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Abstract: Oxidative damage is among the factors associated with the onset of chronic pathologies,
such as neurodegenerative and metabolic diseases. Several classes of anti-oxidant compounds
have been suggested as having a protective role against cellular stressors, but, in this perspective,
peptides’ world represents a poorly explored source. In the present study, the free radical scavenging
properties, the metal ion reducing power, and the metal chelating activity of a series of sulfurated
amino acids and tripeptides were determined in vitro through canonical assays (DPPH, ABTS,
CUPRAC, FRAP, PM, and EECC) and estimated in comparison with the corresponding activities
of synthetic peptide semicarbazones, incorporating the peculiar non-proteinogenic amino acid,
tert-leucine (tLeu). The compounds exhibited remarkable anti-oxidant properties. As expected,
sulfurated compounds 1–5 were found to be the most efficient radical scavengers and strongest
reductants. Nevertheless, tLeu-containing peptides 7 and 8 disclosed notable metal reducing and
chelating activities. These unprecedented results indicate that tLeu-featuring di- and tripeptide
backbones, bearing the semicarbazone chelating moiety, are compatible with the emergence of an
anti-oxidant potential. Additionally, when tested against a panel of enzymes usually targeted for
therapeutic purposes in neurodegenerative and metabolic disorders, all samples were found to be
good inhibitors of tyrosinase.
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1. Introduction

Since the first introduction of the term, “oxidative stress” (OS), by Helmut Sies a few decades
ago [1], an overwhelming body of biomedical literature has flourished on the topic [2–5]. The original
concept of the phenomenon refers to an undesired production of pro-oxidant species, such as
oxygen (ROS) and nitrogen (RNS) free radicals, that are not adequately counterbalanced neither
by the anti-oxidant defense mechanisms of the organism, nor by the supply of natural anti-oxidants,
finally resulting in severe damage of lipids, proteins, and DNA. The OS meaning has now been
updated to acknowledge free radicals positive role as redox-signaling molecules in healthy tissues
of aerobic organisms [6,7]. Nevertheless, a plethora of studies has been reported on the claimed
anti-oxidant properties of chemicals, foods, or plant components to underline the possible benefits
against OS-related pathologies. It is otherwise well established that that the anti-oxidant mechanisms
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are based on the physiologic enzymatic and non-enzymatic redox buffering systems more than on
nutritional supplements [8].

The overall anti-oxidant potential of a specific compound, whose chemical reactivity towards
disparate toxic species may consistently differ, depends upon the variable contribution of features
as the free radical scavenging capacity, the reducing and redox buffering effectiveness, and the
metal-chelating properties. Accordingly, a range of specific anti-oxidant evaluation tests are available,
which may be appropriately selected to gain information about the precise mechanism underlying a
certain effect, and serve to characterize the anti-oxidant character in the whole, expressed as the total
anti-oxidant capacity (TAC) of the compound. Since the TAC measures only part of the anti-oxidant
power, usually excluding enzymatic activities, the non-enzymatic antioxidant capacity (NEAC) has
been recently suggested as a more fitting term [9].

The radical scavenging property refers to the molecule ability to quench oxygen (HO, HOO, ROO,
H2O2, O2

1), nitrogen (NO, HOONO), and chlorine (HOCl) free radicals or radical generating species,
thereby blocking radical chain reactions. Compounds of this type, also known as chain-breaking
anti-oxidants, well apart from preventive anti-oxidants that inhibit the formation of reactive oxygen
species, may act by two distinct mechanisms, which imply competition with biological substrates
for the (i) hydrogen atom transfer (HAT), or the (ii) single electron transfer (SET) from radicals.
In the majorities of assays for the HAT-based reactions, free radicals are thermally generated through
the decomposition of azo-compounds. The oxygen radical absorbance capacity (ORAC) method,
the total radical trapping antioxidant parameter (TRAP) test, and the lipid peroxidation assay (LPA)
are commonly used. The assays for SET reactions compare the in vitro capacity of the anti-oxidant
to reduce the oxidant cromophore in comparison with reference reactants as: Trolox, in the trolox
equivalent antioxidant capacity (TEAC) test, 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid
(ABTS), in the ABTS radical scavenging efficacy assay, and 2,2-diphenyl-1-picrylhydrazyl (DPPH),
in the DPPH analogous test. It should be borne in mind, however, that a precise boundary between
these two mechanisms does not exist, so that ABTS and DPPH are commonly considered mixed-mode
assays [10] (Table 1).

