention study can be estimated via the measurement of urine or plasma biomarkers
(prostaglandin-like compounds and derivatives, DNA-damage products, reduced/oxidized glutathione
(GSH/GSSG) ratio, etc.).
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Table 3. Relevant studies considering the antioxidant capacity of carotenoids in liposomes.

Experimental Approach 1
Composition of the Membrane
Model; Induction of Oxidative

Stress; Biomarker(s)
Carotenoid(s) Observed Effect Reference

Lipid peroxidation in
aqueous dispersion of lipids

Dimyristoil phosphatidylcholine
liposomes or soybean

phosphatidylcholine liposomes
enriched with β-carotene; AAPH and

AMVN peroxyl-radical inducers;
phospholipid hydroperoxides,

carotenoid bleaching

β-carotene

Potential of the antioxidant
capacity of β-carotene is limited
by the carotenoid autoxidation

process that continues the chain
oxidation of membrane lipids

[103]

Lipid peroxidation of
liposomal bilayers

Dilinoleoylphosphatidylcholine
liposomes enriched with β-carotene;
AAPH radical inducer; conjugated

dienes, carotenoid bleaching

β-carotene

β-carotene is an effective
chain-breaking antioxidant when

it is incorporated into
the membranes

[104]

Lipid peroxidation in
artificial membranes

Egg-yolk phosphatidylcholine
liposomes enriched with a single
carotenoid; AAPH and AMVN

peroxyl-radical inducers;
phospholipid hydroperoxides,

carotenoid bleaching

Astaxanthin,
β-carotene,

canthaxanthin,
lycopene,

zeaxanthin;
Antioxidant
activity was

compared with
α-tocopherol

Different reactivity toward free
radicals was correlated with the

structural arrangement of the
carotenoid, its position, and

orientation in the bilayer

[105]

Lipid peroxidation in
artificial membranes

Egg-yolk phosphatidylcholine
liposomes enriched with a single

carotenoid; UV radiation and AAPH
peroxyl-radical inducer; TBARS,

carotenoid bleaching

Lutein, zeaxanthin

Both xanthophylls are effective
membrane antioxidants towards

different radical induction
processes; extension of lipid

peroxidation was reduced by 35%;
both xanthophylls promoted

different changes in the
organization of the lipids in

the bilayer

[106]

Photoperoxidation of
multilayer liposomes

Egg-yolk phosphatidylcholine
liposomes enriched with individual

carotenoid; hydrogen peroxide,
tert-butyl hydroperoxide, ascorbic

acid, and Fe+2-EDTA radical inducers;
TBARS, iron concentration

in liposomes

Astaxanthin,
lycopene, peridinin

Structure of the carotenoids
induced changes in the

permeability of the membranes to
radical inducers; a reduction of

25% of TBARS was observed after
the addition of carotenoids

to liposomes

[107]

Photoperoxidation of
multilayer liposomes

Dimyristoil
phosphatidylcholine/palmitoyl-oleoyl

phosphatidylcholine/cholesterol
liposomes enriched with individual or

combined antioxidants; aerobic
photo-peroxidation; lipid

hydroperoxides, carotenoid bleaching,
oxygen photo-uptake

Zeaxanthin

Zeaxanthin is an efficient
membrane antioxidant toward

singlet oxygen with a synergistic
effect with α-tocopherol;

Zeaxanthin is 30 times more
effective than α-tocopherol in

inhibiting photosensitized
lipid peroxidation

[108]

Lipid peroxidation in
unilamellar liposomes

Soybean phosphatidylcholine
liposomes enriched with combined
antioxidants; AAPH peroxyl-radical

inducer; conjugated dienes

β-carotene,
lycopene

Synergistic effects of carotenoids
and tocopherols toward the lipid

peroxidation process
[109]

Lipid peroxidation in
unilamellar liposomes

Soybean phosphatidylcholine
liposomes enriched with combined
antioxidants; AAPH peroxyl-radical

inducer; conjugated dienes

Astaxanthin

Synergistic effects of astaxanthin
with both hydrophilic and

lipophilic antioxidants were
not significant

[110]

Lipid peroxidation in
artificial membranes

Multilamellar liposomes enriched
with PUFA/carotenoid; autoxidation;

hydroperoxides,
membrane interactions

Astaxanthin,
β-carotene, lutein,

lycopene,
zeaxanthin

Apolar carotenoids behaved as
membrane pro-oxidants,

increasing the peroxide formation
by 90–120%, whereas astaxanthin

behaved as an antioxidant,
decreasing the peroxide formation

by 30%

[111]

1 Methods and experimental approach were developed by the authors, so the reader is advised to comprehensively
review the studies included in this table. Abbreviations: AAPH: 2,2′-Azobis(2-methylpropionamidine)
dihydrochloride; AMVN: 2,2′-azobis (2,4-dimethylvaleronitrile; TBARS: thiobarbituric-acid-reactive substances;
PUFA: polyunsaturated fatty acids.

Table 4 shows some of representative human studies that applied the ex vivo oxidation of LDL
method to carotenoids, indicating the characteristics of the intervention group (healthy subjects or
population at risk of oxidative-stress-related pathologies), diet, the analyzed biomarkers, and the
outlined conclusions. Most of the studies showed that after enrichment of LDL with carotenoid(s),
they were less prone to oxidation, whereas no effect or even a deleterious action was the effect
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observed in other studies. To clearly ascertain the quality of such evidence, various critical issues
should be considered, such as the design of the intervention trial (randomization, placebo-controlled,
blinding), the characteristics of the study population (healthy, smokers, patients), the intervention
time and dosage strategy (single-compound or cocktail of antioxidants as supplements, food extracts,
or foods), and the number of biomarkers used to control the antioxidant capacity. Hence, those studies
where the intervention was aimed to be a preventive therapy provided positive results. In contrast,
when therapeutic measurement was the focus, the results tended to be unclear for one or several
biomarkers, and the conclusions were inconsistent. Another issue is that in the studies where a mixture
of antioxidants was used, including different carotenoids as well as tocopherols, phenols, or ascorbic
acid, the tendency was towards a positive relationship between increased levels of antioxidants in
LDL and resistance to oxidizability. The same trend was observed for studies with foods instead of
supplements, or when the content of antioxidants supplied to the volunteers with the latter products
did not reach supraphysiologic levels. Interpreting whether these results should be attributed to an
increase in carotenoid levels of LDL or to other components of the diet is difficult.

