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Abstract: Recently, we demonstrated the capability of the ketogenic diet (KD) to influence the
microRNA (miR) expression profile. Here, we report that KD is able to normalize miR expression in
obese subjects when compared with lean subjects. By applying two different bioinformatics tools, we
found that, amongst the miRs returning to comparable levels in lean subjects, four of them are linked
to antioxidant biochemical pathways specifically, and the others are linked to both antioxidant and
anti-inflammatory biochemical pathways. Of particular interest is the upregulation of hsa-miR-30a-5p,
which correlates with the decrease of catalase expression protein in red blood cells.
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1. Introduction

The progress of the obesity pandemic is still substantially underestimated but is alarming [1].
Obese individuals have a lower quality of life and more risk of developing several clinical problems [2].
Obesity is a chronic status with sub-clinical inflammation which is associated with the abnormal
synthesis of cytokine/adipokines, leading to an increase of radical oxygen species (ROS) [3]. Therefore,
obesity is not per se a disease; rather, it is a status that contributes to the imbalance of anti-inflammatory
and oxidative stress biochemical pathways [4]. Opportune antioxidant defenses counteract the action
of ROS in different organs and are improved by diverse biomolecules [5–7], functional food and diet
nutrients [8,9]. It is worthy of note that, recently, hyperglycemic crisis was linked to oxidative stress
in diabetic patients [10]. While ketoacidosis is not safe for human health, it is well known that the
ketogenic diet (KD) is safe. KD is a nutritional regimen in which the amount of carbohydrate is
maintained at less than 30 g per day [11]. Although its application initially was a therapeutic regimen
for refractory epilepsy, today it is often used to lose weight [12]. KD was proved to possess antioxidant
and anti-inflammatory properties as well as to regulate obese subjects in stage 1 of the Edmonton
Obesity Staging System (EOSS) and their microRNA (miR) expression profile [11,13–15]. The 11
miRNAs analyzed previously in this subject category were normalized with KD when compared to
lean subjects. Besides being regulators of the metabolic network in which ROS are always produced,
these miRs are also able to counteract inflammatory and oxidative stress [16].
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2. Materials and Methods

2.1. Population

Ethical approval for all human studies was granted in accordance with the Regional Ethics
Committee (REC) (#120-18052018). Subjects were also excluded if they showed the presence of
hypertension and/or were on medication. The study was considered not to have set up clinical trials
and was not registered as such. Written informed consent was obtained from participants which
conformed to the standards of ethical practice as outlined in the declaration of Helsinki. The exclusion
criteria included diabetes, renal diseases, liver dysfunction, a history of alcohol or drug abuse, and
neoplastic diseases in the five years prior to the study.

2.2. Immunoblot Analysis and RNAs Extraction

Blood samples were collected, and red blood cells and lysates for catalase (CAT) expression
protein were harvested using the antibody (abcam # ab16731). The protein concentration in samples
was estimated as described in [17–20]. Serum plasma was then used for functional genomics assay.
Total RNA was extracted from 200 µL of blood serum or plasma by using an miRNeasy Serum/Plasma
Kit (Qiagen, Venlo, The Netherlands) in order to lower potential contaminants [15,21] and according to
the manufacturer’s instructions.

2.3. NanoString Sample Preparation and Data Analysis

For the n-counter flex of NanoString Technology, 100 ng of RNA/miR was used as input. miRs were
then hybridized with an nCounter Human-V3 miRNA Expression Assay CodeSet overnight at 65 ◦C
and as previously described in [22,23]. In order to obtain robust results, the coefficient of variation (CV),
expressing the ratio of the standard deviation to the mean and expressed as a percentage, was chosen
as 30%. The miRs known to be linked to blood hemolysis were excluded from the analysis [24,25].

2.4. In Silico Prediction of hsa-miR Target Genes

In order to identify genes as targets of hsa-miRs from the array analysis, we performed in
silico analysis. The in silico identification of the target genes was performed using miRTargetLink
Human (https://ccb-web.cs.uni-saarland.de/mirtargetlink/) and DIANA Tools (http://diana.imis.athena-
innovation.gr/DianaTools/index.php) databases. This latter database was used to check which miRNA
target genes were already validated experimentally.

2.5. Statistical Analysis

Prism GraphPad Prism version 5.0 for Windows (GraphPad Software, San Diego, CA, USA) was
used to plot the results. Differences within and between groups were evaluated by the t-test and
one-way ANOVA followed by a multi-comparison Bonferroni test (* p < 0.05).