Reductant agents are electron-rich molecules, which exert their anti-oxidant effect by an
electron-transfer mechanism. This character is determined through a panel of tests for the direct
estimation of the reducing capacity of the substance, such as the ferric ion reducing antioxidant Power
(FRAP), the cupric antioxidant capacity (CUPRAC) method, and the phosphomolybdenum (PM) assay.
FRAP and CUPRAC tests measure the lowered concentration of ferric and cupric ions in solution,
respectively. The PM assay is based on the reduction of a Mo (VI)-complex to the corresponding Mo
(V)-adduct, without generation of free metal ions in solution.

Finally, the metal-chelating efficacy is of further significance to define the anti-oxidant character
of a compound. This ability prevents the participation of transition metal ions, particularly iron and
copper, in the generation of free radicals through Fenton’s or Haber-Weiss’ reactions. The transition
metal ion chelating capacity of anti-oxidants is evaluated by means of two assays, one measuring the
EDTA equivalent iron chelation capacity (EECC) and the other the carnosine equivalent iron chelation
capacity (CECC).
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Table 1. In vitro anti-oxidant capacity assays used for assessing the total anti-oxidant capacity (TAC) of compounds 1–9.

Mechanisms of Assays Type of Assay pH Solvent Anti-Oxidant Character

Assays involving Single
Electron Transfer (SET)
reactions

Non-competitive
reduction-based assays

FRAP (Ferric ion Reducing Anti-oxidant Power)
The assay does not sufficiently responds to thiols due to the

kinetic inertness of high-spin Fe(III) in the TPTZ complex
acid water hydrophilic

CUPRAC (CUPric Reducing Anti-oxidant Capacity)
The reagent rapidly oxidizes thiol-containing anti-oxidants neutral alcohols, acetone, DCM,

alcohol-water mixtures lipophilic and hydrophilic

PM (Phosphomolybdenum assay) 4–5 water hydrophilic

Assays involving mixed-mode
Hydrogen Atom Transfer (HAT)
/SET reactions

Non-competitive
scavenging and
reduction-based assays

DPPH (2,2-Di-Phenyl-1-Picryl-Hydrazyl) 3–7.5 methanol, ethanol
alcohol-water mixtures lipophilic and hydrophilic

ABTS (2,2-Azino-Bis(3-ethylbenzo-Thiazoline)-6-Sulphonic acid
Thiols are oxidized by ABTS.+ radical cation to higher oxidation

levels (sulfenic and sulfinic acids)
acid water, ethanol lipophilic and hydrophilic
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It should be considered that experimental results obtained with different methods may sensibly
deviate, and the anti-oxidant activity rank have a dissimilar trend, due to many factors including,
apart from different chemotypes and mechanisms, light, oxygen, pH, and solvent nature.

Even though, in a number of cases, biological results may be debatable, ongoing investigation on
natural agents is encouraged by the well-established link between the oxidative burden and a variety
of strongly interconnected human pathologies, including neurodegenerative disorders, metabolic
syndrome, cardiovascular diseases, type 2 diabetes (T2D), inflammation, and cancer [11,12]. Several
lines of evidence support the role played by oxidative stress in etiology and progression of Alzheimer’s
disease (AD) and Parkinson’s disease (PD), characterized by progressive synapse decline and neuronal
loss in specific brain areas [13]. Lipid peroxidation, DNA and RNA damage, protein carbonylation,
cross-linking, and fragmentation are common oxidative stress-induced hallmarks of AD and PD.
Mitochondrial damage consequent to α-amyloid (AD) or α-synuclein (PD) overproduction results
in ROS generation, which triggers neuronal injury and apoptosis through disruption of membrane
phospholipids and the release of highly reactive malondialdehyde and 4-hydroxy-2,3-nonenal as
oxidation by-products and markers, oxidative inactivation of nucleic acid and ATP-related enzymes,
and redox imbalance-related increase of oxidized/misfolded proteins [14]. In analogy, oxidative stress
is a major risk factor for the development of metabolic diseases. Results from in vitro and in vivo
studies suggest that ROS-induced pre-adipocyte proliferation and increase in size of differentiated
adipocytes have a causal role in obesity. It has also been disclosed that the selective increase in ROS
production in accumulated fat leads to elevation of systemic oxidative stress and is, at least in part,
the cause of dysregulation of adipocytokines [15].