Table 4. Relevant studies dealing with the ex vivo antioxidant capacity of carotenoids in LDLs.

Experimental Approach
Participants; Supplementation Protocol;

Biomarkers of Oxidative Stress;
Relevant Methodologies

Carotenoids Observed Effect Reference

Supplementation/ex vivo
LDL oxidation

Group of male nonsmokers and smokers;
supplementation with β-carotene (2 × 20
mg daily for two weeks, and then 20 mg
daily for 12 weeks); lipid peroxidation of

LDL isolates [112]

β-carotene

No protective effect of LDL
susceptibility to oxidation

despite the observed increase in
plasma β-carotene levels

[113]

Supplementation/ex vivo biomarkers
of oxidative stress

Group of 11 smokers and 11 nonsmokers;
supplementation with fruits and

vegetables providing 30 mg
carotenoids/day for 2 weeks; lipid

peroxidation of LDL isolate
supplementation, oxidative stress

biomarkers of plasma [112]

α-carotene,
β-carotene, lutein,

lycopene,
α-cryptoxanthin,
β-cryptoxanthin

Inhibition of LDL susceptibility
to oxidation for the smokers and
nonsmokers. LDL resistance to

oxidation increased 14% in
smokers and 28% in the
nonsmokers group after

supplementation

[114]

Supplementation/ex vivo biomarkers
of oxidative stress

Group of 32 healthy volunteers;
double-blind randomized,

placebo-controlled trial, supplementation
with a mixture of carotenoids providing
7.6 mg carotenoids/day for 3 weeks; lipid

peroxidation of LDL isolates, DNA
damage, ORAC [8,112]

Lycopene, palm oil
carotenes,

marigold extract
carotenoids,

paprika
carotenoids, bixin

The carotenoid supplementation
reduced the LDL oxidizability
(by 20.4% in the supplemented

group) and DNA damage
assessed by urine biomarkers;

the effect was not observed with
the ORAC assay

[115]

Supplementation/ex vivo biomarkers
of oxidative stress

Group of 105 healthy volunteers;
randomized, double-blind,

placebo-controlled; commercial spread
providing with a mixture of carotenoids

at different doses for 11 weeks; lipid
peroxidation of LDL isolates, plasma

FRAP, MDA, serum arylesterase activity,
plasma F2α-isoprostanes; [28,112]

Lycopene, lutein,
α-carotene,
β-carotene

Moderate amounts of
carotenoids resulted in a

significantly increased resistance
of LDL to oxidation and lower

plasma peroxidation biomarkers
(17% increase of LDL resistance

to oxidation, 18% increase of
lag-phase, and 15% reduction in

the F2-isoprostane level)

[116]

Supplementation/ex vivo
LDL oxidation

Group of 12 healthy female volunteers;
supplementation with tomato products

providing 8 mg lycopene/day for 21 days;
lipid peroxidation of LDL isolates,

urinary 8-iso-PGF2α [112,117]

Lycopene

Decrease in LDL oxidizability
(22%) and significant lower

excretion of 8-iso-PGF2α (53%)
regarding the values reached in

the control group

[118]

In vitro loading of LDL/biomarkers of
oxidative stress

Group of 10 volunteers donated plasma
samples for LDL isolation; in vitro

loading was performed with lycopene or
lutein via emulgent and incubation; lipid
peroxidation and oxidation of ApoB of

LDL isolates [108]

Lycopene, lutein Carotenoids were not effective
antioxidants of the LDL [119]

Group of 35 patients with T2DM;
double-blind, placebo-controlled;

supplementation with lycopene, 10
mg/day for 8 weeks; total antioxidant

capacity assessed via ABTS, MDA,
humoral immunity biomarkers

Lycopene

Increased ratio of total
antioxidant capacity to MDA

values and attenuated
pro-atherogenic

immune response

[120]

Supplementation/ex vivo
LDL oxidation

Group of 77 healthy male and female
volunteers; double-blind randomized,

placebo-controlled trial, lycopene
supplement at different doses for 8 weeks;
lipid peroxidation of LDL isolates, MDA

and HNE, urinary 8-iso-PGF2α, DNA
damage markers

Lycopene

Significant decrease in DNA
damage (8.9%) and urinary

8-iso-PGF2α levels (23%) in the
supplemented group; no

significant effect was observed
in biomarkers of lipid

peroxidation

[121]
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Table 4. Cont.

Experimental Approach
Participants; Supplementation Protocol;

Biomarkers of Oxidative Stress;
Relevant Methodologies

Carotenoids Observed Effect Reference

Supplementation/ex vivo biomarkers
of oxidative stress

Group of 126 healthy men; randomized
placebo-controlled trial, lycopene

supplementation at different doses for 8
weeks; SOD activity in plasma, DNA

damage, biomarkers of
endothelial function

Lycopene,
β-carotene

Increase in SOD activity (2.37
units/mL) and prevention of

DNA damage (for the 15
mg/day suppl. group);

beneficial effects in subjects with
relatively impaired endothelial

cell function

[122]

Abbreviations: SOD: superoxide reductase; suppl.: supplemented; T2DM: type 2 diabetes mellitus.

