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Abstract: Psychostimulants and non-psychostimulants are the medications prescribed for the
treatment of attention-deficit/hyperactivity disorder (ADHD). However, several adverse results have
been linked with an increased risk of substance use and side effects. The pathophysiology of ADHD is
not completely known, although it has been associated with an increase in inflammation and oxidative
stress. This review presents an overview of findings following antioxidant treatment for ADHD and
describes the potential amelioration of inflammation and oxidative stress using antioxidants that might
have a future as multi-target adjuvant therapy in ADHD. The use of antioxidants against inflammation
and oxidative conditions is an emerging field in the management of several neurodegenerative and
neuropsychiatric disorders. Thus, antioxidants could be promising as an adjuvant ADHD therapy.
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1. Introduction

1.1. Attention-Deficit/Hyperactivity Disorder

Attention-deficit/hyperactivity disorder (ADHD) is the most common neurobehavioural disorder
and is a chronic, often lifelong, condition [1,2]. The pooled worldwide prevalence of ADHD is 7.2% for
children and adolescents and 3–5% for adults [3–5]. Boys are more than twice as likely as girls to receive
a diagnosis of ADHD [6]. Approximately 50% of individuals diagnosed in childhood and adolescence
persist with symptoms into adult life [1,7]. Comorbidity in ADHD is very common at roughly 70%,
the main disorders being emotional or behavioural conditions, such as anxiety, oppositional defiant,
depression and substance use disorders, and developmental conditions, such as learning and language
disorders, autism spectrum disorders (ASD), and physical conditions (tics and sleep apnoea) [8–10].
The diagnosis of ADHD is based on the fifth edition of the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) and the criteria include: inattention and/or hyperactive and impulsive symptoms
for the last six months or more, onset before the age of 12 years old, and symptoms causing at least
moderate psychological, social, and/or educational or occupational impairments based on interview
and/or direct observation in multiple settings [6].
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1.2. Pathophysiology

The pathophysiological mechanisms of ADHD are still not understood. However, biochemical,
psychological, and environmental factors have generally been accepted as causes of the disorder.
Several studies have suggested deregulation in catecholaminergic neurotransmission to be the
cause [11,12]. Moreover, increasing evidence indicates a critical role for neuroinflammation [13,14].
Also, the involvement of oxidative stress is highlighted as a pathophysiological cause of ADHD [15,16].

1.3. Pharmacological Treatment

The management of ADHD comprises multimodal treatments that include psychosocial and
educational interventions [6]. Nevertheless, pharmacological treatment is the first choice of therapy
to improve symptoms, using psychostimulants such as methylphenidate (MPH) and amphetamines,
which inhibit the reuptake of dopamine and norepinephrine, thus increasing catecholaminergic
activity in the prefrontal cortex, striatum, and hippocampus, improving symptoms [6,17]. The second
choice of therapy is with non-psychostimulants such as atomoxetine (ATX), which is a selective
norepinephrine reuptake inhibitor, guanfacine, and clonidine, which are selective α-2 adrenergic
receptor agonists [18,19].

However, psychostimulants have been associated with side effects such as appetite loss,
headache, stomach pain, agitation, sleep disturbance, anxiety, and insomnia [2,20]. Moreover, these
medications have a persistent effect on decreasing growth velocity and hallucinations or other psychotic
symptoms [21]. Furthermore, non-psychostimulants are associated with changes in cardiovascular
parameters, cardiovascular events, somnolence, gastrointestinal tract symptoms, nausea, diarrhoea,
vomiting, decreased appetite, fatigue, and dizziness [2,22].

Neuroinflammation and oxidative stress play a role in the pathophysiology of ADHD due to genetic
and environmental factors, catecholaminergic dysregulation, and medications used for treatment,
all factors which could produce inflammation and oxidative stress, which increases the symptoms
and, as a consequence, leads to establishing a vicious circle (Figure 1). Hence, antioxidants against
inflammation and oxidative stress have been used to manage other disorders such as Alzheimer’s
disease, Parkinson’s disease, Huntington’s disease, autism, schizophrenia, and depression [23–28].
Accordingly, antioxidant modulators could be helpful as a multi-target adjuvant therapy in ADHD.
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Figure 1. Role of inflammation and oxidative stress in the pathophysiology of ADHD and
potential adjuvant therapy. Environmental and genetic factors, catecholaminergic dysregulation
and pharmacological treatment can establish a vicious circle, producing inflammation and oxidative
stress, therefore contributing to increase the symptoms. SFN, sulforaphane; NAC, N-Acetylcysteine;
omega-3 FAs, omega-3 fatty acids; MPH, methylphenidate; ATX, atomoxetine.
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2. Inflammation and the Relationship with ADHD

