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Abstract: Ultraviolet A (UVA) is a major factor in skin aging and damage. Antioxidative materials may
ameliorate this UV damage. This study investigated the protective properties of N-(4-bromophenethyl)
caffeamide (K36H) against UVA-induced skin inflammation, apoptosis and genotoxicity in keratinocytes.
The protein expression or biofactor concentration related to UVA-induced skin damage were identified
using an enzyme-linked immunosorbent assay and western blotting. K36H reduced UVA-induced
intracellular reactive oxygen species generation and increased nuclear factor erythroid 2–related
factor 2 translocation into the nucleus to upregulate the expression of heme oxygenase-1, an intrinsic
antioxidant enzyme. K36H inhibited UVA-induced activation of extracellular-signal-regulated kinases
and c-Jun N-terminal kinases, reduced the overexpression of matrix metalloproteinase (MMP)-1
and MMP-2 and elevated the expression of the metalloproteinase-1 tissue inhibitor. Moreover,
K36H inhibited the phosphorylation of c-Jun and downregulated c-Fos expression. K36H attenuated
UVA-induced Bax and caspase-3 expression and upregulated antiapoptotic protein B-cell lymphoma
2 expression. K36H reduced UVA-induced DNA damage. K36H also downregulated inducible nitric
oxide synthase, cyclooxygenase-2 and interleukin-6 expression as well as the subsequent generation
of prostaglandin E2 and nitric oxide. We observed that K36H ameliorated UVA-induced oxidative
stress, inflammation, apoptosis and antiphotocarcinogenic activity. K36H can potentially be used for
the development of antiphotodamage and antiphotocarcinogenic products.
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1. Introduction

The sun emits various light wavebands, of which ultraviolet (UV) irradiation is the most hazardous
for the skin [1]. Long wavelength ultraviolet light is linked to oxidative stress and damage to the skin,
including premature skin aging, DNA damage, mutations and even skin cancer [2,3]. UVA indirectly
induces DNA damage. The damage is caused by reactive oxygen species (ROS) generated following
the interaction of cellular molecules with UVA [4]. Cellular molecules, such as porphyrins and flavins,
absorb UVA and produce ROS through Jablonski reactions [4]. ROS generation causes several oxidative
damage-related disorders of cells and the skin. Therefore, identifying potential countermeasures
against UVA-radiation-mediated oxidative damage to skin cells is essential. The oxidation process may
trigger intrinsic apoptosis of cells by influencing the membrane potential of mitochondria to release
cytochrome C and then activate downstream proapoptotic caspases [5,6].

Apoptosis is a programmed process for maintaining organismal homeostasis and eliminating
damaged cells. Many proteins are involved in UVA-induced apoptosis, including caspases, Bax and
B-cell lymphoma-2 (Bcl-2) [7]. Bax is a death factor that forms a heterodimer with Bcl-2, a survival
factor. After proapoptotic signaling, Bax and Bcl-2 families undergo modification to gain their full
apoptotic function [8]. Bcl-2 expression is regulated by complex factors, including ROS and UV light
exposure. UVA irradiation can induce dermal cell apoptosis through Bcl-2 downregulation and Bax
upregulation to modulate the expression and genes of caspases [9].

Self-oxidative stress defense systems counterbalance reactive oxidants in the body and are triggered
when skin cells encounter enormous oxidative stress [10,11]. Nuclear factor erythroid 2-related factor
2 (Nrf2) is a transcription factor that promotes Nrf2 ubiquitination when combined with Kelch-like
ECH-associated protein 1 (Keap1) [12,13]. As skin cells experience oxidative stress, Keap1 conformation
changes and it separates from Nrf2, which subsequently translocates into the nucleus in the cells and binds
to an antioxidant response element (ARE). Phase II detoxifying enzymes such as heme oxygenase-1 (HO-1)
subsequently produce [14,15]. UVA induced a high level of HO-1 protein and exhibited anti-inflammatory
and antiapoptotic properties through the capture of excessive free radicals [16]. In addition, HO-1 can
protect murine skin cells from tumor formation triggered by oxidative stress and also protect human
skin cells from UVA irradiation damage [17]. Moreover, HO-1 inhibits apoptosis in mouse fibroblasts
induced by tumor necrosis factor-α [18].