3.3.3. Measurement of the Antioxidant Capacity in Cell Models: Carotenoid Oxidation Products

Cell-culture models were the previous proof of concept for in vivo studies, and allowed researchers
to ascertain the behavior of antioxidant in more complex situations. As such, the antioxidant effect of
carotenoids in cellular models encompasses the protective effect on membrane lipids with the (indirect)
reduction in oxidative stress of other significant biomolecules, including DNA [123]; the modulation of
cellular responses to inflammation mediated by nuclear receptors [124–126]; the stimulatory effects on
a cell-to-cell communication via gap junctions and cell growth [127,128]; and the activity of oxygenases
in mitochondrial membranes as a source of carotenoid breakdown products [129–131]. Most studies
performed with cell-culture models were established with cell lines representing tissues where
carotenoids are transported, accumulated, or metabolized, such as intestinal epithelium, macrophages,
adipocytes, human dermal fibroblasts, keratinocytes, and retinal pigment epithelium; erythrocytes,
retinal neurons, and other cell lines have also been applied. Table 5 includes representative studies
conducted with cell-culture models. Significantly, most of the studies reported positive results, pointing
to a synergistic effect with other membrane antioxidants and outlining the contribution of carotenoid
breakdown products to possible deleterious effects on the expected antioxidant behavior. Studies in cell
cultures provided the basis of our knowledge of the non-antioxidant actions of carotenoids and other
membrane antioxidants, as well as pointing to plausible modes of actions in completely different arenas,
such as experimental animal models and clinical studies and analyses of epidemiological data [132].
Thus, studying the antioxidant-responsive elements that mediate the transcriptional control of the
expression of Phase II enzymes (see below), the identification of carotenoid breakdown products, and
the general response to inflammation are research issues currently outstanding, and should be directly
evaluated at the in vivo level. To establish the quality of evidence, various critical issues and study
limitations should be considered, such as the dosage strategy (physiological or supraphysiological
dose, application of the antioxidant supplement to the cell culture in organic solvents, micelles,
or lipoproteins), the intervention time, and the number of cellular biomarkers used to control the
antioxidant capacity.

Table 5. Relevant studies dealing with the antioxidant capacity of carotenoids in cell systems.

Experimental Approach Cell Model; Induction of
Oxidative Stress; Biomarker(s) Carotenoids Observed Effect Reference

Cellular membrane oxidation

Human HepG2 cells; tert-butyl
hydroperoxide; lipid peroxidation

and cellular leakage of
lactate dehydrogenase

Micellar β-carotene
(1.1 µmol/L) or lutein

(10.9 µmol/L)

Protection of cellular membrane
toward oxidant-induced changes [133]

Lipid peroxidation

Normal and tumor thymocytes;
AAPH and xanthine/xanthine

oxidase, at low or high pO2; MDA
and conjugated dienes

β-carotene in THF (6.3
mg/mL) to yield
10 µM–20 µM

carotenoid concentration

Oxygen tension was a significant
factor of β-carotene antioxidant

efficiency. Lipid peroxidation rate
increased 2.2-fold and 1.8-fold at

760 mm Hg pO2

[134]

DNA damage
HT29; xanthine/xanthine oxidase;

oxidation of DNA and
membrane integrity

Lycopene, β-carotene
in THF to yield

1–10 µM concentration

Protection of oxidatively-induced
DNA damage and membrane

integrity Mean relative tail
moment was reduced a 50% at

2.5 µM carotenoid concentration

[135]
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Table 5. Cont.

Experimental Approach Cell Model; Induction of
Oxidative Stress; Biomarker(s) Carotenoids Observed Effect Reference

Lipid peroxidation and DNA damage

CV1-P monkey cells; ferric
nitrolotriacetate plus ascorbate;
lipid peroxidation (TBARS) and

8-oxodGuo

Lycopene in THF
to yield

3 mM concentration

Protection of mammalian cells
against membrane and DNA
damage. A 77% reduction in

8-oxodGuo level in
lycopene-treated cells

[136]

Lipid peroxidation and DNA damage

Hs68 human foreskin fibroblasts;
AAPH and AMVN and ferric

nitrilotriacetate; lipid
peroxidation, 8-OH-dG,

comet assay

Lycopene, β-carotene
in THF to yield 10 or
20 µM concentration

Both carotenoids performed
antioxidant and pro-oxidant

actions depending on the source
of oxidative damage

[137]

UVA-photoprotection
Human skin fibroblasts; UVA

radiation; metalloprotease
1 mRNA

Lycopene, β-carotene
(nanoparticle
formulation)

Reduction of the biomarker was
only observed in the presence of

vitamin E. Only a small induction
of HO-1 was observed (1-2-fold)

for lycopene or
β-carotene treatments

[138]

Cellular membrane oxidation

Rat pheochromocytoma PC-12;
deprivation of essential nutrients;
peroxidation of membrane lipids

and SOD activity

Crocin (0.1–10 µM)

Crocin was able to function as a
chain-breaking antioxidant,

restoring SOD activity (54% of the
normal values) and maintained
60% of the neuron morphology

[139]

Oxidative stress of photoreceptors

Culture of rat retinal neurons;
induced oxidative stress by

paraquat and H2O2; apoptosis,
mitochondrial membrane
potential, cytochrome c

translocation,
and opsin expression

Lutein, zeaxanthin and
β-carotene in 0.05%

Tween solution

Carotenoids reduced the
oxidative-stress-induced

apoptosis as well as the other
evaluated biomarkers.