One of the most attractive sources of bioactive compounds is represented by peptides: In view
of their chemical and structural versatility, along with the intrinsic absence of detrimental effects,
they represent ideal molecules to be unveiled as anti-oxidant candidates.

As a prosecution of our ongoing research on bioactive peptides [16–19], we were interested
at first in a comparative in vitro investigation on the anti-oxidant properties of sulfurated amino
acids considered either as single units or incorporated in small peptides. Sulfur-containing
compounds under study included L-cysteine (Cys) (1) with the related thiol-tripeptides, glutathione
[H-Glu(Cys-Gly-OH)-OH, GSH] (2), and its synthetic gamma-oxa-analogue H-Glo(Cys-Gly-OH)-OH
(3), and the amino acids, L-cystine (4), L-ergothioneine (EGT) (5), and taurine (Tau) (6) (Figure 1).
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Additionally, a further set of synthetic compounds, namely Z-tLeu-Asp(OtBu)-Sc (7),
Ac-tLeu-Leu-Asp(OtBu)-Sc (8), and ethyl 2-(D,L)-tert-butyl-mono-malonate (9), were considered in the
same study to assess their unprecedented anti-oxidant properties (Figure 2).

The anti-oxidant profile of compounds 1–9 was estimated by means of six complementary in vitro
assays (DPPH, ABTS, CUPRAC, FRAP, PM, and EECC). Results are collectively reported in Table 2.
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There is accumulating evidence that, in addition to the oxidative damage, the (abnormal) catalytic
activity of certain enzymes contribute to the development and progression of neurodegenerative and
metabolic disorders; thus, in order to better characterize the protective profile of 1–9, with the hope of
disclosing novel multifunctional compounds that can simultaneously modulate various interconnected
pathological pathways, we tested their inhibitory effects on the following standard battery of enzymes:
Acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, α-glucosidase, and α-amylase.
Enzyme inhibition is one of the most fruitful strategies in drug research. The inhibition of key
enzymes could alleviate observed symptoms in a variety of pathologies, including Alzheimer’s
disease (AD), type 2 diabetes (T2D), obesity, and skin hyperpigmentation [20]. According to the
cholinergic hypothesis [21], the approach of inhibiting cholinesterases is widely pursued for the
restoration of impaired cholinergic function in AD [22] to improve memory function. Targeting
tyrosinase is another frequent strategy thought to be beneficial in the prevention of neuronal
degeneration as well as hyperpigmentation problems [23], since the monophenolase activity of this
enzyme catalyzes the intermediate conversion of tyrosine in L-DOPA, which is an essential and
rate-limiting step in melanin synthesis [24]. Again, considering that α-glucosidase and α-amylase are
main enzymes in the carbohydrate catabolism, their inhibition could control blood glucose levels in
T2D patients [25,26]. Taken together, the discovery of novel enzyme inhibitors is of great interest to
combat the aforementioned diseases in the scientific platform.

The inhibitory activities of our compounds, 1–9, on selected enzymes are compared in Table 3.
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Table 2. Antioxidant capacity evaluation for compounds 1–9.

Compounds DPPH
(mgTE/g Sample)

ABTS
(mgTE/g Sample)

CUPRAC
(mgTE/g Sample)

FRAP
(mgTE/g Sample)

Phosphomolybdenum
(mmolTE/g Sample)

Metal Chelating
(mgEDTAE/g Sample)

L-cysteine (1) 102.50 ± 1.43 a 245.14 ± 0.21 a 939.97 ± 2.96 a 761.90 ± 16.69 a 2.28 ± 0.02 b not active
GSH (2) 65.48 ± 2.81 b 196.89 ± 0.38 b 389.74 ± 7.88 c 143.03 ± 6.68 c 2.50 ± 0.11 a not active

