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Abstract: Gestational diabetes mellitus (GDM) is a very common condition among pregnant women
worldwide with important metabolic implications on the mother and the offspring. Vitamin D
status has been suggested to potentially play a role in GDM risk with no documented consequences
for the offspring. The purpose of this article was to review currently available evidence on the
relationship between vitamin D and GDM. Current evidence shows an association between vitamin
D blood levels and risk of GDM, despite heterogeneity of results across studies limit the conclusions.
Moreover, data from randomized controlled trials is scarce and resulting in null findings. Among the
limitations to be noted, improving the standardization of dosages, the characteristics of individuals
in the sample, and the appropriate outcome measurement could provide a more effective approach in
understanding the relationship between vitamin D and GDM. In conclusions, despite observational
studies may suggest that adequate vitamin D levels may decrease the risk of GDM compared
to deficiency status, evidence from clinical trials is inadequate to draft any definitive conclusion
regarding its supplementation. Future better designed randomized clinical trials taking into account
a more integrated approach could provide clearer and definitive data on the outcomes of such a
multifactorial condition.

Keywords: vitamin D; gestational diabetes mellitus; pregnancy; nutrition; supplements; antenatal
care; food fortification

1. Introduction

Interest in vitamin D has increased in the last decades with the improvement of the knowledge
regarding its wide implication in several physiological processes. In fact, although its involvement
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in bone metabolism and calcium management in bone health processes is widely confirmed,
literature repeatedly suggested non-musculoskeletal targets such as the immune system, regulation of
cell proliferation and differentiation, and glucose metabolism [1–4]. Interestingly, recent evidence
demonstrated that vitamin D may also influence metabolic parameters in both menopausal
and postmenopausal women [5,6], and, consequently, being potentially associated with human
reproduction [7–9] and birth outcomes [10].

In pregnancy, external stimuli can affect mother-foetus dyad with possible consequences for both
the mother and the offspring [11,12]. Thus, nutritional recommendations in this condition may be
specific and significantly different from those referring to adult women in general, taking into account
that adaptation for relevant nutrients would affect both mother and foetal health [13–16]. The need of
vitamin D could be higher in pregnancy [17]; in fact, many populations, both among developing and
industrialized countries, still suffer from vitamin D deficiency in pregnancy with a variable incidence
ranging from 40% to 100% [18–22]. Interestingly, vitamin D has been suggested as a potential candidate
for prevention of gestational diabetes mellitus (GDM), despite conflicting current opinions [23–25].
The purpose of this review is to summarize current evidence on the possible link between vitamin D
and GDM, briefly discussing the potential mechanisms underlying this relation and providing data
from meta-analysis and systematic reviews.

2. Potential Role of Vitamin D on GDM Pathogenesis

Increased blood glucose levels stimulate pancreatic β-cells secretion of insulin. Peripheral tissues
respond to this hormone by activating glucose transport inside the cells. The balance between
insulin secretion and its peripheral sensitivity represents the modulation system for carbohydrates
tolerance [26]. The chronic stimulation of this modulation system by high glycaemic levels and
consequent insulin resistance leads to an exhaustion of pancreatic secretion competence that provokes
alteration of insulinemia, leading to glucose intolerance and even type-2 diabetes mellitus (T2DM).

GDM is defined as an alteration of glucose tolerance with variable severity, with the first onset
during pregnancy, in the absence of a diagnosis of T2DM [27]. The GDM prevalence ranges from 1% to
25% depending on population reference and diagnostic cut-offs [28,29]. It represents the leading cause
of complications for mother and offspring [30]. Moreover, GDM is a determinant for serious long-term
complications such as obesity, T2DM, metabolic syndrome for both mother and the offspring, with a
risk for the establishment of a trans-generational predisposition [31].

Pregnancy is a condition that promotes physiological insulin resistance. Higher maternal glucose
levels allow the adequate delivery to the foetus through the placental syncytium. This well-known
phenomenon is mediated by steroid hormones and by the anti-insulin action of placental tissues [32],
which in turn can modulate insulin signalling, glucose transport and peroxisome proliferator-activated
receptor (PPAR) function [33,34], which placenta expression has been directly associated with GDM in
female population [35]. However, if there is latent and pre-existing glucose intolerance, the pregnancy
can uncover a pancreas inadequacy for compensating the secretion in response to the peripheral insulin
resistance, resulting in a β-cells dysfunction through a physio-pathological continuum [36].