Increasing evidence supports the role of neuroinflammation in the pathophysiology of ADHD [14].
Inflammation in the brain is characterized by the activation of glial cells (oligodendrocytes, astrocytes,
microglia and ependymal cells) and the production of cytokines, chemokines, prostaglandins, nitric oxide
(NO), reactive oxygen species (ROS), and immune cell infiltration, including monocytes/macrophages,
neutrophils, dendritic cells, T cells, and B cells. Glial cells, principally microglia (brain-resident immune
cells), are responsible for the maintenance of homeostasis after brain injury [29,30].

Increased ADHD symptoms have been reported in patients with an uncontrolled inflammatory
environment. Thus, elevated levels of interleukin-6 receptor (IL-6R), RANTES (regulated upon
activation, normal t cell expressed and secreted) and tumour necrosis factor-α (TNF-α) in children with
ADHD were associated with a major intensity of symptoms such as hyperactivity and inattention [31].
Moreover, serum levels of IL-6 and IL-10 were significantly higher in ADHD children compared with
healthy controls. However, IL-6 levels did not correlate with the severity of ADHD symptoms [32,33].
In an animal model of ADHD, using spontaneously hypertensive rats (SHR), the serum levels of IL-1α,
MCP-1, RANTES, and IP-10 were elevated in five-week-old compared to control rats. Interestingly,
serum levels of IL-6 were similar in five-week-old animals of both strains, with elevated levels in
10-week-old SHR, which correlates with that found in children with ADHD [34]. The association
between the dysregulation of the inflammatory response and the pathophysiology of ADHD is possible
as a result of the role of inflammation in neurogenesis, differentiation, and neuronal function [30,35–37].
Furthermore, neuroinflammation can induce aggravating factors such as blood–brain barrier disruption,
altered neurotransmitter metabolism, oxidative stress, and neurodegeneration [38].

The inflammatory mechanisms and the association of dysregulation in ADHD remain to be fully
clarified but involve genetic and/or environmental factors. Several studies have reported an association
between ADHD and the polymorphism of cytokines such as IL-2, IL-6 and TNF-α [39]. However,
there are controversial results for interleukin-1 receptor antagonist (IL-1RA; also known as IL-1RN)
gene variable number tandem repeat (VNTR) polymorphism: the four-repeat allele was associated
with increased risk and the two-repeat allele with reduced risk for ADHD [40]. On the other hand,
no association of this IL-1RN polymorphism with ADHD was found in a larger sample [41]. Comorbidity
with allergic and autoimmune disorders such as atopic eczema, allergic rhinitis and asthma is another
factor that could increase the risk for ADHD and future research may lead to a better understanding of
the mechanisms underlying the observed comorbidity [38,42–44]. In a meta-analysis and a large-scale
genome-wide association study (GWAS), associations between asthma and ADHD were found in both
children and adults [45,46]. Also, patients with ADHD and asthma had similar brain region dysfunctions
and higher levels of cytokines and IgE compared to healthy children, resulting in alterations to the
regions in the brain associated with emotional and behavioural control [38,42,47]. The involvement
of autoantibodies in ADHD has been suggested but this is an unknown causal association [33,48].
High antibody levels of anti-Purkinje cells (anti-Yo), anti-basal ganglia and anti-dopamine transporter
were found in patients with ADHD [33,48–50]. Moreover, elevated anti-Yo antibody levels were
correlated with IL-6 and IL-10 levels [33]. Further studies are needed to clarify the comorbidity or
causal relationship between allergic and autoimmune disorders and ADHD. Maternal history of
autoimmune disease has also been associated with an increased risk of ADHD. The inflammation
caused during prenatal development by several maternal diseases, such as infections, asthma, diabetes,
obesity, and autoimmune disease, was associated with ADHD in offspring [13,51].