H-Glo(Cys-Gly-OH)-OH (3) 106.07 ± 0.54 a not active 69.36 ± 0.97 f 41.44 ± 0.86 c 0.21 ± 0.04 e 70.91 ± 0.17 b

L-cystine (4) 100.79 ± 0.40 a 1.20 ± 0.08 f 124.72 ± 4.13 d 41.59 ± 0.35 e 0.11 ± 0.01 f 84.77 ± 0.11 a

Ergothioneine (5) 73.23 ± 0.13 c 123.88 ± 0.24 c 534.55 ± 7.87 b 114.94 ± 1.75 d 2.46 ± 0.02 a 1.35 ± 0.27 f

Taurine (6) not active 5.47 ± 0.14 e 26.19 ± 0.53 g 13.47 ± 0.63 a 0.05 ± 0.01 g 20.45 ± 2.08 d

Z-tleu-Asp (OtBu)-Sc (7) not active not active 84.30 ± 1.39 e 30.33 ± 1.44 f 0.36 ± 0.01 d 43.69 ± 3.40 c

Ac-tLeu-Leu-Asp(OtBu)-Sc (8) not active 48.01 ± 1.41 d 81.31 ± 1.85 e 170.47 ± 5.50 b 2.62 ± 0.13 a 82.70 ± 3.01 a

Ethyl 2-tBu-(DL)-mono-malonate (9) not active not active 27.41 ± 3.53 g 14.29 ± 0.36 g 0.54 ± 0.01 c 13.76 ± 3.27 e

TE, Trolox equivalents; EDTAE, Ethylenediaminetetraacetic acid equivalents; different letters indicate differences in the tested samples (p < 0.05).

Table 3. In vitro enzymatic assays for compounds 1–9.

Compounds AChE Inhibition
(mgGALAE/g)

BChE Inhibition
(mgGALAE/g)

Tyrosinase Inhibition
(mgKAE/g)

Amylase Inhibition
(mmolACAE/g)

Glucosidase Inhibition
(mmolACAE/g Sample)

L-cysteine (1) 5.12 ± 0.15 a 6.14 ± 0.08 ab 216.40 ± 0.17 a 0.06 ± 0.01 e not active

GSH (2) 3.62 ± 0.04 b 6.13 ± 0.12 ab 45.60 ± 0.15 e 0.03 ± 0.01 f not active

H-Glo(Cys-Gly-OH)-OH (3) not active 6.39 ± 0.01 a 216.95 ± 0.17 a 1.37 ± 0.03 b 1.69 ± 0.01 b

L-cystine (4) 5.24 ± 0.02 a 6.38 ± 0.01 a 217.16 ± 0.55 a 1.95 ± 0.04 a 1.68 ± 0.02 b

Ergothioneine (5) 3.01 ± 0.01 c 0.18 ± 0.05 d 100.97 ± 1.71 d 0.07 ± 0.01 e not active

Taurine (6) 0.45 ± 0.03 e 0.07 ± 0.01 e 33.87 ± 1.59 f 0.07 ± 0.01 e 3.96 ± 0.95 a

Z-tleu-Asp (OtBu)-Sc (7) not active 6.37 ± 0.01 a 163.87 ± 0.90 b 0.31 ± 0.06 c 1.69 ± 0.01 b

Ac-tLeu-Leu-Asp(OtBu)-Sc (8) 5.17 ± 0.07 a 6.33 ± 0.01 a 152.69 ± 1.19 c 0.39 ± 0.08 c not active

ethyl 2-tBu-(DL)-mono-malonate (9) 2.61 ± 0.01 d 2.96 ± 0.08 c 45.37 ± 0.52 e 0.20 ± 0.02 d 0.84 ± 0.01 c

GALAE, Galatamine equivalents; KAE, Kojic acid equivalents; ACAE, Acarbose equivalents; different letters indicate differences in the tested samples (p < 0.05).
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2. Materials and Methods

2.1. Chemistry

Diethyl 2-tert-butyl-malonate, glutathione (GSH), amino acids, and their derivatives were
purchased from Sigma-Aldrich. All other reagents and solvent were of analytical grade and were
supplied from Sigma-Aldrich (Milano, Italy). The synthetic protocol for compound 3 has been
previously described [27], as well as the preparative routes to peptides 7 [28] and 8 [17]. 1H- and
13C-NMR experiments (compound 9) were recorded on a Varian VXR 300 MHz instrument (δ expressed
in ppm). Ethyl 2-(D,L)-tert-butyl-mono-malonate (9).