Vitamin D can influence glucose homeostasis with multiple mechanisms:

• Functional pancreatic alteration can be associated with immune cell infiltration among glandular
cells with consequent inflammation [37]. Vitamin D exerts anti-inflammatory properties that can
drive the recovery of physiological insulin secretion [38].

• Insulin receptor of peripheral cells drives receptor-mediated endocytosis routing
calmodulin-dependent intracellular signalling [39]. Vitamin D enhances duodenal absorption and
renal resorption of calcium that is therefore available to the intracellular signalling activated by
insulin [40].

• Interaction between insulin-like growth factor (IGF) and molecular partners of vitamin D pathways
could play a role in glucose homeostasis.



Antioxidants 2019, 8, 511 3 of 13

• Vitamin D receptors (VDRs) were described in different extra-bones peripheral tissues which
explains the wide non-musculoskeletal functions of vitamin D, including the action on insulin
receptor that promotes insulin sensitivity [41]. Pancreatic β-cells show VDRs with a possible
modulating action of vitamin D on insulin secretion [42,43].

• Vitamin D can act indirectly through the reduction of risk factors common to GDM such as obesity.
Vitamin D is a fat-soluble vitamin and its migration from the bloodstream to fat deposits can
reduce its availability [44]. Moreover, obese patients have higher levels of vitamin D binding
protein (VDBP) that can reduce vitamin D bioactive fractions [45].

3. Cut-offs and Methods of Detection

Diagnosis of GDM includes fasting blood glucose concentration and/or oral glucose tolerance
test (OGTT), depending on the organization releasing the diagnostic procedure and cut-offs [46–49].
Specifically, the American College of Obstetricians and Gynaecologists (ACOG) recommendations
require two or more threshold values for the diagnosis, while the Canadian Diabetes Association
(CDA), the International Association of Diabetes and Pregnancy Study Groups Consensus Panel
(IADPSG), and the World Health Organization (WHO) require only one. About cut-offs, fasting plasma
glucose ≥ 5.3 mmol/L (95 mg/dL) is adopted by CDA and ACOG, while 5.1 mmol/L (92 mg/dL) is
adopted by WHO and IADPSG. Except for ACOG that use 100 g of glucose, all organizations use 75 g
of glucose for the OGTT. The 1h plasma glucose cut-off of ≥ 10.0 mmol/L (180 mg/dL) is adopted by all
but CDA that uses 10.6 mmol/L (191 mg/dL) value. There is great variability in 2 h plasma glucose
cut-offs: ≥ 8.5 (153 mg/dL) for IADPSG and WHO; ≥ 9 (162 mg/dL) for CDA; and ≥ 8.6 (155 mg/dL)
for ACOG. A 3 h plasma glucose is adopted only by ACOG with a cut-off of 7.8 mmol/L (140 mg/dL).
The American Diabetes Association (ADA) adopted two different strategy for the screening of GDM:
A one-step method requiring only one glucose plasma value exceeding fasting, 75 g OGTT at 1 or 2 h
with cut-offs equivalent to IADPSG; or a two-step method requiring a first non-fasting 50 g OGTT
evaluation, followed by a 100 g OGTT with criteria, and cut-offs equivalent to ACOG. A 2 h 75 g OGTT
adoption for GDM diagnosis were confirmed in the international and multicentre HAPO Study, based
on 25,505 pregnant women outcomes [50].

Even the vitamin D cut-offs are widely debated with no shared consensus, especially for pregnancy.
Indeed, it is not clear whether blood levels of vitamin D during pregnancy are stable through all phases
of gestation and also if they can be the same for adults in a general population.