Excess ROS generation upregulates nuclear factor kappa B (NF-κB), which leads to tumor necrosis
factor-α and interleukin (IL)-6 production and further induces prostaglandin [19] and cyclooxygenase-2
(COX-2) production, causing inflammation [20]. Moreover, UVA radiation upregulates the mRNA of
inducible nitric oxide synthase (iNOS) and then induces nitric oxide (NO) overproduction, which can
lead to cellular apoptosis and inflammation [21–23]. UV irradiation activates mitogen-activated protein
(MAP) kinases and then triggers downstream protein expression, such as that of activator protein-1
(AP-1; formed by Fos and Jun family proteins) and matrix metalloproteinases (MMPs), to degrade the
extracellular matrix, causing skin damage [24,25].

Caffeamide exhibits potent antioxidative activity and scavenging of free radicals [26].
N-(4-bromophenethyl) caffeamide (K36H) (Figure 1) is a caffeamide derivative that inhibits the
breakdown of type I procollagen and stimulates the synthesis of collagen in human skin fibroblasts after
exposure to ultraviolet B (UVB) [27]. K36H also exhibits anti-inflammation in human skin fibroblasts.
Furthermore, it inhibits melanogenesis and melanogenesis-related proteins such as tyrosinase and
TRP-1 in B16F0 cells [17]. UVA is the most prevalent form of solar radiation that reaches the earth
surface; therefore, protection against UVA-induced skin damage is essential [28,29]. Thus, this study
was intended to discover the reparative effects of K36H on apoptosis and DNA damage in human
epidermal keratinocytes caused by UVA-induced oxidation.



Antioxidants 2020, 9, 335 3 of 17
Antioxidants 2020, 9, x FOR PEER REVIEW 3 of 18 

 

Figure 1. Structure of caffeamide (K36H). 

2. Materials and Methods 

2.1. Materials 

The synthesis process and identification of K36H was illustrated in a report [30]. K36H was 
dissolved in dimethyl sulfoxide (DMSO) for the experiments; the final concentration of DMSO was 
less than 0.1%. Reagents, serum and mediums for cell culture were supplied by Gibco, Invitrogen 
(Carlsbad, CA, USA). DMSO, trypan blue solution, 2′,7′-dichlorofluorescin diacetate (DCFDA), 
dithiothreitol, phenylmethylsulfonyl fluoride, paraformaldehyde and leupeptin were obtained from 
Sigma Chemical Co. (St. Louis, MO, USA). Igepal CA-630, tris, sodium dodecyl sulfate (SDS), 
thiazolyl blue tetrazolium bromides (MTT) and Tween20 were supplied by USB Corporation 
(Cleveland, OH, USA). A PageRuler prestained protein ladder and WesternBright enhanced 
chemiluminescence (ECL) blotting detection kit were supplied by Amersham Biosciences (Little 
Chalfont, Buckinghamshire, UK). Bradford reagent for measurement of the protein concentration 
was purchased from Bio-Rad Laboratories (Hercules, CA, USA). All other chemicals used in this 
study were of reagent grade. 

2.2. Cell Culture and Viability Assay 

HaCaT cell line, an immortal human epidermal keratinocyte purchased from Cell Lines Service 
(Eppelheim, Germany), was cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 10% 
fetal bovine serum and 100 U/mL penicillin–streptomycin at 37 °C in a humidified atmosphere 
containing 5% CO2/95% air. The cells were cultured in 100-mm dishes and 24-well plates for 
attachment. For measurement of the survival rate of cells, an MTT assay was applied [31,32]. 
Various concentrations of K36H were incubated with HaCaT cells for 24 h. MTT solution was added 
to the plate, which was then converted to insoluble formazan crystals by cells. The formazan that 
formed was dissolved in 10% SDS-HCl, and the optical density was then measured at 570 nm with a 
microplate meter (Tecan, Grödig, Austria). 