The 2.5-fold increase in
photoreceptor cell death was

suppressed in
carotenoid-treated cells

[140]

Hydrogen peroxide damage
Rat erythrocytes (ex vivo);

hydrogen-induced hemolysis;
lipid peroxidation of membrane

Peel extracts of unripe
and ripe mango fruits
containing carotenoids.
5–25 µg of gallic acid

equivalent in PBS

Protection against membrane
protein degradation and

morphological changes. 50%
hemolysis inhibition was obtained

at 11.5–20.9 µg GAE

[141]

UVA-photoprotection

Human dermal fibroblasts; UVA
radiation; reactive oxygen species,
apoptosis cascade enzymes, heme

oxygenase expression

Astaxanthin,
canthaxanthin, and
β-carotene in THF to

yield 0.5–10 µM
concentration

Astaxanthin exerted a higher
protective effect towards
photo-oxidative damage.

Measured ROS decreased by 30%
and 50% in cells treated with

astaxanthin at 5 µM

[142]

Functional integrity and
mitochondrial redox state

Transfected HeLa human cervical
cancer cells; hydrogen peroxide;

redox-sensitive fluorescent
protein imaging recording,
mitochondrial membrane

potential, superoxide levels

Astaxanthin in DMSO
to yield 800 nM
concentration

Reduction of basal oxidative
stress, maintenance of

mitochondrial membrane
potential, improvement of the

mitochondrial redox state

[143]

Mitochondrial function
Human HepG2 cells; carotenoid
induction of ROS; ROS observed

by fluorescence microscopy

Zeaxanthin, lutein and
their 3-dehydro-

derivatives

Mitochondrial
carotenoid-oxygenase degraded

carotenoids to protect the
organelle functionality

[131]

Retinal degeneration

Mouse retinal ganglion cells RGC
5; tunicamycin, hydrogen

peroxide; cell death, apoptosis
cascade enzymes, nuclear

layer thickness

Crocetin (0.1% in
DMSO/PBS) to yield

0.1–3 µM concentration

Protective effects against retinal
damage. Crocetin increased the

protective effect against cell
damage 5-fold

[144]

Photoprotective effect against
UVB light

CCD-1064Sk human dermal
fibroblasts; UVB irradiation;
comet assay, UVB-induced

cellular apoptosis

Capsanthin,
capsorubin in THF/FBS

to yield 1 µM
concentration

The tested carotenoids decreased
markers for UVB-induced

apoptosis and interfered with
cellular responses activated by
UVB-mediated damage. DNA

damage was decreased by 50% in
capsanthin/capsorubin-treated

cells after UVB irradiation

[145]

Abbreviations: MDA: malondialdehyde; THF: tetrahydrofuran; PBS: phosphate-buffered saline; DMSO: dimethyl
sulfoxide; FBS: fetal bovine serum.

4. Antioxidant Capacity of Chlorophylls

This section summarizes the scientific evidence that supports the antioxidant properties of different
chlorophyll compounds, emphasizing issues that arise in the diverse environments where chlorophylls
could exert this role. However, the one exception to this attribute is the reported pro-oxidant
activity of chlorophylls in lipophilic environments under light conditions [146], where positive results
have also been obtained [147]. With this exception, previous reviews described different aspects of
the antioxidant capacity of chlorophylls [148–152], but we compiled the research formulated from
diverse perspectives starting with the fundamental studies of the antioxidant capacity of chlorophyll



Antioxidants 2020, 9, 505 16 of 34

standards, through the search of new sources of dietary antioxidants, to the ongoing studies of the
in vivo chlorophyll antioxidant actions. However, in contrast to the carotenoid studies, knowledge is
limited regarding the yield of chlorophyll metabolites, their absorption and transportation processes,
their metabolic pathways, and their precise oxidation mechanisms. At the in vitro level, only few
researchers have studied the stability of chlorophylls during digestion [153–157] and subsequent
absorption through intestinal cells [153–155,157,158]. The major outcome is that chlorophylls a and
b are transformed into their corresponding pheophorbides and pheophytins and are absorbed at
similar rates as carotenoids. A further step has been to show that pheophorbide a is transported at the
intestinal level by a protein-mediated mechanism, with scavenger receptor class B type 1 (SR-BI) being
a plausible transporter [159]. These results have been confirmed at the in vivo level, using mice as the
experimental model, showing a preferential accumulation of pheophorbide in the liver along with
multiple other chlorophyll compounds [159]. However, in humans, a trial was developed with copper
chlorophylls, identifying copper chlorophyll e4 as the major component in serum [160]. In spite of this
promising result, knowledge regarding chlorophyll assimilation is still scarce. In parallel, the number of
studies considering the in vitro oxidation activities of chlorophylls is low compared to those examining
carotenoids. However, a new and promising set of assays showing the health-promoting activities of
chlorophylls has promoted the development of studies dealing with their in vivo antioxidant actions.
This research area provides opportunities for unraveling chlorophylls’ actions in animal metabolism.

4.1. Different Chlorophyll Standards

Chlorophylls are cyclic tetrapyrroles carrying a characteristic isocyclic five-membered ring
(Figure 3), which show different functional groups in constrained positions, yielding more than
100 different structures present in nature. However, the antioxidant properties of chlorophylls
have been studied with the most common chlorophyll derivatives, which are depicted in Figure 3,
highlighting the main substituted positions (C7, C132, C173, and the central metal). Starting from
chlorophyll a, the replacement of the methyl group by an aldehyde at C7 forms b-series chlorophylls;
the central magnesium can be exchanged by hydrogen (pheophytins) or metal ions such as copper,
zinc, or iron (generating the metallo-chlorophylls); the additional desesterification of the phytyl group
(C20H40) at C173 creates pheophorbides; and the loss of the carboxymethyl group at C132 generates
pyro-derivatives. The structure and configuration of chlorophylls affect their antioxidant activity,
and hence different studies have addressed this question. The first step was to elucidate the differences
between a and b series, and contradictory results were reported for a and b chlorophylls (Table 6).
For example, some reports [149,161,162] found that b-series chlorophyll compounds exhibit higher
antioxidant activity than a-series ones, suggesting an unknown role for the aldehyde group at C7 in the
antioxidant ability. Conversely, with similar tests, assays from Schwartz and colleagues [148] showed
chlorophyll a to be three times more effective of a radical quencher than chlorophyll b, in agreement with
previous results reported with the ferric-nitrilotriacetate-induced singlet oxygen lipid peroxidation
assay [163] or by the CUPRAC assay [37].