There are some difficulties in choosing the adequate gold standard to set the cut-off for the vitamin
D. In the attempt to validate vitamin D blood levels of adequacy, the value above which the parathyroid
hormone (PTH) reaches its plateau in response to the vitamin D was chosen [51]. This plateau seems to
be reached in adults with 25-hydroxyvitamin D (25(OH)D) blood concentrations ranges from 30 to
40 ng/ml (75–100 nmol/L). However, the reverse correlation between vitamin D and PTH blood levels
is not accepted by all researchers [52–55]. PTH concentration depends on the duration of vitamin D
deficiency and on calcium that can mask vitamin D insufficiency [56]. In pregnancy, PTH levels do not
seem to correlate with vitamin D [57,58]. However, Kramer at al. highlighted a link between PTH and
GDM with the finding that the prevalence of GDM increased while increasing the PTH [59].

Cut-offs of vitamin D were also evaluated on calcium absorption that shown an increased
intestinal efficiency when postmenopausal women increased their 25(OH)D blood levels from 20 ng/ml
(50 nmol/L) to 32 ng/ml (80 nmol/L) [60]. In a review on clinical practice by Holick and co-workers,
routine population screening for vitamin D was not recommended with the higher straight of evidence
and the maximum quality for the statement [61]. However, pregnancy was considered an “at risk”
condition for vitamin D insufficiency. The American Institute of Medicine and the European Food
Safety Authority (EFSA) defined the same cut-off of vitamin D for adults and pregnant women fixing
the value of sufficiency blood levels of 25(OH)D above 20 ng/mL (50 nmol/L) [55,62]. Nevertheless,
some researchers debated the possibility that pregnancy would need higher concentrations of vitamin
D [24].
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Insufficiency and deficiency for vitamin D are common among pregnant women worldwide,
due to foetal growth, low exposure to sunlight, and low dietary intake [63]. A comprehensive analysis
of existing studies conducted on pregnant and lactating women worldwide showed low serum
vitamin D levels especially in Asia, with the highest prevalence of deficiency in Kuwait (38–41%),
Pakistan (45%), Turkey (50%), and India (60%) [64]. In Europe, also the Netherlands and Belgium
had a relevant percentage of deficiency (23% and 12%, respectively); low vitamin D status was also
found in some high-income countries such as Spain (20%), Canada (24%), America (33%), UK (35%),
Netherlands (44%), Belgium (45%), and Germany (77%), suggesting that there is a potential global
insufficient vitamin D consumption resulting in a common deficiency especially during pregnancy [64].

Deficiency criteria may depend also on methods used because of the wide availability of different
analytical techniques for the detection of markers for vitamin D. Even the preparations (i.e., solvent
extraction or the sample pre-treatment) adopted in different laboratories for the same protocol may
affect results [65,66]. Currently, there is a massive use of immunoassays methods thanks to automation,
however, there is the need of a consensus that harmonizes the cut-offs of various techniques used
such as high-performance liquid chromatography (HPLC), liquid chromatography-tandem mass
spectrometry (LC-MS/MS), chemiluminescence immunoassays (CLIA), enzyme-linked immunosorbent
assays (ELISA), competitive protein binding assays (CPBA), and radioimmunoassays (RIA) [67–70].
It seems that other methods with respect to HPLC or LC-MS/MS underestimate serum levels of vitamin
D [71]. However, all methods could suffer from the lack of a common standard and differences of
methods applied among different laboratories.