2.3. UVA Exposure 

The medium was removed, and phosphate-buffered saline (PBS) was added to wash the cells. 
The cells were exposed to UVA irradiation by using UV Crosslinkers XLE-1000A, in which the major 
wavelength of UVA lamps is 365 nm (Spectroline, Westbury, New York, USA) [31]. The cells were 
treated with UVA for approximately 45 min (10 J/cm2) at a distance of 15.2 cm and were 
subsequently cultured in serum-free DMEM containing various concentrations of K36H for the 
indicated time. 

2.4. Measurement of Intracellular ROS Generation 

To survey the ability of K36H to eliminate UVA-induced intracellular oxidative stress, the cells 
were cultured in 24-well plates and irradiated with UVA irradiation [31]. DMEM containing 10-μM 
DCFDA was added into the plates after incubation with various concentrations of K36H for 3 h. The 
intensity of fluorescence was excited at 488 nm and emitted at 520 nm wavelengths (Thermo 
Electron Corporation, Vantaa, Finland). 

Figure 1. Structure of caffeamide (K36H).

2. Materials and Methods

2.1. Materials

The synthesis process and identification of K36H was illustrated in a report [30]. K36H was
dissolved in dimethyl sulfoxide (DMSO) for the experiments; the final concentration of DMSO was less
than 0.1%. Reagents, serum and mediums for cell culture were supplied by Gibco, Invitrogen (Carlsbad,
CA, USA). DMSO, trypan blue solution, 2′,7′-dichlorofluorescin diacetate (DCFDA), dithiothreitol,
phenylmethylsulfonyl fluoride, paraformaldehyde and leupeptin were obtained from Sigma Chemical
Co. (St. Louis, MO, USA). Igepal CA-630, tris, sodium dodecyl sulfate (SDS), thiazolyl blue tetrazolium
bromides (MTT) and Tween20 were supplied by USB Corporation (Cleveland, OH, USA). A PageRuler
prestained protein ladder and WesternBright enhanced chemiluminescence (ECL) blotting detection
kit were supplied by Amersham Biosciences (Little Chalfont, Buckinghamshire, UK). Bradford reagent
for measurement of the protein concentration was purchased from Bio-Rad Laboratories (Hercules,
CA, USA). All other chemicals used in this study were of reagent grade.

2.2. Cell Culture and Viability Assay

HaCaT cell line, an immortal human epidermal keratinocyte purchased from Cell Lines Service
(Eppelheim, Germany), was cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 10%
fetal bovine serum and 100 U/mL penicillin–streptomycin at 37 ◦C in a humidified atmosphere
containing 5% CO2/95% air. The cells were cultured in 100-mm dishes and 24-well plates for attachment.
For measurement of the survival rate of cells, an MTT assay was applied [31,32]. Various concentrations
of K36H were incubated with HaCaT cells for 24 h. MTT solution was added to the plate, which was
then converted to insoluble formazan crystals by cells. The formazan that formed was dissolved
in 10% SDS-HCl, and the optical density was then measured at 570 nm with a microplate meter
(Tecan, Grödig, Austria).

2.3. UVA Exposure

The medium was removed, and phosphate-buffered saline (PBS) was added to wash the cells.
The cells were exposed to UVA irradiation by using UV Crosslinkers XLE-1000A, in which the major
wavelength of UVA lamps is 365 nm (Spectroline, Westbury, NY, USA) [31]. The cells were treated
with UVA for approximately 45 min (10 J/cm2) at a distance of 15.2 cm and were subsequently cultured
in serum-free DMEM containing various concentrations of K36H for the indicated time.

2.4. Measurement of Intracellular ROS Generation

To survey the ability of K36H to eliminate UVA-induced intracellular oxidative stress, the cells
were cultured in 24-well plates and irradiated with UVA irradiation [31]. DMEM containing 10-µM
DCFDA was added into the plates after incubation with various concentrations of K36H for 3 h.
The intensity of fluorescence was excited at 488 nm and emitted at 520 nm wavelengths (Thermo
Electron Corporation, Vantaa, Finland).
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2.5. Immunofluorescence Staining