Diethyl 2-tert-butyl-malonate (0.71 g, 3.3 mmol) and catalytic amounts of H2O (1 mL) were added
under stirring to a solution of KOH (0.18 g, 0.3 mmol) in absolute EtOH (7 mL). After 17 h at room
temperature, the solvent was evaporated under reduced pressure, the residue taken up in 5% NaHCO3,
and the resulting aqueous solution washed with AcOEt before acidification by means of 6 N HCl.
The aqueous phase (pH = 1) was then extracted with AcOEt and the organic layers washed with
H2O. Drying and evaporation of the solvent in vacuo gave the expected mono-ester 9 as an oil (82%),
pure on TLC. Rf (CHCl3/MeOH 99:1) = 0.65; 1H-NMR (CDCl3): δ 1.12 (s, 9H, tBu CH3), 1.28 (d t,
3J = 7.3 Hz, 6J = 0.6 Hz, 3H, OCH2CH3), 3.25 (d, 6J = 0.6 Hz, 1H, (α)-CH), 4.20 (br q, 3J = 7.3 Hz,
2H, OCH2CH3), 10.0 (br s, 1H, COOH). 13C-NMR (CDCl3): δ 14.29 (OCH2CH3), 28.28 (tBu CH3),
34.43 (C(α)), 61.28 (OCH2CH3), 61.71 (C(α)), 169.74 (COOR), 173.32 (COOH).

2.2. Biological Studies

Antioxidant (DPPH and ABTS radical scavenging, reducing power (CUPRAC and FRAP),
phosphomolybdenum and metal chelating (ferrozine method)) and enzyme inhibitory activities
(cholinesterase (Elmann’s method), tyrosinase (dopachrome method), α-amylase (iodine/potassium
iodide method) and α-glucosidase (chromogenic PNPG method)) were determined using the methods
previously described by our published paper [29]. Spectrophotometric measurements for antioxidant
and enzyme inhibitory assays were performed with Thermo Scientific Multiskan GO (Thermo Fisher
Scientific, Vantaa, Finland).

For the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging assay: Sample solution
(1 mg/mL; 1 mL) was added to 4 mL of a 0.004% methanol solution of DPPH. The sample absorbance
was read at 517 nm after a 30 min incubation at room temperature in the dark. DPPH radical scavenging
activity was expressed as milligrams of trolox equivalents (mg TE/g sample).

For the ABTS (2,2′-azino-bis(3-ethylbenzothiazoline) 6-sulfonic acid) radical scavenging assay:
Briefly, ABTS+ was produced directly by reacting 7 mM ABTS solution with 2.45 mM potassium
persulfate and the mixture was allowed to stand for 12–16 h in the dark at room temperature. Prior
to beginning the assay, ABTS solution was diluted with methanol to an absorbance of 0.700 ± 0.02
at 734 nm. Sample solution (1 mg/mL; 1 mL) was added to ABTS solution (2 mL) and mixed. The
sample absorbance was read at 734 nm after a 30 min incubation at room temperature. The ABTS
radical scavenging activity was expressed as milligrams of trolox equivalents (mg TE/g sample).

For the CUPRAC (cupric ion reducing activity) activity assay: Sample solution (1 mg/mL; 0.5 mL)
was added to premixed reaction mixture containing CuCl2 (1 mL, 10 mM), neocuproine (1 mL, 7.5 mM),
and NH4Ac buffer (1 mL, 1 M, pH 7.0). Similarly, a blank was prepared by adding sample solution
(0.5 mL) to a premixed reaction mixture (3 mL) without CuCl2. Then, the sample and blank absorbances
were read at 450 nm after a 30 min incubation at room temperature. The absorbance of the blank
was subtracted from that of the sample. CUPRAC activity was expressed as milligrams of trolox
equivalents (mg TE/g sample).