4. Evidences of Relation between Vitamin D and GDM

4.1. Observational Studies

Table 1 summarize the main data from meta-analyses of observational studies: Poel, et al. in a
systematic review and meta-analysis of seven studies including 2146 participants found an association
between 25(OH)D blood concentration and GDM (Odds Ratio (OR) 1.61, 95% Confidence Interval (CI):
1.19–2.17) [72]. Aghajafari, et al. have conducted a meta-analysis of 31 observational studies and have
found a correlation between low levels of 25(OH)D and risk for GDM (OR 1.49, 95% CI: 1.18–1.89) [24].
Similar, Wei, et al. have conducted a meta-analysis of 12 studies with 5,615 patients and have found a
moderate correlation between 25(OH)D concentrations below 50 nmol/L of pregnant women and an
increased risk of GDM (OR 1.38, 95% CI: 1.12–1.70) [73]. More recently, Zhang and colleagues found
similar conclusions after a meta-analysis of 20 studies conducted in Europe, Australia, North America,
and Asia with different study design including cross-sectional, case-control, nested case-control,
and cohort studies including 9209 participants [74]. Quality assessment indicated a homogeneous
high-quality score among studies and, even if seven different criteria for GDM diagnosis and five
different assay techniques for serum vitamin D detection were used, an overall association between
vitamin D deficiency and risk of GDM was found (OR 1.53, 95% CI: 1.33–1.75) with 4.93 nmol/L decreased
levels of 25(OH)D in case of GDM. There was a high diversity of participant characteristics with a
prevalence of vitamin D deficiency from 3.1% to 94.7% with a 25(OH)D concentration ranged from 16.5
to 97.0 nmol/L with a median of 49.30 nmol/L. Unfortunately, not all studies provided analysis adjusted
for confounding factors such as skin tone and BMI, thus heterogeneity was high (I2 = 61%). Lu, et al.
in 2016 published a wider and more updated meta-analysis of 20 observational studies with 16,515
individuals and found an association between vitamin D insufficiency and GDM risk (RR 1.45, 95%
CI: 1.15–1.83) [75]. Even in this meta-analysis the geographical origin was heterogeneous, accounting
for studies from Australia, UK, Iran, Spain, Turkey, China, Korea, India, America, and Canada that
may contribute to the differences in the subgroup analysis associations together with differences in
adjusted models, study design, and assessment of vitamin D (laboratory techniques used and cut-offs).
Again, heterogeneity was high (I2 = 66%). Characteristics of the studies were crucial to notice the
association: In fact, vitamin D insufficiency was associated with GDM in studies using HPLC-MS assay
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but not when radioimmunoassay was used. Similarly, in a systematic review and meta-analysis of
26 observational studies by Amraei and coworkers, a relation between vitamin D deficiency and risk
of GDM (OR 1.18, 95% CI: 1.01–1.35) was shown [76]. Serum 25(OH)D in GDM patients were lower
than controls with no significant association with population nationality of the studies. However,
study design (cross-sectional, prospective, nested case-control, retrospective, or prospective cohort),
in the subgroup analysis showed a variable association. Interestingly, there was limited evidence
of heterogeneity among the reviewed studies (I2 = 8.1%, p = 0.346). Standardized mean difference
(SMD) between vitamin D levels in women with GDM and those with normal glucose tolerance was
−0.26 (95% CI: From −0.39 to −0.14) with high heterogeneity (I2 = 68.8%). Limitations of this study
were the heterogeneity of GDM criteria, vitamin D cut-offs, and the lack of important information in
some studies such as skin color, socio-economic status, weight gain in pregnancy, exposure to sunlight,
and vitamin D intakes. The association between increased risk of GDM and vitamin D insufficiency
was also confirmed by Hu at al. in a meta-analysis of 29 observational studies that included 28,982
participants (OR 1.39, 95% CI: 1.20–1.60) with significant high heterogeneity (I2 = 50.2%) [77]. Moreover,
differences of 25(OH)D levels between patients with GDM and patients without any issue of glucose
tolerance was significant but with high heterogeneity (−4.79 nmol/L, 95% CI: From −6.43 to −3.15,
I2 = 65.0%). 72% of studies were conducted in developed countries but there was no homogeneity
for GDM and 25(OH)D cut-offs, as can be expected. As for other meta-analyses, also in this work the
adjustments for confounding factors such as BMI, ethnicity, season, gestational age, physical activity,
pregnancy weight gain, parity, vitamin D intake, alcohol, and socioeconomic status. were in different
combinations. Interestingly, stratification of the studies in the meta-analysis showed that the correlation
between vitamin D insufficiency and risk of GDM was significant (i) for developed countries rather
than for the developing ones; (ii) for GDM cut-offs of ADA, ADPS, and WHO but not for those from
other organizations; and (iii) in case of significant difference of 25(OH)D levels between GDM and
control but not when difference was not significant.