Unlike the influence of the a/b-series factor in the antioxidant action, and independent of the
method applied, consensus exists on the positive role of the central metal [148,149,164,165]. Metal-free
chlorophyll derivatives (pheophytins, pheophorbides, etc.) exhibit significantly lower antiradical
capacity than metallo-derivatives, with the presence of copper being more favorable than zinc or
magnesium. It has been hypothesized [148,157] that the presence of the metal could increase the
electron density at the center of the skeleton, thereby enhancing the ability of the conjugated porphyrin
backbone to donate electrons. An additional explanation is based on the ability of the π-cation
radical in the porphyrin structure to induce the donation of electrons from the porphyrin structure in
order to break the propagation of the radical chain process [166]. However, some authors, finding a
higher antioxidant capacity in pheophorbides than in metallo-chlorophylls, speculated that nonmetal
chlorophylls might exert their antioxidative capacity via their inherent ion-chelation capacity in
addition to the porphyrin stabilization of ROS [162].
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Figure 3. Chlorophyll structures cited in this paper.

Along this line, the wrongly denominated “copper chlorophyllins” (or even, sodium copper
chlorophyllins (SCCs)) demand special attention. These compounds constitute the hydrophilic green
food colorant (E-141ii) commonly used in ice cream, candies, cookies, and desserts [167]. They are
produced from native chlorophylls after a solvent–saponification reaction and copper addition,
producing a highly stable food colorant. This commercial product is formed by a diverse array of
copper chlorophyll structures characterized by the lack of phytol at C173; they mostly present the ring
V-opened with multiple functional groups (R1 and R2, Figure 3). Apart from their attractive coloring
properties, this set of chlorophyll derivatives consistently exhibit the highest antioxidant activities,
as much as three to five times higher compared with their un-coppered counterparts [148]. The same
outcome was obtained through different in vitro analytical methods, including DPPH [168], ABTS [148],
and ß-carotene test, based on the quantification of β-carotene decoloration due to the radicals generated
during the oxidation of fatty acids [149]. This capacity has been positively determined through the
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noted in vivo assays, such as the comet protocol or biomarkers such as MDA, in incubated human blood
cells oxidized with γ-radiation [169], demonstrating the oxidative protection of copper chlorophyllins.

Table 6. Review of in vitro antioxidant activity measured for different free chlorophylls.

Method Pigment Concentration Activity Reference

β-carotene bleaching (%
inhibition of oxidation)

Cu–chlorophyllin

681 µM

80%

[149]

Pheophorbide b 80%
Pheophytin b 75%

Pheophorbide a 75%
Chlorophyll a 40%
Pheophytin a 70%

β-carotene bleaching
Chlorophyll

0.05 µg/µL
49.63%

[165]Pheophytin 13.44%
Zn–pheophytin 66.43%

β-carotene bleaching
Zn–chlorophyllin

5 mg/mL
82.00%

[170]Cu–chlorophyllin 74.40%
Iron–chlorophyllin 90.20%

DPPH
(% radical scavenging)

Cu–chlorophyllin 1 mM 39%

[149]

Pheophorbide b 1 mM <12%
Pheophytin b 1 mM <12%

Pheophorbide a 1 mM <12%
Chlorophyll a 1 mM <12%
Pheophytin a <12%

DPPH

Pheophytin a 200 µM 55%

[171]Pheophytin b 200 µM 50%
Chlorophyll a 200 µM 40%
Chlorophyll b 200 µM 44%

DPPH
Chlorophyll

0.05 µg/µL
13.89%

[165]Pheophytin 13.44%
Zn–pheophytin 66.43%

DPPH
Zn–chlorophyllin

5 mg/mL
37.90%

[170]Cu–chlorophyllin 93.50%
Fe–chlorophyllin 26.50%

DPPH
(TEAC)

Pyropheophytin a

100 mM

0.02

[148]

Pheophytin a 0.04
Pheophytin b 0.05
Chlorophyll b 0.06

Zn–Pheophytin b 0.13
Chlorophyll a 0.19

Pheophorbide a 0.21
Chlorin e4 0.26

Zn-Pyropheophytin a 0.44
Zn-Pheophytin a 0.51

Chlorin e6 0.6
Cu-Chlorin 0.81

Cu–Pheophorbide a 0.98
Cu–Pheophytin a 0.99

Crude SCC 1.04
Cu–Chlorin e6 2.88

DPPH
(I50)

Pheophorbide a 120 µM

[149]
Pheophorbide b 75 µM
Chlorophyllin 360 µM

Chlorophyllide a >800 µM
Chlorophyllide b >800 µM

DPPH (EC50) Chlorin e6 23 µg/mL [162]

ABTS (EC50) Chlorin e6 52 µg/mL [172]

ORAC (TEAC) Chlorin e6 12.5 µg/mL 27 µM [172]
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Table 6. Cont.