3. Antioxidant Treatment Against Inflammation in ADHD

3.1. Sulforaphane Exerts Anti-Inflammatory Activity

Sulforaphane (SFN) is found in highest concentrations in vegetables such as cauliflower and
broccoli sprouts, and it has been shown that SFN is an activator of nuclear factor erythroid 2-related
factor 2 (Nrf2) [52]. Nrf2 is a transcription factor widely recognized as a master regulator of cellular
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redox homeostasis [53,54]. Regulation is carried out by binding Nrf2 to a specific DNA sequence
known as the antioxidant response element (ARE) found in the promoter regions of genes that encode
detoxification enzymes such as NADPH quinone oxidoreductase 1 (NQO1), haem oxygenase 1 (HO-1)
and glutathione peroxidase 1 (GPx1), among others [55]. Nrf2 regulates enzymes responsible for GSH
syntheses, such as the glutamate-cysteine catalytic subunit (GCLC) and glutamate-cysteine ligase
modifier subunit (GCLM), and enzymes related to GSH utilization, such as glutathione S transferase
(GST), glutathione peroxidase, and glutathione reductase [54]. Thus, SFN activates Nrf2 and stimulates
transcription of genes involved in GSH synthesis.

SFN has been considered as a therapeutic target in several inflammation-associated diseases,
including neurodevelopmental disorders such as psychosis and autism spectrum disorder [56–58].
Action mechanisms of antioxidants used against inflammation are shown in Figure 2.
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Figure 2. Overview of the mechanisms of SFN, NAC and Omega-3 FAs used as modulators
against inflammation and oxidative stress. DA, dopamine; DOPAC, 3,4-dihydroxyphenylacetic acid;
DAT, dopamine transporter; PGE, prostaglandins; ROS, reactive oxygen species; NO, nitric oxide;
GCL, glutamate cystine ligase; GPx, glutathione peroxidase; GSH, glutathione; SOD, superoxide
dismutase; GR, glutatione reductase; GSS, glutathione synthetase; glutathione peroxidase-4, GPx-4.

The molecular mechanism by which SFN exerts its anti-inflammatory function is by inducing
Nrf2 pathway activation, which contributes to the anti-inflammatory process by regulating HO-1 gene
expression [59–61]. Nrf2 leads to the inhibition of nuclear factor kappa B (NF-κB), activator protein-1
(AP-1) and mitogen-activated protein kinase (MAPK) classical inflammatory pathways, resulting in
decreased expression of the inflammatory mediators (iNOS, COX-2, NO and prostaglandins) and
pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β). In addition, Nrf2/HO-1 activation increases
anti-inflammatory cytokines (IL-10 and IL-4) [62–65]. Moreover, SFN has a prophylactic and
a therapeutic effect by inhibiting both the inflammatory response and microglial activation [62].
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Inflammasomes are multiprotein complexes necessary for the release of pro-inflammatory
cytokines (IL-1α and IL-18). Interestingly, it has been reported that SFN inhibited the activation
of NLRP1, NLRP3, and NLRC4 inflammasomes [66,67]. However, the precise mechanism by which
it does so is controversial, inasmuch as the SFN-mediated inhibition of the inflammasomes was
independent of caspase-1 activity, ROS modulation, and Nrf2 synthesis [66]. Contrary to these
findings, other studies showed that ROS generation and Nrf2 were required for inflammasome
activation [67,68]. SFN protected against neuroinflammation by preventing the increase of NF-κB
activity, TNF-α, and depletion of the IL-10 level in the cortex and hippocampus of okadaic-acid-treated
rats by the activation of the Nrf2/HO-1 pathway [69]. Recently, it was shown that treatment with SFN in
ASD-induced improvement of social interaction and behavioural deficits may be due to the inhibition
of STAT3 expression and suppression of Th17 cell response [27,70]. Although SFN supplementation
in patients with ADHD has not been studied, this could constitute a promising approach against
inflammation linked with ADHD. Nevertheless, more studies are needed to confirm safety, efficacy,
therapeutic doses, effect in combination with conventional therapy and long-term side effects to be
considered as adjuvant therapy in ADHD. The effects of antioxidants and the main outcomes are
summarized in Table 1.

Table 1. Summary of the findings on the potential beneficial effects of antioxidants against inflammation
and oxidative stress.

Against Inflammation Type of Study Outcome

SFN Mouse model of atopic dermatitis [61] Reduced inflammation, suppressed JAK1/STAT3 signaling and
activated Nrf2/HO-1 pathway

SFN Microglial cells [62]

Reduced inflammatory mediators (iNOS, COX-2, NO,
and PGE2) and proinflammatory cytokines (TNF-α, IL-6,
and IL-1β), increased anti-inflammatory cytokines (IL-10 and
IL-4) and increased the expression of Nrf2 and HO-1.