For the FRAP (ferric reducing antioxidant power) activity assay: Sample solution (1 mg/mL;
0.1 mL) was added to premixed FRAP reagent (2 mL) containing acetate buffer (0.3 M, pH 3.6),
2,4,6-tris (2-pyridyl)-S-triazine (TPTZ) (10 mM) in 40 mM HCl, and ferric chloride (20 mM) in a ratio of
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10:1:1 (v/v/v). Then, the sample absorbance was read at 593 nm after a 30 min incubation at room
temperature. FRAP activity was expressed as milligrams of trolox equivalents (mg TE/g sample).

For the PM method: Sample solution (1 mg/mL; 0.3 mL) was combined with 3 mL of reagent
solution (0.6 M sulfuric acid, 28 mM sodium phosphate, and 4 mM ammonium molybdate). The sample
absorbance was read at 695 nm after a 90 min incubation at 95 ◦C. The total antioxidant capacity was
expressed as millimoles of trolox equivalents (mmol TE/g sample).

For the metal chelating activity assay: Briefly, sample solution (1 mg/mL; 2 mL) was added to
FeCl2 solution (0.05 mL, 2 mM). The reaction was initiated by the addition of 5 mM ferrozine (0.2 mL).
Similarly, a blank was prepared by adding sample solution (2 mL) to FeCl2 solution (0.05 mL, 2 mM)
and water (0.2 mL) without ferrozine. Then, the sample and blank absorbances were read at 562 nm
after a 10 min incubation at room temperature. The absorbance of the blank was subtracted from that
of the sample. The metal chelating activity was expressed as milligrams of EDTA (disodium edetate)
equivalents (mg EDTAE/g sample).

For the cholinesterase (ChE) inhibitory activity assay: Sample solution (1 mg/mL; 50 µL) was
mixed with DTNB (5,5-dithio-bis(2-nitrobenzoic) acid (Sigma, St. Louis, MO, USA) (125 µL) and
AChE (acetylcholinesterase (Electric ell acetylcholinesterase, Type-VI-S, EC 3.1.1.7, Sigma)), or BChE
(butyrylcholinesterase (horse serum butyrylcholinesterase, EC 3.1.1.8, Sigma)) solution (25 µL) in
Tris-HCl buffer (pH 8.0) in a 96-well microplate and incubated for 15 min at 25 ◦C. The reaction
was then initiated with the addition of acetylthiocholine iodide (ATCI, Sigma) or butyrylthiocholine
chloride (BTCl, Sigma) (25 µL). Similarly, a blank was prepared by adding sample solution to all
reaction reagents without enzyme (AChE or BChE) solution. The sample and blank absorbances were
read at 405 nm after 10 min incubation at 25 ◦C. The absorbance of the blank was subtracted from that
of the sample and the cholinesterase inhibitory activity was expressed as galantamine equivalents
(mgGALAE/g sample).

For the tyrosinase inhibitory activity assay: Sample solution (1 mg/mL; 25 µL) was mixed with
tyrosinase solution (40 µL, Sigma) and phosphate buffer (100 µL, pH 6.8) in a 96-well microplate and
incubated for 15 min at 25 ◦C. The reaction was then initiated with the addition of L-DOPA (40 µL,
Sigma). Similarly, a blank was prepared by adding sample solution to all reaction reagents without
enzyme (tyrosinase) solution. The sample and blank absorbances were read at 492 nm after a 10 min
incubation at 25 ◦C. The absorbance of the blank was subtracted from that of the sample and the
tyrosinase inhibitory activity was expressed as kojic acid equivalents (mgKAE/g sample).

For the α-amylase inhibitory activity assay: Sample solution (1 mg/mL; 25 µL) was mixed with
α-amylase solution (ex-porcine pancreas, EC 3.2.1.1, Sigma) (50 µL) in phosphate buffer (pH 6.9 with
6 mM sodium chloride) in a 96-well microplate and incubated for 10 min at 37 ◦C. After pre-incubation,
the reaction was initiated with the addition of starch solution (50 µL, 0.05%). Similarly, a blank was
prepared by adding sample solution to all reaction reagents without enzyme (α-amylase) solution.
The reaction mixture was incubated for 10 min at 37 ◦C. The reaction was then stopped with the
addition of HCl (25 µL, 1 M). This was followed by addition of the iodine-potassium iodide solution
(100 µL). The sample and blank absorbances were read at 630 nm. The absorbance of the blank was
subtracted from that of the sample and the α-amylase inhibitory activity was expressed as acarbose
equivalents (mmol ACE/g sample).