Method Pigment Concentration Activity Reference

ABTS (TEAC)

Pheophytin a

100 mM

0.02

[148]

Pheophytin b 0.08
Pyropheophytin a 0.16

Chlorophyll b 0.23
Zn–pheophytin b 0.29
Zn–pheophytin a 0.43
Pheophorbide a 0.45

Chlorin e4 0.53
Cu–pheophytin a 0.58

Chlorin e6 0.64
Zn–pyropheophytin a 0.67

Chlorophyll a 0.73
Crude SCC 1.25

Cu–chlorin e4 1.35
Cu–chlorin e6 2.25

Cu–pheophorbide 2.4

TBARS
Kidney

Chlorophyll b 0.2 mg/kg b.w. 61.16 nmol/g [173]
0.5 mg/kg b.w. 62.06 nmol/g

TBARS Chlorophyll b 0.2 mg/kg b.w. 41.29 nmol/g [173]
Liver 0.5 mg/kg b.w. 45.90 nmol/g

Comet assay

Pheophytin a 50 µM 3500

[171]Pheophytin b 50 µM 3500
Chlorophyll a 50 µM 4000
Chlorophyll b 50 µM 4000

Fe chelation

Pheophytin a 200 µM 65%

[171]Pheophytin b 200 µM 65%
Chlorophyll a 200 µM 55%
Chlorophyll b 200 µM 55%

Lipid peroxidation

Pheophytin a 100 µM 75%

[171]Pheophytin b 100 µM 65%
Chlorophyll a 100 µM 95%
Chlorophyll b 100 µM 75%

ROO· scavenging capacity
(α-tocopherol relative)

Chlorophyll a 308 [171]
Chlorophyll b 386

Comet assay
(Tail moment)

Cu–chlorophyllin 20 µM 138

[172]
Chlorophyllide a 20 µM 136
Chlorophyllide b 20 µM 126
Pheophorbide a 20 µM 100
Pheophorbide b 20 µM 91

8-OHdG (ng/µg DNA)

Cu–chlorophyllin 20 µM 0.53

[172]
Chlorophyllide a 20 µM 0.68
Chlorophyllide b 20 µM 0.79
Pheophorbide a 20 µM 0.55
Pheophorbide b 20 µM 0.62

Abbreviations: SCC: sodium copper chlorophyllins; b.w.: body weight; TEAC: Trolox-equivalent antioxidant capacity;
I50: inhibitor concentration that causes 50% of inhibition; EC50: compound concentration that gives half-maximal
response; TBARS: thiobarbituric acid-reactive substances assay; 8-OHdG: 8-hydroxy-2-deoxyguanosine.

4.2. Antioxidant Activity of Chlorophyll Extracts from Different Sources

The knowledge of the antioxidant competence of purified molecules constitutes the first and
fundamental step that should be pursued. However, we must remember that the real scenarios in
which these molecules exert their actions are intricate environments with multiple interactions. Foods
should be considered complex matrices, where the isolation of each compound could be challenging
despite synergies or antagonisms [2] with other compounds, effects that are not observed when the
antioxidant activity is measured using a pure standard. Hence, analyzing the antioxidant capacity of
chlorophylls from another perspective would involve studying complete foods, organisms, or extracts.
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However, for this approach, a battery of antioxidant assays based on different reaction mechanisms
should be applied instead of a single assay as the best strategy to obtain accurate results. In this
sense, these main topics should be considered when analyzing food products [2], selecting a method,
or evaluating the obtained results: the working pH, a wide range of hydro-lipophilicity, kinetics of the
main antioxidants, the base color of the food, and the relative amount of proteins.

The seaweed industry has an annual value of USD $5.5–6 billion, with 90% of the production
being for human food products, mainly for their high nutritional value. Chlorophylls are among
the secondary metabolites responsible for the health benefits of seaweed consumption. For example,
five brown species of seaweed are able to scavenge peroxyl radicals due to their chlorophyll a content,
which shows a synergistic effect with vitamin E [174]. However, Chlorophyceae (green seaweeds) are
the most investigated species [175]. Enteromorpha prolifera has excellent antioxidant properties with
strong DPPH-radical-scavenging activity, reducing power, and hydroxyl-radical-scavenging activity
due to their pheophorbide a content [176].

Spirulina has recently been approved as a food, opening the door to new food formulations
enriched with different microalgae. For example, the dried biomasses of four microalgae strains,
Arthrospira platensis, Chlorella vulgaris, Tetraselmis suecica, and Phaeodactylum tricornutum, were used
to prepare wheat crackers [177]. The authors reported that higher amounts of microalgae increased
the antioxidant capacity measured via the DPPH method. Accordingly, pasta enriched with
microencapsulated Spirulina increased the antioxidant potential after cooking [178]. Using a different
method, namely the peroxyl-radical-scavenging assay, the chlorophyll fraction in Phormidium autumnale
was found to be responsible for a high antioxidant activity, around 200 times more potent than
α-tocopherol [171].

Another line of research is the analysis of plant extracts to identify rich sources of edible
antioxidants. For example, the chlorophyll content (a and b) of stem amaranth (Amaranthus lividus)
leaves has a significant positive correlation with the total antioxidant content (measured through DPPH
and ABTS methods) [179], indicating this leafy vegetable as a potential source of antioxidants in the
human diet. Several medicinal plants show high antioxidant capacity, some of them at the same level
as ascorbic acid [180]. Elimination of chlorophylls from different cultivars of jalapeño and serrano
peppers drastically reduced the antioxidant activity estimated by the DPPH-scavenging assay and
measured by electron-paramagnetic resonance (EPR) spectroscopy [181]. This antioxidant action was
also observed in vivo. Chlorophyll extracts from Sauropus androgynous (L.) leaves intraperitoneally
administered to Wistar rats for 14 days were able to protect the liver and kidney from the oxidative
stress caused by sodium nitrate [182].

Despite their functional properties, the use of chlorophyll as a functional ingredient has been
limited to some extent due to its chemical instability. To address this, a new approach was constructed,
using different microencapsulation techniques as a strategy to retard chlorophyll oxidation, enhance
water solubility, improve stability, and extend shelf life. For example, kale chlorophylls were
microencapsulated in isolated whey protein, which increased their antioxidant activity 20% as assessed
through the DPPH method [183].