SFN Mouse model of acute lung injury and
Macrophages [63,65]

Decreased lactate dehydrogenase, IL-6, TNF-α, NF-kB, PGE2
production, COX-2, MMP-9 and iNOS protein expression

SFN Mouse model of peritonitis [66] Inhibited inflammasome activation and IL-1β secretion and
inhibited cell recruitment to peritoneum.

SFN Mouse macrophages [67] Blocked activation of NLRP3 and NLRC4 inflammasomes and
IL-1β secretion

SFN Rat [69] Inhibited NF-kB activity and TNF-α secretion and prevent
decreased IL-10

SFN Mouse model of autism and Autism
patients [27,70]

Reduced Th17 response and expression of NF-kB and iNOS
Randomized double-blind study; decreased symptoms

NAC Mild-stress rat model [71] Inhibited pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α)

NAC Bipolar depression patients [72] Randomized placebo-controlled trial; no effects on the biological
parameters evaluated

NAC Systemic lupus erythematosus
patients [73,74]

Randomized double-blind placebo-controlled trial and
randomized controlled trial; reduced the ADHD symptoms and
also inhibited the autoimmune inflammatory process by
suppression of the mammalian target of rapamycin (mTOR) and
increased regulatory T cells

NAC Human retinal pigment epithelial cell
line [75]

Decreased IL-18, IL-1β mRNA, ROS and blocked
inflammasome activation

NAC Rat [76]
Improved brain oxidant/antioxidant status and reversed
the overproduction of pro-inflammatory cytokines
in brain and serum

Omega-3 FAs Macrophage and mouse dendritic cell
lines [77,78]

Inhibited dimerization and recruitment of TLR2 and TLR4
recruitment to lipid rafts and reduced T-cell proliferation and
increased the proportion of T cells expressing FoxP3

Omega-3 FAs Mouse [79,80] Regulated CD4+ T-cell function and reduced
Th17cell polarazation

Omega-3 FAs Children with ADHD [81] Double-blind study; decreased plasma inflammatory mediators
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Table 1. Cont.

Against Oxidative Stress Type of Study Outcome

SFN Mouse [82] Increased dopamine, DOPAC and dopamine transporter
immunoreactivity in the striatum

SFN Rat [69] Activation of HO-1, glutamate-cysteine ligase catalytic subunit
and Nrf2 and protected against memory impairment

SFN Mouse model of autism [70] Improved the autism-like symptoms and upregulated SOD,
glutathione reductase and GPx

SFN and NAC Rat with epilepsy [83]
Reduced oxidative stress, delayed the onset of epilepsy,
blocked disease progression and reduced the frequency
of spontaneous seizures

SFN Healthy subjects [26] Clinical pilot study; increased GSH

NAC Rats [84] Protected against amphetamine-induced damage

NAC Paediatric Tourette’s syndrome [85] Randomized double-blind placebo-controlled trial; did not show
a significant difference with placebo

NAC A girl with ADHD [86] A case-study; reduced the frequency of self-cutting and reduced
the symptoms and depression

NAC Mouse model of postoperative
cognitive dysfunction [87]

Reduced oxidative stress and inflammation in the hippocampus
and improved cognitive function by activation of the
Nrf2/HO-1 pathway

Omega-3 FAs Children with ADHD [81] Double-blind study; decreased oxidative stress

Omega-3 FAs Children with ADHD [88]
Randomized controlled trial; no significant differences among
the treatments. One subgroup improved spelling, reading and
attention and decreased hyperactivity

Omega-3 FAs Children with ADHD [89,90] Randomized pilot study and placebo-controlled trial; no
significant improvement

Omega-3 FAs Children with ADHD [91–94]
Pilot studies and randomized placebo-controlled trials;
improved working memory function and improved symptoms
and behaviour

Omega-3 FAs Rat astrocytes [95] Increased glutamate-cysteine ligase, Nrf2, glutathione
synthetase and glutathione peroxidase-4 proteins