3. Results

3.1. Characteristics of Subjects

A total of 43 subjects, divided into categories of obese, lean and on a ketogenic diet (KD), were
selected, with numbers for obese subjects of n = 14, lean of n = 17 and KD of n = 12. The subjects’
characteristics are described in Table 1.

https://ccb-web.cs.uni-saarland.de/mirtargetlink/
http://diana.imis.athena-innovation.gr/DianaTools/index.php
http://diana.imis.athena-innovation.gr/DianaTools/index.php
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Table 1. Subject characteristics.

Characteristic Obese (n = 14) Lean (n = 17) KD (n = 12) p Value *

Age, y 46.5 ± 10.51 46.83 ±12.32 46.6±11.56 ns

Height, cm 175.1 ± 5.2 171.3 ± 6.6 176.3 ± 3.3 ns

Weight, kg 107.5 ± 3.0 70.8 ± 3.8 96.97 ± 11.2 <0.001

BMI, kg/m2 33.9 ± 1.2 22.1 ± 2.5 31.5 ± 1.3 <0.001

Data are presented as mean ± SD. * Using t test.

3.2. Comparison of Obese, Lean and KD Array Profiles

The heatmap and hierarchical clustering based on the most differentially expressed hsa-miRs
are shown in Figure 1, including the signatures of hsa-let-7b-5p, hsa-miR-143-3p, hsa-miR-148b-3p,
hsa-miR-26a-5p, hsa-miR-502-5p, hsa-miR-520h, hsa-miR-548d-3p, hsa-miR-590-5p and hsa-miR-644a.
In particular, KD, compared to obese subjects, normalized the expression levels of hsa-let-7b-5 (8/12),
hsa-miR-143-3p (9/12), hsa-miR-148b-3p (10/12), hsa-miR-590-5p (10/12), hsa-miR-520h (8/12) and
hsa-miR-644a (9/12), which were expressed in more than 65% of subjects, while 100% was achieved for
hsa-miR-548d-3p (12/12). At least 50% was reached for hsa-miR-26a-5p (6/12), and hsa-miR-502-5p
(7/12). No change was seen for hsa-miR-504-5p. The new hsa-miR-let7e-5p (5/12) and hsa-miR-877
(5/12) here identified showed a less than 50% presence, with the exception of hsa-miR-30a-5p (8/12).
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Figure 1. Heatmap and hierarchical clustering of obese (n = 14), lean (n = 17) and ketogenic diet (KD)
subjects (n = 12) based on the most differentially expressed microRNAs. The color and the intensity of
the boxes represent changes of gene expression. In the analysis, red represents down-regulated genes
and green represents up-regulated genes. Black represents an unchanged expression as evident by the
color reference. n-Solver software was used.

3.3. In Silico Results

Two different databases were used for the in-silico analysis. Data were compared with respect to
the number of target genes experimentally validated in both databases. The results are reported in
Table 2. Although similar results were found for two hsa-miRs (in bold in Table 2), the numbers of
validated targets found for others hsa-miRs were consistently different. In DIANA tools, the numbers
of validated target genes were higher in respect to miRtagertLink Human; therefore, DIANA tools
were used for further bioinformatics analysis.
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Table 2. Bioinformatics tools for in silico analysis.