Table 1. Association between insufficient vitamin D and risk of Gestational Diabetes Mellitus in selected
meta-analyses of observational studies.

References No. Studies No. Participants Risk (95% CI) I2

Poel, et al. 2012 [72] 7 2146 OR 1.61 (1.19–2.17) 5.8%
Aghajafari, et al. 2013 [25] 31 4112 OR 1.49 (1.18–1.89) 0.0%

Wei, et al. 2013 [73] 12 5615 OR 1.38 (1.12–1.70) 0.0%
Zhang, et al. 2015 [74] 20 9209 OR 1.53 (1.33–1.75) 16.2%

Lu, et al. 2016 [75] 20 16,515 RR 1.45 (1.15–1.83) 66.6%
Amraei, et al. 2018 [76] 26 20,503 OR 1.18 (1.01–1.35) 8.1%

Hu, et al. 2018 [77] 29 28,982 OR 1.39 (1.20–1.60) 50.2%

OR: Odds Ratio, RR: Risk Ratio, I2: Heterogeneity.

4.2. Clinical Trials

Vitamin D supplementation for GDM seems to ameliorate different metabolic markers including
blood glucose levels, insulin resistance and inflammatory biomarkers [78–80]. Supplementation with
50,000 International Units (IU) twice monthly has been shown to improve insulin resistance
significantly [79], while 5000 IU daily has failed to improve glucose levels in another trial [81].
Table 2 summarises the results of selected meta-analyses of Randomized Controlled Trials (RCTs).
A meta-analysis in 2012 showed the protective efficacy of vitamin D supplementation (800–1000 IU
daily) for mother and child’s health outcomes [82]. Yap at al. found no change in glucose concentration
among Australian first-trimester pregnant patients with a high dosage intervention of vitamin D
supplementation [81]. However, the study was not adequately designed to explore the incidence of
GDM and it was based on a low-risk population for vitamin D deficiency. In fact, in a randomized
controlled trial, Sablok and co-workers showed about half of the GDM prevalence among vitamin D
treated group with respect to non-intervention in 200 Indian pregnant women [83]. Unfortunately,
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in two recent meta-analyses about oral supplementation of vitamin D, there was no association with
GDM, even if vitamin D assumption led to higher levels of 25(OH)D compared to control [84,85].
Pérez-Lòpez, et al. published a systematic review and meta-analysis of 13 RCTs (2299 participants) on
the effect of vitamin D in pregnancy [85]: Vitamin D supplementation was associated with increased
circulating 25(OH)D levels (mean difference 66.5 nmol/L, 95% CI: 66.2–66.7), but it did not influence
GDM and other maternal outcomes including pre-eclampsia, short for gestational age, caesarean section,
and low birth weight. Besides the moderate heterogeneity (possibly due to different geographical
areas investigated, dosage, duration, type of supplementation, or method of measurement), some
methodological issues should be taken into account, including intervention in the second semester of
pregnancy and lack of correction for some confounding factors, such as nutritional aspects that may
be crucial when considering developing countries. Palacios and co-workers conducted an updated
meta-analysis about the supplementation of vitamin D during pregnancy that included 15 RCT
involving 2,833 women regarding multiple outcomes in pregnancy [84]: Supplementation with vitamin
D raised serum 25(OH)D levels compared to placebo (mean difference 54.7 nmol/L, 95% CI: 36.6–72.9):
Coherently with the work of Pérez-Lòpez, the biomarker for vitamin D was affected by the intervention
but no difference in the risk of GDM was found. However, studies that explored the risk of GDM were
only two with low quality, thus the lack of association was not definitive. In a Cochrane review of 15
randomized and quasi-randomized trials including a total of 2833 women on vitamin D efficacy on
pregnant outcomes, only three studies investigated GDM with no association, but these trials were
the same described above by Palacios [86]. The rise of circulating 25(OH)D after supplementation,
particularly on a daily basis, is confirmed, but with a high heterogeneous response. Data on the
safety of supplementation was lacking in all studies. In 2017, Akbari and co-workers conducted a
systematic review and meta-analysis of 11 RCT on the effects of vitamin D supplementation on glucose
metabolism and lipid profiles in GDM patients (187 subjects and 184 controls) and found a significant
effect of vitamin D on metabolic homeostasis models [87]: Researchers observed an improvement of
homeostatic model assessment of insulin resistance (HOMA-IR) (SMD −0.66, 95% CI: From −1.14 to
−0.18) and quantitative insulin sensitivity check index (QUICKI) (SMD 0.73, 95% CI: From 0.26 to
1.20), despite supplementation resulted in a worsening of the homeostatic model assessment β-cells
function (HOMA-B) (SMD −0.52, 95% CI: From −0.79 to −0.25). Fasting plasma glucose, insulin,
and HbA1c were not significantly affected. High heterogeneity was reported, possibly depending on
study duration and participants’ characteristics and, more importantly, on vitamin D dosage.