3.2. N-Acetylcysteine Decreases Inflammatory Response

N-Acetylcysteine (NAC), a precursor of L-cysteine and the antioxidant glutathione (GSH),
is found in plants, especially the onion [96–98]. NAC has been used as an adjuvant therapy in many
psychiatric disorders (e.g., Alzheimer´s disease, schizophrenia, autism, addiction, substance abuse,
obsessive-compulsive and mood disorders [24,99–104]), with promising results and no relevant side
effects after its administration against inflammation [97]. The use of NAC in a chronic unpredictable
mild-stress animal model inhibited the levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α)
in the hippocampus and prefrontal cortex and exhibited antidepressant-like effects [71]. However, in
a recent study, NAC treatment did not show any effect on the serum levels of IL-6, IL-8, TNF-α, IL-10, or
C-reactive protein in a clinical trial for bipolar depression, possibly due to the small sample size used in
this study [72]. On the other hand, a study derived from an ADHD self-report scale symptom checklist
revealed that NAC reduced the ADHD symptoms in patients with systemic lupus erythematosus
and also inhibited the autoimmune inflammatory process via suppression of the mammalian target
of rapamycin (mTOR) and increased regulatory T cells [73,74]. Moreover, NAC has been reported to
block inflammasome activation as well as IL-18 and IL-1β production [75]. Recently, NAC protected
against cisplatin-induced toxicity in rat brain by modulation of inflammation and oxidative stress [76].
Thus, more studies are required to support the efficacy of NAC as a possible adjuvant treatment
for ADHD.

3.3. Omega-3 Fatty Acids Prevent Inflammation

Omega-3 fatty acids (omega-3 FAs) are polyunsaturated fatty acids, whose primary sources are in
oily fish. They are components of neuronal membranes and have a main role in neurotransmission,
neuronal development and function [105]. Two of the main omega-3 FAs are docosahexaenoic
acid (DHA) and eicosapentaenoic acid (EPA) and it has been demonstrated that supplementation
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with omega-3 FAs has beneficial effects in several neurodegenerative and neuropsychiatric
disorders such as Parkinson´s and Alzheimer´s diseases, depression, bipolar disorder, anxiety,
and schizophrenia [106,107]. These omega-3 FAs are also known to have anti-inflammatory
effects [108,109]. It has been demonstrated that DHA decreased the TLR-dependent inflammatory
signalling pathway by inhibiting dimerization and the recruitment of receptors to lipid rafts, which
resulted in the reduced production of pro-inflammatory cytokines [77,110]. DHA also reduces T-cell
activation, proliferation and promoted polarization into regulatory T cells (Treg; CD4+/CD25+/FoxP3+)
and interferes with the polarization of Th17 cells [78–80]. In a double-blind study, supplementation
with omega-3 FAs for eight weeks was shown to decrease the plasma IL-6 level and any hyperactivity
symptoms in children with ADHD [81]. However, a similar eight-week study found no effect on
ADHD, but this could be due to the dose of omega-3 FAs [111]. Thus, further studies are needed to
confirm the therapeutic dose, safety, and effectiveness of omega-3 FAs as a possible therapy against
inflammation in ADHD.

4. Oxidative Stress and the Relationship with ADHD

There is increasing evidence for the involvement of oxidative stress in the pathophysiology of
ADHD [15,16], but some studies have shown low levels of malondialdehyde (MDA) and the DNA
damage indicator 8-hydroxy-2′-deoxyguanosine (8-OHdG) in ADHD children [112,113]. MDA is
the degradation product of the main chain reactions that lead to the oxidation of polyunsaturated
fatty acids, and therefore serves as an oxidative stress marker. Recently, it was reported that the total
antioxidant capacity, catalase and GSH were significantly lower but that MDA was not significantly
different in children with ADHD [114]. However, high levels of MDA have been observed in both
adults [115,116] and children with ADHD [117], and increased plasma MDA and urinary 8-OHdG levels
were found in children with ADHD compared to healthy children [118]. Another study has shown low
total antioxidant levels in children with ADHD [119]. Furthermore, the SHR model showed an increase
in ROS production in the hippocampus, cortex, and striatum [120]. It was shown that paraoxonase-1
(PON1) and arylesterase activity were decreased (the arylesterase activity linked to PON1 is known
to protect lipoproteins from oxidation) and there was also a decrease in the total antioxidant status.
Moreover, the total oxidant status and oxidative stress index were increased in children with ADHD,
suggesting that there is significantly increased oxidative stress in ADHD [121]. It seems that nitrosative
stress also has a role in ADHD because of increased oxidative and nitrosative stress and impaired
oxidant–antioxidant balance has been demonstrated in children with ADHD [122]. The NO levels
were significantly higher in children, adolescents and adults [117,123] and also significant increases in
NO synthase activity were observed in children and adolescents with ADHD [124]. Although there
are inconsistent results regarding the relationship of oxidative stress and ADHD, in a meta-analysis it
was confirmed that ADHD is associated with increased oxidative stress in ADHD patients [16]. Taken
together, the data suggest that both oxidative and nitrosative stress in ADHD have the potential to
contribute to this condition [15].

