

Figure S1. Time courses of the production of •OH (RFU, relative fluorescence units) during autooxidation of Fe(III) complexes measured according to the fluorescence intensities of 7-hydroxy-coumarine-3-carboxylic acid after incubations of CCA with ascorbate \pm Fe(III), and \pm quercetin (Querc) (**A**) and \pm glutathione (GSH) (**B**). The positive control included ascorbate and Fe(III), and the negative control included ascorbate and antioxidant/chelating agent (see also Figure 2 for EDTA/DTPA). All solutions were prepared in 20 mM KH₂PO₄, 1 µM desferrioxamine, pH 7.4, except FeCl₃ (ultrapure water).

Figure S2. Time courses of the production of •OH (RFU, relative fluorescence units) during autooxidation of Cu(II) complexes measured according to the fluorescence intensities of 7-hydroxy-coumarine-3-carboxylic acid after incubations of CCA with ascorbate \pm Cu(II), and \pm quercetin (Querc) (A) and \pm glutathione (GSH) (B). The positive control included ascorbate and Cu(II), and the negative control included ascorbate and antioxidant/chelating agent (see also Figure 3 for EDTA/DTPA). All solutions were prepared in 20 mM KH₂PO₄, 1 µM desferrioxamine, pH 7.4, except CuCl₂ (ultrapure water).

Figure S3. Time courses of the production of •OH (RFU, relative fluorescence units) during autooxidation of Fe(III) complexes measured according to the fluorescence intensities of 7-hydroxy-coumarine-3-carboxylic acid after incubations of CCA with ascorbate and protein \pm Fe(III), and \pm quercetin (Querc) (A) and \pm glutathione (GSH) (B) (see also Figure 2 for EDTA/DTPA).

Figure S4. Time courses of the production of **•**OH (RFU, relative fluorescence units) during autooxidation of Cu(II) complexes measured according to the fluorescence intensities of 7-hydroxy-coumarine-3-carboxylic acid after incubations of CCA with ascorbate and protein \pm Cu(II), and \pm quercetin (Querc) **(A)** and \pm glutathione (GSH) **(B)** (see also Figure 3 for EDTA/DTPA).

Figure S5. Time courses of the production of **•**OH (RFU, relative fluorescence units) during autooxidation of Fe(III) complexes measured according to the fluorescence intensities of 7-hydroxy-coumarine-3-carboxylic acid after incubations of CCA with ascorbate and PS80 \pm Fe(III), and \pm quercetin (Querc) **(A)** and \pm glutathione (GSH) **(B)** (see also Figure 2 for EDTA/DTPA).

Sample composition	Initial reaction rate (RFU/min)
Fe(III) + ascorbate (positive control)	7.16
EDTA + ascorbate (negative control)	2.85
Fe(III) + EDTA + ascorbate	174
Fe(III) + ascorbate (positive control)	9.74
DTPA + ascorbate (negative control)	1.61
Fe(III) + DTPA + ascorbate	5.88
Fe(III) + ascorbate (positive control)	8.29
Querc + ascorbate (negative control)	2.80
Fe(III) + Querc + ascorbate	5.76
Fe(III) + ascorbate (positive control)	8.85
GSH + ascorbate (negative control)	-0.74
Fe(III) + OSH + ascolutate	2.08
Fe(III) + ascorbate + protein (positive control)	0.62
EDTR + ascorbate + protein (negative control) Fe(III) + FDTA + ascorbate + protein	-0.04
Fe(III) + ascorbate + protein (positive control)	0.61
DTPA + ascorbate + protein (positive control)	-1 20
Fe(III) + DTPA + ascorbate + protein	-0.66
Fe(III) + ascorbate + protein (positive control)	0.63
Ouerc + ascorbate + protein (positive control)	-1.10
Fe(III) + Ouerc + ascorbate + protein	-1.42
Fe(III) + ascorbate + protein (positive control)	0.62
GSH + ascorbate + protein (negative control)	-0.96
Fe(III) + GSH + ascorbate + protein	-1.31
Fe(III) + ascorbate + PS80 (positive control)	-0.51
EDTA + ascorbate + PS80 (negative control)	-0.44
Fe(III) + EDTA + ascorbate + PS80	14.9
Fe(III) + ascorbate + PS80 (positive control)	0.50
DTPA + ascorbate + PS80 (negative control)	-0.51
Fe(III) + DTPA + ascorbate + PS80	-0.06
Fe(III) + ascorbate + PS80 (positive control)	0.50
Querc + ascorbate + PS80 (negative control)	-0.26
Fe(III) + Querc + ascorbate + PS80	0.20
Fe(III) + ascorbate + PS80 (positive control)	0.51
GSH + ascorbate + PS80 (negative control)	-0.14
Fe(III) + GSH + ascorbate + PS80	-0.66
Cu(II) + ascorbate (positive control)	973
EDIA + ascorbate (negative control)	1.47
Cu(II) + EDIA + ascorbate	4.14
DTPA + ascorbate (positive control)	1470
Cu(II) + DTPA + ascorbate	-1.79
Cu(II) + ascorbate (nositive control)	1500
Ouerc + ascorbate (positive control)	0.14
Cu(II) + Ouerc + ascorbate	1240
Cu(II) + ascorbate (positive control)	1550
GSH + ascorbate (negative control)	-2.04
Cu(II) + GSH + ascorbate	912
Cu(II) + ascorbate + protein (positive control)	219
EDTA + ascorbate + protein (negative control)	-0.77
Cu(II) + EDTA + ascorbate + protein	-0.93
Cu(II) + ascorbate + protein (positive control)	218
DTPA + ascorbate + protein (negative control)	-0.75
Cu(II) + DTPA + ascorbate + protein	-0.92
Cu(II) + ascorbate + protein (positive control)	219
Querc + ascorbate + protein (negative control)	-0.07
Cu(II) + Querc + ascorbate + protein	39.6
Cu(II) + ascorbate + protein (positive control)	220
GSH + ascorbate + protein (negative control)	-1.12
	20.7

Table S1. Initial reaction rates of ascorbate redox system assays.

Figure S6. Oxidation products of PS20 identified using high-resolution mass spectrometry.

[continued]

Figure S7. Oxidation products of PS80 identified using high-resolution mass spectrometry.