4.3. In Vivo Antioxidant Activity of Chlorophylls

Multiple biological functions have been reported for chlorophylls. The most known is probably
the ability to trap mutagens based on the planar structure of chlorophylls, which allows the availability
of deleterious compounds in the cell to be reduced [170]. Strictly related to their antioxidant capabilities,
two main mechanisms can be described: their direct free-radical-scavenging activity and the metabolic
activation of detoxification pathways.

4.3.1. In Vivo Free-Radical-Scavenging Properties of Chlorophylls

Regarding the first mechanism, Figure 4 describes the process of formation and propagation of
different ROS (superoxide (O2·−), hydroxyl (OH·), peroxyl (RO2·), alkoxyl (RO·), hydroperoxyl (HO2·),
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and nonradical species such as hydrogen peroxide (H2O2) and singlet oxygen (1O2). The common
experimental approach in these studies is the analysis of different tissues from experimental
animals (mice, rats, etc.) subjected to diets rich in chlorophyllin (probably copper chlorophyllins).
The results demonstrated the capacity of chlorophylls to reduce the general ROS levels at the
in vitro level [184–187]. As stated above, excess ROS generation in cells induces damage in lipids,
proteins, and DNA, making oxidized biomolecules perfect biomarkers of in vivo oxidative status.
The pioneer works on the inhibition of lipid peroxidation by copper chlorophylls were developed
by Sato’s group [168,188]. Later, this effect was reported in numerous tissues, normally through the
formation of lipid hydroperoxides [183], but also through the TBARS method: in lymphocytes in a
concentration-dependent manner up to 75% [185], in kidney and heart tissues at the same level as
ascorbic acid [189], and in the liver [190–192], brain [187], and serum [182].

Figure 4. Reactions and enzymes involved in reactive oxygen species (ROS) generation and propagation
analyzed in chlorophyll antioxidant studies: superoxide (O2·−), hydroxyl (OH·), peroxyl (RO2·),
and hydrogen peroxide (H2O2). Antioxidant enzymes: SOD: superoxide dismutase, CAT: catalase,
GPx: glutathione peroxidase, GR: glutathione reductase, GSH/GSSG: reduced/oxidized glutathione.

ROS also react with DNA, mainly yielding base radicals through the formation of double bonds
and occasionally producing deoxyribose radicals by abstracting hydrogen atoms [193]. In any case,
both situations can result in strand breakage, which has been used as an oxidative biomarker to measure
the antioxidant activity of chlorophylls. For example, using an in vitro plasmid DNA system, the rate
constant for the reaction of OH· and 2-ROO [194] with chlorophyllin has been calculated, resulting in
similar figures to other well-known antioxidants (such as GSH) and pointing to the effective role of
chlorophyllin as an oxidative protector of DNA. At the in vitro level, different non-copper chlorophyll
compounds (chlorophyllide a and b and pheophorbide a and b) are able to reduce single-strand
DNA breaks and levels of 8-OHdG in human lymphocytes, although pheophorbide derivatives
displayed higher scavenging capacities than others. These indicators have also been determined at
the in vivo level. Male rats fed a chlorophyllin diet showed lower levels of liver microsomal MDA,
DNA fragmentation, restriction-fragment-length polymorphism (RFLP), and 8-OHdG concentration in
comparison with a control diet [195]. As a new analytical approach, immunohistochemical techniques
have been developed to allow the measurement of DNA oxidative indexes, for example to prove the
capacity of chlorophyllins to reduce the formation of 8-OHdG in cancer-induced hamsters [196].

Finally, the main biomarker of oxidative stress in proteins is the formation of carbonyl (CO) groups
(aldehydes and ketones), especially on Pro, Arg, Lys, and Thr residues [197]. Measuring this oxidative
biomarker, copper chlorophyllin has shown its ability to decrease the level of protein carbonyls in
kidney and heart tissues at rates similar to those of ascorbic acid [190] in liver tissues [184,188,192].
An even more marked effect was observed when Caenorhabditis elegans consumed a pheophorbide-rich
diet, reducing the carbonyl groups up to 80% in comparison with a control group [198].

Concomitant with this capacity to reduce the level of oxidation in the main biomolecules,
chlorophyll derivatives are effective enhancers of the activity of the main enzymes implicated in
the antioxidant machinery at the cellular level (Figure 4). For example, mice fed 1% chlorophyllin
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for three days in drinking water were euthanized and mitochondrial isolates from the liver were
exposed to γ-rays to induce oxidative stress. Chlorophyll-treated rats were able to restore the SOD
activity depressed by radiation to a greater extent in oxic compared to anoxic conditions [184].
2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AAPH)-oxidative-stress-induced mice were
injected ex vivo with 100–400 mg/g body weight (b.w.) copper chlorophyllin, and the corresponding
lymphocyte lysates showed increased catalase and GPx activities in comparison to control samples [185].
Hamsters with 7,12-Dimethylbenz[a]anthracene (DMBA)-induced cancer provided with a 14 week
chlorophyllin-supplemented diet showed increased expression (assessed by semiquantitative RT-PCR)
of SOD, catalase, and GPx enzymes, in agreement with their signals in the corresponding immunoblot
analysis [197]. Diabetic mice with oxidative stress induced by streptozotocine showed activation
of detoxification pathways (CuZnSOD, MnSOD, CAT, GPx, and GR) in response to alternative and
intraperitoneal doses of 50 mg/kg b.w. of copper chlorophyll for 28 days in kidney, heart [190], and liver
tissues [192]. More recently, diabetic Wistar rats were in situ perfused with chlorophyll-based extract
or chlorophyll a standard and subjected to light irradiance to induce oxidative stress. The treatment
group showed lower hepatic oxidative stress, and lower expression and activity of CuZnSOD, MnSOD,
CAT, and superoxide dismutase in liver tissues [188]. The next step would be to investigate the exact
mechanisms by which chlorophylls activate these antioxidant enzymes.