On the other hand, it has been shown that dopamine and norepinephrine can easily undergo
auto-oxidation, forming ROS [125,126], which could lead to cell damage and damage to DNA [127,128].
Also, it has been shown that ATX treatment increases extracellular norepinephrine and dopamine
levels [19,129], which would produce an increase in oxidative stress and, as a consequence, cell damage
and mitochondrial dysfunction [130]. The brain is particularly susceptible to oxidative stress because of
its high lipid content and the high demand for energy consumption [131]. Neurons use mitochondria
as the main producers of ATP. Mitochondria regulate ion homeostasis and the redox state, and they
are also both producers of ROS and targets of ROS-induced damage, with such effects leading to
the collapse of bioenergetic function and the initiation of cell death [132]. For this reason, oxidative
stress could also be involved or interrelated with the catecholaminergic pathway in ADHD. However,
the exact relationship between both processes and ADHD remains unclear.
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Regarding ADHD medication, several reports have demonstrated that MPH has an impact on the
generation of oxidative damage. Increases in DNA damage have been found mainly in the striatum of
young and adult rats after MPH treatment [133]. In specific regions of the brain of young rats, chronic
treatment with MPH increased oxidative damage, as assessed by the thiobarbituric acid reactive species
and protein carbonyl assays, and this effect was dependent on the dose [134]. Furthermore, acute or
chronic treatment with MPH altered the activity of catalase and superoxide dismutase (SOD) enzymes
in the brain of young rats [135]. One study showed that acute and chronic treatment with MPH in the
SHR model increased oxidative stress [136]. Finally, the acute administration of high doses of MPH
can cause oxidative and inflammatory changes in brain cells and induce neurodegeneration in the
hippocampus and cerebral cortex of adult rats [137].

Hence, the growing research in looking for alternative therapies for ADHD has focused on
the neuroprotective effects of natural products as antioxidants because they may be high-efficiency
alternative treatments with fewer side effects [2].

5. Antioxidant Treatment Against Oxidative Stress in ADHD

As a consequence of oxidative stress, cells have the capacity to increase their antioxidant defences
through the activation of Nrf2. Thus, Nrf2 pathway activation takes place to act against the accumulation
of ROS. Consequently, Nrf2 activators have been proposed as antioxidant targets in neurodegenerative
and neuropsychiatric disorders (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, autism,
schizophrenia, and depression) to counteract the increase in oxidative stress [138–140]. The action
mechanisms of the antioxidants used against oxidative stress are shown in Figure 2.

5.1. Sulforaphane Exerts Antioxidant Activity

In mice, the repeated administration of amphetamines induced decreases of dopamine and
3,4-dihydroxyphenylacetic acid DOPAC levels, as well as dopamine transporter immunoreactivity in
the striatum, and such effects were significantly attenuated by the treatment with SFN [82]. Activation
of the cellular antioxidant machinery (HO-1, glutamate-cysteine ligase catalytic subunit and Nrf2)
resulted in SFN-mediated protection against memory impairment in rats treated with okadaic acid [69].
Moreover, in a mouse model of autism, SFN improved the autism-like symptoms and upregulated
antioxidant defences such as SOD, glutathione reductase, and GPx [70]. The combination of NAC and
SFN significantly reduced oxidative stress, delayed the onset of epilepsy, blocked disease progression,
and reduced the frequency of spontaneous seizures in animals [83]. Also, in a clinical pilot study,
treatment with SFN increased the antioxidant GSH, suggesting a need to explore possible correlations
between GSH and clinical/neuropsychological measures and any positive influence that the treatment
of SFN could have on neuropsychiatric disorders [26]. Even though the antioxidative effect of SFN
supplementation in ADHD has not been studied, this could constitute a promising approach for
oxidative imbalances linked with ADHD. Nevertheless, more research is needed to confirm the efficacy,
therapeutic doses, and effect in combination with conventional therapy to be considered as adjuvant
therapy in ADHD. The effects of antioxidants and the main outcomes are summarized in Table 1.