Number of Target Genes

miRTargetLink Human DIANA Tools

hsa-let-7b-5p 124 312

hsa-let-7e-5p 15 273

hsa-miR-143-3p 32 82

hsa-miR-148b-3p 10 218

hsa-miR-26a-5p 52 391

hsa-miR-30a-5p 119 458

hsa-miR-30e-5p 7 412

hsa-miR-502-5p 3 30

hsa-miR-504-5p 6 7

hsa-miR-520h 5 5

hsa-miR-548d-3p 1 203

hsa-miR-590-5p 2 43

hsa-miR-644a 2 0

hsa-miR-877 0 19

3.4. Validated hsa-miR Interaction and Western Blot Analysis of Catalase

Predicted and validated target genes were assessed using DIANA Tools. The new hsa-miR-let7e-5p
was found to regulate glutathione peroxidase 7 (GPX7), as shown by string analysis (Figure 2A), as well
as in silico 3′UTR interaction (Figure 2B). In silico 3′UTR regions of tet methylcytosine dioxygenase 3
(TET3) for hsa-miR-520h (Figure 2D) interaction and 3′UTR regions of superoxide dismutase 2 (SOD2)
for hsa-miR-548d-3p (Figure 2F) are shown, as well as string analysis, in Figure 2C,E, respectively.
String analysis showed that 10 proteins are able to physically interact with GPX7 (Figure 2B) as well
as with TET3 (Figure 2D), SOD2 (Figure 2F) and catalase (CAT) (Figure 3D). This latter protein was
monitored through Western blot analysis, as shown in Figure 3A. Densitometric analysis was performed
and exhibited a significant decrease of CAT protein levels, as shown in Figure 3B. The hsa-miR-30a-5p
was found to target 3′UTR regions of CAT, as shown in Figure 3C. However, other target genes were
found to be influenced by KD and linked to antioxidant metabolism and inflammatory-related genes,
as shown in Table 3. Abbreviations and gene names are described in Table 4.

Table 3. Antioxidant metabolism and inflammatory-related genes.

Biochemical Pathways and Possible miRs Gene Interaction

miRNA Validated target genes

Glutathione metabolism
hsa-let-7b-5p GPX7, GSR, RRM2, GGCT
has-let-7e-5p GPX7

hsa-miR-26a-5p RRM2

Chondroitin sulfate biosynthesis hsa-let-7b-5p CHPF2, XYLT2

Arachidonic acid metabolism
hsa-let-7b-5p CYP2J2, GPX7, LTA4H, PTGS1, PTGS2,

PTGES2
hsa-miR-26a-5p PTGS1
hsa-miR-143-3p PTGS2
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Table 3. Cont..

Biochemical Pathways and Possible miRs Gene Interaction

Toll like receptor signalling
pathway

hsa-let-7b-5p IFNB1, NFKBIA, MAPK1, MAP2K2, TAB2
hsa-miR-26a-5p IFNB1, IL6
hsa-miR-30e-5p CAT
hsa-miR-877-5p MAPK8

hsa-miR-148b-3p PIK3CA, PIK3CG
hsa-miR-143-3p AKT1
hsa-miR-520h TET3

Natural killer cell mediated
cytotoxicity and T Cell, B Cell
receptor signalling pathways

hsa-let-7b-5p IFNB1, NFATC1, NFATC3, NRAS, NFKBIA,
PAK1, MAPK1, MAP2K2, PDK1, CD81

hsa-miR-26a-5p IFNB1, SHC2, IL6
hsa-miR-30e-5p RELA, CAT
hsa-miR-504-5p FAS
hsa-miR-877-5p NFAT5, NRAS, PIK3CCA
hsa-miR-143-3p HRAS, KRAS, AKT1
hsa-miR-148a-3p HLA-G, CCL28
hsa-miR-548d-3p AKT3, SOD2

Table 4. Abbreviations and gene names.

Abbreviation Gene Name

AKT1 Serine-threonine protein kinase 1
AKT3 Serine-threonine protein kinase 3
CAT Catalase

CCL28 C-C motif chemokinine 28 precursor
CD81 CD81 antigen target proliferate antibody 1

CHPF2 Chondroitin polymerizing factor 2
CYP2J2 Cytochrome P450 2J2

FAS FAS cell surface deat receptor
GGCT Gamma-glutamylcyclotransferase
GPX7 Glutathione peroxidase 7
GSR Glutathione disulphide reductase

HLA-G HLA Class I Histocompatibility Antigen, Alpha Chain G
HRAS Hras protogoncogene GTPase
IFNB1 Interferon beta 1

IL6 Interleukin-6
KRAS Kras protogoncogene GTPase
LTA4H Leukotriene-A4 hydrolase

MAP2K2 Mitogen-activated protein kinase 2
MAPK1 Mitogen-activated protein kinase 1
MAPK8 Mitogen-activated protein kinase 8
NFAT5 Nuclear factor of activated T-cells 5

NFATC1 Nuclear factor of activated T cells 1
NFATC3 Nuclear factor of activated T cells 3
NFKBIA NFKB inhibitor alpha

NRAS NRAS-proto-oncogene
PAK1 Serine/threonine-protein kinase
PDK1 Phosphoinositide-dependent kinase-1

PIK3CA Phosphaidylinositol-3-kinase
PIK3CG Phosphaidylinositol-4,5-Bisphosphatase 3-kinase
PTGES2 Prostaglandin-E synthase 2
PTGS1 Prostaglandin-endoperoxidase synthase 1
PTGS2 Prostaglandin-endoperoxdase synthase 2
PTES2 Prostaglandin-E synthase 2
RELA RELA-proto-oncogene
RRM2 Ribonucleotide reductase regulatory subunit M2
SHC2 SHC-trasorming protein 2
TAB2 TGF-beta activated kinase 1 binding protein 2