4.3.2. In Vivo Activation of Detoxification Pathways by Chlorophylls

In addition to antioxidant enzymes, living cells develop programmed reactions to reduce the
potential injury caused by xenobiotics through specific metabolism and later excretion. The group of
enzymes involved is known as drug-metabolizing enzymes (DMEs), and their sequential function
allows them to be categorized as Phase I, II, and III enzymes. Phase I enzymes oxidize drugs
or xenobiotics, for example, cytochrome P450 monooxygenase (CYP), the expression of which is
governed by several nuclear receptors. Phase II enzymes conjugate products of Phase I reactions,
such as glutathione peroxidase (GPX), glutathione S-transferase (GST), heme oxygenase 1 (HMO-1),
or NADPH quinine oxidoreductase 1 (NQO-1), among others (Figure 5). Nuclear factor erythroid
2 related factor 2 (Nrf-2) is the transcription factor considered to be the main inductor of the Phase
II genes, commonly called antioxidant-response element (ARE) genes. In addition, Nrf-2 forms a
complex in the cytoplasm with Keap-1 (Kelch-like epichlorohydrin-associated protein 1), which is a
negative regulator of the Nrf-2/ARE pathway [199]. Phase III enzymes are responsible for the export of
the final metabolites out of cells.

The first evidence of the capacity of chlorophyll compounds as inducers of mammalian Phase
II cytoprotective genes was reported by Fahey et al. [200]. They measured the ability of different
chlorophyll structures to induce NQO-1. Among them, chlorophyllins and, above all, copper chlorin e4
ethyl ester (Figure 3) were the most potent inducers related to chlorophyll, pheophytin, or pheophorbide.
The authors demonstrated that copper chlorin e4 (disodium) can react with free sulfhydryl groups,
suggesting that they can bind to Keap-1 and ARE to trigger Phase II gene transcription. These results
were subsequently supported by a completely different approach. An evident increase in the expression
of Nrf-2 and a decrease in Keap-1 were observed in the buccal pouch tissues of experimental animals
when their diet was supplemented with chlorophyllins [196], in parallel with the immunohistochemical
staining of their proteins. The activation of Nrf-2 was concomitant with a decrease in the expression
levels of CYP1A1 and CYP1B1 (cytochrome P450 monooxygenase), Phase I genes, and induction of the
expression of Phase II genes (NQO-1 and GST). NQO1 functions as a part of the oxidative-stress-induced
cellular defense when GST, through reactive oxygen species, converts to glutathione. Chlorophyllin
enhanced the nuclear translocation of Nrf-2 in mouse splenic lymphocytes in both a dose- and
time-dependent manner [201]. In rats with breast cancer, chlorophyllin increased the GSH levels in the
liver [202].



Antioxidants 2020, 9, 505 23 of 34

Figure 5. Detoxifying metabolism: Phase I and Phase II. CYP: cytochrome P450 monooxygenase,
ARE genes: antioxidant-response elements; Nrf-2: nuclear factor erythroid 2 related factor 2;
Keap-1: Kelch-like epichlorochydrin-associated protein 1; NADPH quinine oxidoreductase 1: NQO-1;
glutathione S-transferase: GST; heme oxygenase 1: HMO-1; glutathione peroxidase: GPX.

Another line of research comes from the assumption that chlorophyll a and its derivatives have
been proposed to exert antidiabetic functions [203]. At a molecular level, chlorophyll a metabolites are
retinoic X receptors (RXRs), known to alter insulin and glucose signaling and, consequently, decrease
hyperglycemia, hypertriglyceridemia, and hyperinsulinemia [204]. Evidence of chlorophyll’s influence
in insulin metabolism was obtained using the animal experimental model Caenorhabditis elegans [205].
Insulin ligands, through a cascade of several kinases, can inactivate the transcription factor forkhead
box (DAF-16/FOXO), thereby blocking the transcription of target genes such as the SOD-3 gene [206],
which codifies superoxide dismutase. Chlorophyll-treated nematodes modify the nuclear translocation
of DAF-16 and increase the expression of SOD-3, increasing their lifespan by up to 25%. Such anti-aging
activity could be promoted by chlorophyll’s enhancement of the tolerance to oxidative stress. Upon
the same pro-oxidant (Juglone) treatment, the survival rate of nematodes with the chlorophyll diet
increased more than 200% compared to the control group.

5. Conclusions

There is a primary chemical core understanding of the antioxidant behavior of carotenoids and
chlorophyll pigments, but emerging pieces of evidence point to a rich diversity of actions and effects,
which are intricate and distant from any antioxidant chemical nature. This is particularly true in
the case of carotenoids, but chlorophylls are also being included in this concept. A fine line exists
between experimental protocols and a lack of biological context of results, so the researcher should
always consider the barrier between the in vitro and in vivo scenarios. Additionally, the limitations of
studies, particularly those related to dosage strategies, and sources of the antioxidant (pure standard
vs. food extract) should be noted. This review provides literature-based knowledge with the aim of
advancing the concept of antioxidants in the near future to applications in the real world. Thus, it is
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necessary to set the average spread of reliable in vivo oxidative biomarkers with which to monitor
the onset of degenerative diseases, so that the influence of dietary antioxidants could be established
more precisely. A real effort from academics, research centers, and policymakers is taking shape in
this line. However, we should not lose sight of the inverse association between pigment-containing
fruits and vegetables with risk for various chronic diseases. It is also crucial to consider the stage of a
disease at which antioxidant pigments may impact its development and progression. In this regard,
it seems that carotenoids and chlorophylls have gone from being considered bioactive to becoming
biomarkers of the onset of diseases related to oxidative stress. The key to continued support of the
pivotal role of pigments in providing cooperative action within the antioxidant defense system is to
look for metabolites arising early from imbalances of oxidative stress homeostasis. Currently available
metabolomic platforms are starting to build the basis for such knowledge, which is expected to set
future lines of research.
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