Table 2. Association between intervention with vitamin D and GDM outcomes in meta-analyses of RCTs.

References No. Studies No. Participant Outcomes I2

Pérez-Lòpez, et al. 2015 [85] 13 2299 Circulating 25-OHD: (MD 66.46, CI 95% 66.22 to 66.71) 100.0%
Preeclampsia: (RR 0.88, CI 95% 0.51 to 1.52) 24.0%

Gestational diabetes: (RR 1.05, CI 95% 0.60 to 1.84) 0.0%
Small for gestational age: (RR 0.78, CI 95% 0.50 to 1.21) 15%

Low birth weight: (RR 0.72, CI 95% 0.44 to 1.16) 0.0%
Preterm birth: (RR 1.26, CI 95% 0.60 to 2.63) 0.0%

Birth weight: (MD 107.60, CI 95% 59.86 to 155.33) 0.0%
Birth length: (MD 0.30, CI 95% 0.19 to 0.41) 84.0%

Cesarean section: (RR 0.94, CI 95% 0.78 to 1.13) 0.0%
Palacios, et al. 2016 [84] 7 868 Serum 25-OHD: (MD 54.73, CI 95% 23.76 to 70.39) 99.0%

Preeclampsia: (RR 0.52, CI 95% 0.25 to 1.05) 15.5%
Gestational diabetes: (RR 0.43, CI 95% 0.05 to 3.45) NR

de-Regil, et al. 2016 [86] 3 273 Circulating 25-OHD: (MD 47.08, CI 95% 36.60 to 72.86) 98.0%
Low birth weight: (RR 0.48, CI 95% 0.23 to 1.01) 53.0%

Birth length: (MD 0.97, CI 95% −0.41 to 2.34) 84.0%
Head circumference: (MD 0.43, CI 95% 0.06 to 0.79) 50.0%
Birth weight: (MD 39.55, CI 95% −240.68 to 319.78) 96.0%

Akbari, et al. 2017 [87] 11 371 HOMA-IR: (SMD −0.66, CI 95% −1.14 to -0.18) 57.4%
QUICKI: (SMD 0.73, CI 95% 0.26 to 1.20) 64.9%

HOMA-B: (SMD −0.52, CI 95% −0.79 to −0.25) 0.0%

OR: Odds Ratio, RR: Risk Ratio, MD: Mean Difference, SMD: Standardized Mean Difference, I2: Heterogeneity, NS:
Not Significant.
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5. Limitations of Current Evidence and Future Perspectives

Despite the summary results of observational studies seem convincing, their relevance in the
evidence hierarchy and the frequent presence of heterogeneity (probably due to ethnicity, geographical
characteristics, skin tone, gestational age, cut-offs, and laboratory methods used) makes difficult the
transfer this knowledge into clinical practice. Without considering the evaluation of the quality of the
meta-analyses included in this review (which is out of the scope of the present article), there is a gap
between observational and intervention studies investigating the role of vitamin D in preventing GDM
or ameliorating its clinical presentation. This is often observed in nutritional epidemiology, and it is
currently the topic of a recent diatribe, which will not be discussed in this article neither. However, it is
noteworthy to discuss the meaning of the findings here reviewed: A disagreement in findings between
observational studies measuring vitamin D levels in association with occurrence of GDM and studies
evaluating the efficacy of vitamin D supplementation (with no univocal methodology across studies
included in the meta-analysis) in decreasing the risk of GDM is not necessarily equivalent to ambivalent
results. Specifically, the observational studies assessed a clinical condition occurring following
physiological processes (i.e., dietary consumption of vitamin D-rich foods, and sun exposure) while the
RCTs showed the effect of dietary supplementation, which actually differ from the previous condition.