HaCaT keratinocytes were grown on a cover slip and treated with 5–50-µM K36H after UVA
irradiation. After 24 h, cells were fixed with 4% paraformaldehyde after being washed with PBS.
They were then blocked with MPBS (containing 5% nonfat milk solution and 0.3% Triton X-100) for
30 min. PBS was used to wash the cover slip, and incubation was performed with a primary antibody
for 30 min and then with a secondary antibody, antirabbit immunoglobulin (IgG) (Alexa Fluor 488,
Invitrogen, Carlsbad, CA, USA). Thereafter, the cover slips were washed with PBS to remove the
unbound secondary antibody. The cover slips were counterstained using ProLong Gold antifade
reagent with 4′,6-diamidino-2-phenylindole and fluorescence was observed with a confocal laser
scanning microscope (Leica DMIL, Wetzlar, Germany).

2.6. Western Blotting Analysis

After the indicated treatments, the adherent cells were scraped from the dishes and lysed with
radioimmunoprecipitation assay buffer on ice. The protein concentration was determined using
Bradford assay reagents. The protein from these cells was electrophoresed on SDS-polyacrylamide gels;
subsequently, the proteins were transferred to polyvinylidene difluoride membranes and incubated
with primary and secondary antibodies. The proteins were determined with the ECL western blotting
detection system (LAS-4000, Fujifilm, Japan). The results were analyzed using software (MultiGauge
V2.2, Fuji Pharm, Tokyo, Japan).

2.7. Comet Assay

The comet assay was applied to detect the DNA strand breaks in HaCaT cells according to the
manufacturer’s protocol with minor modifications as previous described (Trevigen, Gaithersburg, MD,
USA) [33]. Cells were combined with agarose and then pipetted to a three-well slide. The slides were
stored in the dark at 4 ◦C for 15 min. Later, they were immersed in lysis solution for 45 min at 4 ◦C.
After removal from the lysis buffer, alkaline solution was added, and the slide was placed in the dark
at 4 ◦C for 30 min. Subsequently, the slides were placed in the electrophoresis slide tray, and alkaline
electrophoresis solution (at a temperature of 4 ◦C) was added. The voltage of the power supply was set
to 14 V and applied for 25 min. Slides were immersed twice in water and then in 75% ethanol for 5 min.
Vista DNA green buffer was added, and slides were viewed using an epifluorescence microscope.

2.8. NO Measurement

The NO content of the cultured medium was detected after treatment with UVA and various
K36H concentrations according to the manual protocol from the Greiss reagent supplier (Promega,
Madison, Wisconsin, USA) as previously described [31]. N-(1-Naphthyl) ethylenediamine solution
and sulfanilamide were added to the cell culture medium and mixed. The absorbance was detected
using an enzyme-linked immunosorbent assay (ELISA) reader with a filter at 540 nm.

2.9. Prostaglandin E2 Measurement

The prostaglandin E2 (PGE2) content was measured per the manual protocol from the manufacturer
as previously described (Cayman, Ann Arbor, MI, USA) [31]. A 96-well plate coated with goat polyclonal
antimouse IgG secondary antibody and the cell culture medium was added. PGE2 primary antibody
and acetylcholinesterase tracer were added into the plate and then maintained at 4 ◦C for 18 h.
Thereafter, the absorbance was determined at 420 nm by using an ELISA reader after Ellman’s reagent
was added.
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2.10. Data and Statistical Methods

The values of the results were expressed as the mean ± standard deviation of independent
experiments performed at least three times. The statistical analysis was performed using one-way
analysis of variance and the Tukey post hoc test (p < 0.05).

3. Results and Discussion

3.1. Effect of K36H Treatment on Cytotoxicity of Keratinocytes

After treatment with various concentrations of K36H, the cell survival rate was assayed with the
MTT test. The viability of cells treated with 0-, 5-, 10-, 25- and 50-µM K36H was 100.0 ± 0.9, 91.6 ± 1.6,
89.4 ± 0.8, 80.5 ± 2.2 and 80.2 ± 1.1, respectively. Survival rates higher than 80% indicated that K36H did
not exhibit cytotoxicity (Figure 2a). In another study, K36H exhibited no cytotoxicity in Hs68 cells [34].
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Figure 2. (a) Cell survival rate (%) of K36H in HaCaT cells. (b) K36H reduced intracellular oxidative
stress induced by ultraviolet A (UVA)-irradiation in human epidermal keratinocytes. (## p < 0.01
compared with the nonirradiated group. * p < 0.05; ** p < 0.01 compared with the nontreatment group.).
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3.2. Reduction of UVA-Induced Intracellular ROS Generation with K36H Treatment