XYLT2 Xylosyltransferase 2
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Figure 3. A ketogenic diet (KD) influences catalase gene expression. (A) Western blot analysis of
catalase (CAT) protein levels in red blood cells from obese, lean and subject in KD. (B) Graphical
representation of Western blot band intensity, normalized with the loading control GAPDH. (C) The
CAT gene 3′UTR region interacts with hsa-miR-30a-5p. (D) The protein network of CAT enzymes
determined by string analysis. Data in panel B represent means ± SD of n = 2 for obese, n = 3 for lean
and n = 2 for KD independent tests (* p < 0.05).
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4. Discussion

The World Health Organization states that obesity has nearly tripled since 1975. In 2016, more
than 1.9 billion adults were overweight. Of these, over 650 million were obese, leading to the following
report sentence: “Most of the world’s population live in countries where overweight and obesity kills more
people than underweight. Obesity is preventable” [26]. How can obesity be preventable? One method is
represented by KD. The beneficial effects of KD in reducing the body weight and body mass index of
obese subjects over both the short (6 weeks) and long (24 weeks) term has already been proven [12,27].
The administration of KD for a relatively long period is safe and can be considerate a nutritional
therapy for weight reduction in obese patients [27]. Besides that, to keep KD beneficial, lifestyle
change is mandatory and is the harder part of nutritional intervention during KD, with documented
improvement of the endurance exercise capacity, better recovery from fatigue and exercise-induced
muscle and organ damage prevention in obese subjects. Besides that, the anti-inflammatory action of
physical activity was also recently reviewed [28,29]. Nutraceuticals with antioxidant properties were
proposed to help in the treatment of obesity, but they are not enough when taken alone [30]. Several
scientific approaches to date have tried to describe this disorder by way of genetic or environmental
factors [31]. The role of epigenetics in human diseases has been well described relatively recently.
Obesity and epigenetics is a consolidated union [32–34], and bariatric surgery induces epigenetic
change in obese subjects [35]. We recently reported the influence of the ketogenic diet (KD) on the
circulating microRNA (miR) expression profile [15]. The 11 miRs controlling the metabolic network
identified so far in subjects on KD were almost normalized and closer to lean subjects. Besides that,
new miRs targeting identified genes linked to the homeostasis of oxidant–antioxidant pathways were
identified. These latter molecules act as epigenetic regulators and have the peculiarity of regulating
gene expression targeting the 3′UTR mRNA region [31]. Predicted and validated target genes were
assessed using DIANA Tools. The hsa-miR-let7e-5p has a role in pathogen recognition [36]. A low level
of hsa-miR-520h was found in the alteration of the placenta, mediated by oxidative stress [37], and
hsa-miR-548d-3p was found to be involved in the control of the homeostasis of oxidative stress damage,
the metabolic network and survival pathways [38]. Here, we found an in silico interaction of that
miR with glutathione peroxidase 7 (GPX7), tet methylcytosine dioxygenase 3 (TET3) and superoxide
dismutase 2 (SOD2). GPX7 is a glutathione peroxidase homolog for which the exact biochemistry is
not fully understood [39]. TET3, which is aberrantly expressed in acute myeloid leukemia, promotes
DNA oxidation [40,41]. The mitochondria-localized manganese superoxide, SOD2, has a dichotomous
role and aids in the regulation of several types of cancers [42]. All those proteins directly or indirectly
exhibit a physical interaction with CAT. This latter protein was monitored through Western blot
analysis and decreased after KD regime. The hsa-miR-30a-5p was found to target the 3′UTR regions of
CAT. It is worth noting that the family of hsa-miR-30, to which hsa-miR-30a-5p belongs, is a promising
regulator in both development and disease [41]. In the interplay of oxidative stress, pro-oxidants, and
antioxidants, this is already known [43]. In particular, the regulation of antioxidant genes such as SOD,
CAT, and GPX was studied in mice models kept in KD. The short time-frame of KD did not affect the
SOD expression protein while it significantly decreased both GPX and CAT [44].

5. Conclusions

Modulating miRs linked to antioxidant and inflammatory states in obese people might be the key
to the success, in particular in the long term, of a nutritional program. The reciprocal action of diet
and nutrients on anti-oxidant and anti-inflammatory miRs can present tools to predict and follow the
success of a nutritional programs.
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