The highest level of evidence for efficacy of supplementation could be provided by the results
of randomized, double-blind, placebo-controlled clinical trials. However, meta-analyses of clinical
trials may still be influenced by potential confounding factors that ultimately affect the conclusions
derived from these studies [88,89]. For instance, the gestational age of intervention can be crucial
for restoring a situation of repletion. In fact, while 25(OH)D blood levels seem to promptly respond
to supplementation, peripheral cellular deficiency may require more time, and intervention studies
designed during the late gestational age may not consider sufficient time to restore physiological
conditions useful for the prevention of dysfunctions [90]. The selection of factors to be controlled
in the experimental setting is of great importance since it is well known that some aspects such as
reduced physical activity, BMI, and high mother age are risk factors for both GDM and vitamin
D deficiency [91,92]. Other factors strictly related to vitamin D, such as endogenous biosynthesis,
type and dosage of vitamin D (including matrix used in the supplement and other substances),
diet, etc, should ideally be taken into account when planning a trial. Dose-response studies can
be crucial to design efficient intervention [93]. Dosage and duration of supplementation could be
critical to establishing a relationship between intervention and outcomes. In fact, even large boli
are rapidly absorbed and undetectable, while during the supplementation vitamin D levels reach
a plateau after three to four months of continuous provision [94,95]. In a relatively short window
like pregnancy, this aspect could be crucial. The specific vitamin D isoform used could play a role
in the conflicting results. Though vitamin D2 and vitamin D3 follow the same metabolic fate after
absorption, the latter isoform seems to provoke a more marked increase of 25(OH)D blood levels
after supplementation [23,96]. The same dosage of vitamin D3 rises two-fold the serum levels of
25(OH)D in respect to vitamin D2 supplement [23,96]. This phenomenon occurs both in the short-term
and in the long-term administration [97–99]. The greater efficiency of the vitamin D3 form seems to
depend on the more marked affinity towards the vitamin D binding protein [100–102]. The current
state of the art suggests that, although the D3 form could be a preferential substrate for the hepatic
hydroxylation, and therefore in raising the circulating levels more efficiently in the case of high bolus
doses, at physiological daily concentrations there do not seem to be any differences between the two
isoforms [103].

6. Conclusions

There is a need for larger well-designed RCTs that evaluate interventions together with the
evaluation of numerous confounding factors. However, first of all, it would be useful to define
the cut-offs, detection methods, and dosages for a more homogeneous analysis of such complex
phenomenon as the GDM. The choice of the population is decisive, therefore, to obtain a clear and



Antioxidants 2019, 8, 511 8 of 13

convincing result. Populations replete for vitamin D and with an effective program of preventive
supplementation may not respond to vitamin supplementation while other factors such as smoking,
weight, and gestational age, may mask the outcomes of the intervention. Supplementation should be
calibrated on the variation of circulating 25(OH)D and not on the intervention dosage.

Because GDM establishes in a very early stage of pregnancy, even the first trimester could be
too late for interventional supplementation and periconceptional period could be the most suitable
for interventions. The role of PTH in GDM must be elucidated and therefore intervention studies
should be able to discriminate from the possible phenomenon of PTH suppression by vitamin D during
pregnancy supplementation. Understanding the adaptive mechanisms in pregnancy and also the
bioavailability of vitamin D in its isoforms and in relation to the expression of vitamin D binding
protein and receptor could increase the interpretative power in clinical trials. Taking into account
the diffused vitamin D insufficiency among pregnant women, vitamin D can be a good candidate
for the prevention and management of GDM with no relevant risks in case of intervention protocols
at physiological dosages. However, it must be integrated into broader approaches that take into
consideration other determinants that can effectively influence the multifactorial nature of the disease.
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