The DCFDA assay was applied to determine ROS generation in keratinocytes. In this study,
the keratinocytes were exposed to UVA irradiation (10 J/cm2) and treated with K36H. The ROS
production was detected using the DCFDA assay. Figure 2b shows that the ROS levels induced by
UVA-irradiation keratinocytes increased by 1.72-fold. After treatment with 25- and 50-µM K36H, the ROS
level significantly decreased to 1.36 and 1.19 times that of the control group. K36H is a derivative from
the constituents of propolis. In another study we conducted, K36H exhibited DPPH scavenging and
inhibited intracellular ROS generation, which may slow skin aging [34]. Catechol, the functional group
of K36H, may provide hydrogen atoms that contribute to free radical scavenging and provide inherent
antioxidant potential [35]. This may contribute to the protective activity of K36H from photoaging.
In this study, K36H reduced UVA-induced ROS generation in keratinocytes.

UVA harms lipids, DNA and proteins in the skin through the generation of numerous ROS,
which is a hallmark of oxidative damage [36]. The generation of ROS and free radicals may cause
cytotoxicity and apoptosis in skin cells. In addition, excessive ROS can trigger aging and related
disorders, DNA damage, mutation and even tumors. Many studies have shown that substances capable
of reversing oxidative stress have potential antiaging and anticancer properties. Topical application
of propolis extract was reported to protect mouse skin from lipid peroxidation induced by UV light
(290–400 nm) and inflammation [37].

3.3. Regulation of Nrf2 and HO-1 Expression and of Nrf-2 Translocation2 with K36H Treatment

To investigate the role of the oxidative stress defense system on the antioxidant property of K36H,
the translocation and protein expression of Nrf2 and HO-1 were detected. Immunofluorescence staining
showed that K36H promoted cellular Nrf2 translocation in keratinocytes (Figure 3a). In addition,
UVA reduced Nrf2 expression. However, K36H can inhibit this effect (Figure 3b). For downstream
protein expression, we found that HO-1 expression increased to 2.2-fold after 10 J/cm2 UVA irradiation
and to 2.3-, 2.7- and 3.4-fold after K36H treatment of the control group (Figure 3b). Thus, K36H
may ameliorate oxidative stress in keratinocytes through induction of Nrf2 translocation followed by
upregulated HO-1 expression.

The expressions of some proteins of antioxidant defense system have been found to be affected
by exposure to oxidizing agents. Among the cellular self-defense systems, HO-1 is one of the
most pivotal antioxidative proteins. HO-1 is regulated by Nrf2 and antioxidant response element.
Nrf2 modulates the transcription of several antioxidant genes protecting cells from oxidative stress [38].
Nrf2 was reported to protect cells from UV irradiation-induced oxidative damage and dysfunction [39];
furthermore, it plays a major role as a stimulant of antiapoptotic proteins from the Bcl-2 family and
responds to proinflammatory factors [40]. UVA-induced oxidative damage results in apoptotic cell
death. Because K36H is a potent antioxidant, it could prevent UV radiation-induced oxidative damage.
In one study, propolis upregulated HO-1 expression in UV-irradiated mouse skin and ameliorated skin
damage [37]. Our study showed that K36H effectively upregulates the protein expression of HO-1
in HaCaT cells and induces Nrf2 translocation from cytoplasm into the nucleus. Therefore, K36H
protected keratinocytes from UVA-induced oxidative damage through facilitation of Nrf2 translocation
and elevation of downstream HO-1 expression.
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3.4. Antiphotodamage Properties of K36H

