

Figure S1. UV chromatograms at 280 nm and MS spectra for (A) peak 5 and (B) peak 28.

Figure S2. Base peak chromatograms of the collected fractions from a commercial lemon verbena extract (PLX®10) and MS spectra of their major compound, including the peak numbers of Table 1. UV/EIC chromatograms were add in those cases where they were considered necessary.

Figure S2. Base peak chromatograms of the collected fractions from a commercial lemon verbena extract (PLX®10) and MS spectra of their major compound, including the peak numbers of Table 1. UV/EIC chromatograms were add in those cases where they were considered necessary (*Continued*).

Figure S2. Base peak chromatograms of the collected fractions from a commercial lemon verbena extract (PLX®10) and MS spectra of their major compound, including the peak numbers of Table 1. UV/EIC chromatograms were add in those cases where they were considered necessary (*Continued*).

Figure S2. Base peak chromatograms of the collected fractions from a commercial lemon verbena extract (PLX®10) and MS spectra of their major compound, including the peak numbers of Table 1. UV/EIC chromatograms were add in those cases where they were considered necessary (*Continued*).

Table S1. In vitro antioxidant activity by FRAP, TEAC, and ORAC assays for the commercial lemon verbena extract (PLX $^{\circ}$ 10) and its collected fractions, expressed as the mean of three independent replicates \pm the standard deviation. ^a mmoles equivalents of Fe²⁺/g (dry weight), ^b mmoles equivalents of Trolox/g (dw).

Sample	FRAP	TEACb	ORAC ^b
PLX®10	0.676 ± 0.002	0.35 ± 0.03	1.2 ± 0.1
F1	0.009 ± 0.001	0.008 ± 0.001	0.051 ± 0.008
F2	0.045 ± 0.003	0.035 ± 0.001	0.174 ± 0.006
F3	0.270 ± 0.001	0.182 ± 0.004	0.99 ± 0.01
F4	0.122 ± 0.003	0.082 ± 0.001	0.30 ± 0.01
F5	0.068 ± 0.002	0.043 ± 0.003	0.19 ± 0.02
F6	0.074 ± 0.003	0.041 ± 0.009	0.223 ± 0.009
F7	0.048 ± 0.001	0.033 ± 0.003	0.131 ± 0.004
F8	0.137 ± 0.007	0.077 ± 0.007	0.23 ± 0.01
F9	0.192 ± 0.007	0.111 ± 0.002	0.290 ± 0.007
F10	0.27 ± 0.01	0.16 ± 0.01	0.55 ± 0.06
F11	0.58 ± 0.02	0.246 ± 0.003	1.2 ± 0.1
F12	0.51 ± 0.02	0.290 ± 0.001	1.74 ± 0.09
F13	1.9 ± 0.1	0.84 ± 0.04	3.2 ± 0.3
F14	0.084 ± 0.007	0.057 ± 0.006	1.05 ± 0.01
F15	1.57 ± 0.09	0.72 ± 0.04	1.5 ± 0.1
F16	0.83 ± 0.07	0.37 ± 0.02	0.68 ± 0.01
F17	0.120 ± 0.005	0.077 ± 0.006	0.169 ± 0.002
F18	0.179 ± 0.005	0.101 ± 0.02	0.23 ± 0.03
F19	0.091 ± 0.007	0.050 ± 0.005	0.12 ± 0.02