\begin{abstract}

Figure S1. UV chromatograms at 280 nm and MS spectra for (A) peak 5 and (B) peak 28.

Figure S2. Base peak chromatograms of the collected fractions from a commercial lemon verbena extract ($\mathrm{PLX}{ }^{\oplus} 10$) and MS spectra of their major compound, including the peak numbers of Table 1. UV/EIC chromatograms were add in those cases where they were considered necessary.

Figure S2. Base peak chromatograms of the collected fractions from a commercial lemon verbena extract (PLX ${ }^{\oplus} 10$) and MS spectra of their major compound, including the peak numbers of Table 1. UV/EIC chromatograms were add in those cases where they were considered necessary (Continued).

Figure S2. Base peak chromatograms of the collected fractions from a commercial lemon verbena extract ($\mathrm{PLX}{ }^{\oplus} 10$) and MS spectra of their major compound, including the peak numbers of Table 1. UV/EIC chromatograms were add in those cases where they were considered necessary (Continued).

Figure S2. Base peak chromatograms of the collected fractions from a commercial lemon verbena extract (PLX ${ }^{\oplus} 10$) and MS spectra of their major compound, including the peak numbers of Table 1. UV/EIC chromatograms were add in those cases where they were considered necessary (Continued).

Table S1. In vitro antioxidant activity by FRAP, TEAC, and ORAC assays for the commercial lemon verbena extract ($\mathrm{PLX}{ }^{\oplus} 10$) and its collected fractions, expressed as the mean of three independent replicates \pm the standard deviation. ${ }^{\text {a }}$ mmoles equivalents of $\mathrm{Fe}^{2+} / \mathrm{g}$ (dry weight), ${ }^{\mathrm{b}}$ mmoles equivalents of Trolox/g (dw).

Sample	FRAP $^{\mathbf{a}}$	TEAC $^{\mathbf{b}}$	ORAC $^{\mathbf{b}}$
PLX®10	0.676 ± 0.002	0.35 ± 0.03	1.2 ± 0.1
F1	0.009 ± 0.001	0.008 ± 0.001	0.051 ± 0.008
F2	0.045 ± 0.003	0.035 ± 0.001	0.174 ± 0.006
F3	0.270 ± 0.001	0.182 ± 0.004	0.99 ± 0.01
F4	0.122 ± 0.003	0.082 ± 0.001	0.30 ± 0.01
F5	0.068 ± 0.002	0.043 ± 0.003	0.19 ± 0.02
F6	0.074 ± 0.003	0.041 ± 0.009	0.223 ± 0.009
F7	0.048 ± 0.001	0.033 ± 0.003	0.131 ± 0.004
F8	0.137 ± 0.007	0.077 ± 0.007	0.23 ± 0.01
F9	0.192 ± 0.007	0.111 ± 0.002	0.290 ± 0.007
F10	0.27 ± 0.01	0.16 ± 0.01	0.55 ± 0.06
F11	0.58 ± 0.02	0.246 ± 0.003	1.2 ± 0.1
F12	0.51 ± 0.02	0.290 ± 0.001	1.74 ± 0.09
F13	1.9 ± 0.1	0.84 ± 0.04	3.2 ± 0.3
F14	0.084 ± 0.007	0.057 ± 0.006	1.05 ± 0.01
F15	1.57 ± 0.09	0.72 ± 0.04	1.5 ± 0.1
F16	0.83 ± 0.07	0.37 ± 0.02	0.68 ± 0.01
F17	0.120 ± 0.005	0.077 ± 0.006	0.169 ± 0.002
F18	0.179 ± 0.005	0.101 ± 0.02	0.23 ± 0.03
F19	0.091 ± 0.007	0.050 ± 0.005	0.12 ± 0.02