3.4.1. Downregulation of MMP Expression with K36H Treatment

MMPs are zinc-dependent endogenous proteases related to cell differentiation, proliferation and
migration as well as extracellular matrix (ECM) degradation and modification [41]. MMP-1 is the
main proteinase that degrades type I and III collagen in the dermis, whereas MMP-2 degrades type IV
collagen and gelatin [42]. After irradiation with 10 J/cm2 of UVA, the protein expressions of MMP-1
and MMP-2, respectively, increased to 1.7 and 1.3 times those in the control group and decreased to 1.3
and 0.9 time the control group level with 5-µM K36H treatment (Figure 4). Among endogenous MMP
inhibitors, the expression of tissue inhibitor of metalloproteinase (TIMP)-1 decreased to 0.7 times the
control group levels after UVA exposure and recovered to 1.6 times the control group level after 10-µM
K36H treatment.
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3.4.2. Reduction of c-Jun and c-Fos Activation with K36H Treatment

As shown in Figure 5, the expression of c-Jun and c-Fos protein increased 2.2- and 1.8-fold after
UVA radiation and significantly decreased to 1.4- and 0.8-fold after 10-µM K36H treatment. AP-1
comprises proteins belonging to the c-Fos and c-Jun family. AP-1 translocates from the cytoplasm into
the nucleus and modulates downstream genes and the expression of proteins such as MMP-1 and
MMP-2, which cause ECM degradation, resulting in skin aging [43,44].
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3.4.3. Inhibition of MAP Kinase Phosphorylation with K36H Treatment

The protein expression of p-extracellular-signal-regulated kinases (p-ERKs) increased to 1.9-fold
compared with the control levels after UVA exposure, and it decreased to 0.8-fold of the control levels
after 50-µM K36H treatment (Figure 6). The p-Jun N-terminal kinase (p-JNK) expression increased to
1.3-fold compared with the control levels after UVA light exposure and decreased to 1.0-fold of the
control levels after treatment with 50-µM K36H. After UV irradiation, some biofactors such as cytokines
and growth factor receptors are activated, resulting in MAP kinase activation and upregulated protein
expression. UVA can induce skin aging through the upregulation of MAP kinases and MMP expression
in fibroblasts; however, treatment with ginseng protein downregulated MAP kinases and MMP
expression to protect skin from UVA-induced photodamage [45]. The results of this study indicated
that K36H suppressed UVA-induced MMP-1 and MMP-2 overexpression and restored TIMP-1 protein
expression in UVA-exposed HaCaT cells. Another study revealed that K36H restored total collagen in
UVB-exposed Hs68 fibroblasts and reduced collagen degradation [34]. This study proved the protective
effect of K36H against long-wavelength UV irradiation-induced skin damage through the inhibition of
MAP kinases and the AP-1 pathway.

3.5. UVA-Induced DNA Damage Inhibition with K36H Treatment

The protective effects of K36H on DNA damage were assayed using the comet assay. As shown in
Figure 7, after UVA irradiation, the DNA in the tail increased to 41.7%; after treatment with 5–50-µM
K36H, the DNA in the tail significantly decreased to 37.7%, 33.1%, 28.5% and 16.1%. K36H reduced
DNA damage induced by UVA light exposure in keratinocytes.
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3.6. K36H Regulation of Apoptosis

Overproduction of proinflammatory cytokines and chemokines has been reported to lead to
aging, apoptosis and even cell death. During exposure of cells to UV light, the membrane potential of
mitochondria changes, causing cytochrome C to be released into the cytosol and subsequent activate
Bax and other apoptotic proteins [46]. In our results, Bax expression increased to 3.1-fold that of the
control levels after UVA irradiation and K36H significantly reduced the expression at a dose higher
than 5 µM (Figure 8). In addition, caspase-3 expression increased, and K36H treatment significantly
reduced the expression at a dose higher than 5 µM. Bcl-2 was downregulated to 0.9-fold of the control
levels after 10 J/cm2 UVA exposure; K36H treatment restored Bcl-2 expression (Figure 9). After 50 -M
K36H treatment, the Bcl-2 expression was upregulated by 1.3-fold compared with the control levels.
Thus, K36H may protect skin cells from UVA-induced apoptosis.