5.2. N-Acetylcysteine Exerts Antioxidant Activity

The NAC molecule scavenges ROS and there has been growing evidence of its role in attenuating
psychiatric and neurological disorders and associated pathophysiological processes such as oxidative
stress, mitochondrial dysfunction and glutamate and dopamine dysregulation [96,97,141]. In rats,
amphetamine produces oxidative stress (by increasing hydroxyl radical formation and MDA) and
dopaminergic neurotoxicity, but treatment with NAC protected against amphetamine-induced
damage [84]. The treatment of paediatric Tourette´s syndrome with NAC in a randomized, double-blind
placebo-controlled trial did not show a significant difference between NAC and placebo for reducing
tic severity or any secondary outcomes such as depression, anxiety and ADHD [85]. In a case-study,
a 17-year-old girl was successfully treated with NAC, reducing the frequency of self-cutting and
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the symptoms of ADHD and depression [86]. Finally, in a mouse model of postoperative cognitive
dysfunction, NAC reduced oxidative stress and inflammation in the hippocampus and improved
cognitive function by activation of the Nrf2/HO-1 pathway [87]. Thus, it seems that part of the
protection produced by NAC is via the activation of antioxidant pathways that involve Nrf2. However,
more research is required to support the efficacy of NAC as a possible treatment for ADHD.

5.3. Omega-3 Fatty Acids Exert Antioxidant Activity

The omega-3 FAs supplementation can be an enhancer factor in the antioxidant defence against
ROS [142] and has been demonstrated to be effective against oxidative stress in the treatment of ADHD.
A pilot study demonstrated that supplementation with alpha-linolenic acid, an omega-3 FAs, improved
ADHD symptoms [91]. The findings of a small pilot study demonstrated that supplementation with
high doses of EPA and DHA improved the behaviour of children with ADHD [92]. In a double-blind
study, eight weeks of EPA and DHA supplementation decreased oxidative stress in children with
ADHD [81]. Supplements with high EPA, DHA or omega-6 FAs as a control demonstrated no significant
differences among the treatments. However, in one subgroup of children there was improvement
in spelling, reading and attention and a decrease in hyperactivity [88]. On the other hand, in
one study, EPA and DHA supplementation in children with ADHD demonstrated no significant
improvements in outcome [89]. Furthermore, no beneficial results were observed in a randomized
placebo-controlled clinical trial with EPA and DHA supplementation in children with ADHD [90].
There were increased EPA and DHA concentrations in erythrocyte membranes and improved working
memory function on supplementation with a mix of omega-3 FAs [93]. The effects of dietary omega-3
FAs supplementation on ADHD showed a reduction in ADHD symptoms [94]. Finally, omega-3
FAs improved the antioxidant defence (by increasing glutamate-cysteine ligase, Nrf2, glutathione
synthetase and glutathione peroxidase-4 proteins) in astrocytes treated with hydrogen peroxide,
and Nrf2 activation was dependent on the proportion of DHA to EPA incorporated into the membrane
phospholipids [95]. Thus, omega-3 FAs could be improving the antioxidant defences at least in part
through the activation of the Nrf2 pathway.

6. Conclusions

The association of ADHD with an increase in inflammation and oxidative stress could play a role
in the pathophysiological process. Nowadays, ADHD has no therapeutic option able to counteract the
progression of the disorder, and therapy with MPH and amphetamines might be increasing oxidative
stress. Thus, all evidence points towards inflammation and oxidative stress as factors which are
influencing ADHD, whereas antioxidants may perhaps be able to ameliorate ADHD progression due to
their anti-inflammatory and antioxidant properties. Consequently, some of the antioxidants discussed
in this review might establish a new therapeutic approach for the treatment of ADHD. While the use
of natural antioxidants for diverse disorders has been considered as a safe and healthier approach
for patients, they are still far from being standard treatments, due to the lack of controlled clinical
studies that may well corroborate both their high efficacy and safety. Accordingly, better designed and
more rigorous research and clinical trials are required before they can be established as a therapeutic
alternative and further studies would also be necessary to corroborate the use of these antioxidants
administered as a co-treatment with the current medications. Nevertheless, antioxidants could be
considered as a multi-target adjuvant therapy for ADHD.
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