UV exposure induced skin cancer through oxidation and inflammatory reactions [2,47].
UV-induced apoptosis involves the contribution of DNA damage, cell surface death receptors and
ROS generation [48]. In our results, UVA exposure elevated caspase-3 and Bax expression, inducing
apoptosis in keratinocytes, whereas K36H inhibited these effects. UVA exposure enhanced dermal cell
apoptosis and the mechanism involved the downregulation of Bcl-2; our results are consistent with
other reports in relevant literature [7,48]. K36H treatment can reverse UVA-induced apoptosis through
the suppression of Bcl-2 expression.
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3.7. UVA-induced Inflammation Inhibition by K36H

3.7.1. Reduction of UVA-Induced-Inflammation-Related Protein Expression with K36H Treatment

To analyze the anti-inflammatory effect of K36H, we used western blotting to observe the protein
expression of inflammatory mediators, including COX-2, iNOS and IL-6 proteins. The iNOS protein
expression increased to 1.3-fold in the keratinocytes of the control group and decreased to 1.0-fold
of the control group levels after 50-µM K36H treatment (Figure 9). COX-2 expression was increased
1.4-fold after UVA radiation; it decreased significantly, to 0.7 times that of the control level after 50-µM
K36H treatment. The IL-6 expression increased to 1.4-fold after irradiation with 10 J/cm2 UVA and was
downregulated to 0.9-fold with 5-µM K36H treatment (Figure 9).

3.7.2. Reduction of UVA-Induced NO Production with K36H Treatment

Excessive NO production occurs in the tissue injury of inflammatory diseases. Thus, we determined
the contents of downstream inflammatory cytokines, such as NO and PGE2, using an ELISA kit.
As shown in Figure 10a, UVA increased cellular NO production to 1.7-fold of the control group
levels, whereas K36H significantly reduced NO content at doses higher than 10 µM. After K36H
treatment, the NO level was reduced to 1.4, 0.8, 0.6 and 0.3 times the control levels. As shown in
Figure 10b, UVA increase the NO concentration in keratinocytes. However, when treated with PD98059,
JNK inhibitor II and SB203580 reduced the NO concentration. Cotreatment with K36H along with
PD98059 and JNK inhibitor II further reduced the NO concentration. The results indicate that K36H
inhibited NO concentration after UVA light exposure through the regulation of JNK and ERK pathways.
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3.7.3. Reduction of UVA-Induced PGE2 Production with K36H Treatment

The PGE2 level of the cell culture medium increased from 123.0± 10.2 pg/mL to 2040.2± 409.7 pg/mL
after keratinocytes were UVA irradiated (Figure 11). K36H treatment could dose-dependently reduce
PGE2 production to 233.9 ± 15.4 pg/mL with 50-µM K36H treatment. UVA induced lipid peroxidation
of the cell membrane to produce arachidonic acid, which produced Prostaglandins through COXs,
amplifying the recruitment of inflammatory cells to the area [3,49].

In addition to antioxidative activity, K36H exhibited anti-inflammatory activity. Propolis exhibited
downregulation of IL-12 and IL-6 expression and markedly ameliorated immune suppression
triggered by UV irradiation [37]. Caffeamide derivatives inhibit UVB-induced inflammation-related
proteins including COX-2, NF-κB and IL-6 expression in Hs68 and BALB/c hairless mice, indicating
anti-inflammatory properties [50,51]. The results of the present study indicate that K36H efficiently
reduces inflammatory mediators, including COX-2, iNOS and IL-6 proteins, as well as the concentrations
of downstream inflammatory cytokines, such as NO and PGE2, indicating that K36H protects the skin
from UVA-induced inflammation through the regulation of MAP kinases.
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Figure 11. Effect of K36H on prostaglandin E2 (PGE2) production in human epidermal keratinocytes.
Significant difference versus the nonirradiated group: ### p < 0.001. Significant difference versus the
nontreatment group: ** p < 0.01; *** p < 0.001.

4. Conclusions

This study showed that K36H treatment prevented UVA-induced oxidative damage, such as
DNA damage and apoptosis, in keratinocytes (Figure 12). K36H upregulated the self-oxidative
defense system including Nrf2 and HO-1 to ameliorate UVA-induced damage. K36H had excellent
free-radical-scavenging and anti-inflammatory properties. The photoprotective property of K36H may
be due to its antioxidant activity.
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