For the α-glucosidase inhibitory activity assay: Sample solution (1 mg/mL; 50 µL) was mixed
with glutathione (50 µL) and α-glucosidase solution (from Saccharomyces cerevisiae, EC 3.2.1.20, Sigma)
(50 µL) in phosphate buffer (pH 6.8) and PNPG (4-nitro-phenyl- α-D-glucopyranoside, Sigma) (50 µL)
in a 96-well microplate and incubated for 15 min at 37 ◦C. Similarly, a blank was prepared by adding
sample solution to all reaction reagents without enzyme (α-glucosidase) solution. The reaction was
then stopped with the addition of sodium carbonate (50 µL, 0.2 M). The sample and blank absorbances
were read at 400 nm. The absorbance of the blank was subtracted from that of the sample and
the α-glucosidase inhibitory activity was expressed as acarbose equivalents (mmol ACE/g sample).
One-way analysis of variance (ANOVA) was done to determine any differences between the tested
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samples following a Tukey’s test. p < 0.05 were assigned to be statistically significant. The statistical
procedures were performed by SPPS v. 17.0.

3. Results and Discussion

Compounds 1–6 are representative of a different oxidation status of the sulfur atom, and their
electron-donating character varies accordingly. Compounds 1–3 contain a sulfhydryl group, which is
strongly nucleophilic and may act as a radical quencher, reductant, and metal chelator. GSH (2) is the
most abundant intracellular thiol in mammals, and its role as a detoxifying agent is not questionable.
In its anti-oxidant behavior, the natural tripeptide was compared to analogue 3, containing a stable
OCONH bond as the CONH surrogate at the (α)-glutamyl junction, which has been previously reported
in the course of our previous studies on GSH chemical modification [27,30]. The protective effects
of EGT (5) against the oxidative damage, both in vitro and in vivo, have been widely documented,
despite some conflicting results [31]. This natural betaine derivative is characterized by a distinctive
thione/thiol tautomeric function. L-cystine (4), presenting a disulfide bridge, is prone to oxidative
demolition to form sulfenic, sulfinic, and sulfonic species. The last compound in the series, taurine (6),
contains a completely oxidized sulfur atom. Table 2 summarizes the efficiency data for compounds
1–9 in terms of their free radical scavenging ability (ABTS and DPPH), reducing power (CUPRAC,
FRAP, and PM), and metal chelating activity.

In the group of sulfurated compounds analyzed in this study, 1–5 present an excellent anti-oxidant
profile. In detail, compounds 1–5 exhibited good DPPH scavenging activities, with well-aligned values
ranging from 106.07 ± 0.57 mg TE/g sample, for the glutathione oxa-analogue 3, to 65.48 ± 2.81 57 mg
TE/g sample, for GSH (2), whilst taurine (6) was found devoid of activity. The radical scavenging
activity was found to decrease in the order: H-Glo(Cys-Gly-OH)-OH (3) ≥ L-cysteine (1) ≥ L-cystine
(4) > EGT (5) ≥ GSH (2).

In the ABTS assay, L-cysteine (1), GSH (2), and EGT (5) showed the highest radical
cation scavenging ability (245.14 ± 0.21 mg TE/g sample, 196.89 ± 0.38 mg TE/g sample,
and 123.88 ± 0.24 mg TE/g sample, respectively), compared to compounds 3, 4, and 6, which do not
trap ABTS•+ effectively.

Quite notable results were obtained also in the CUPRAC reducing power assay conducted on
1–6, with the strongest activity shown by L-cysteine (1) (939.97 ± 2.96 mg TE/g sample), followed by,
in descending order, EGT (5) (534.55± 7.87 mg TE/g sample), GSH (2) (389.74± 7.88 mg TE/g sample),
L-cystine (4) (124.72 ± 4.13 mg TE/g sample), and the isosteric glutathione 3 (69.36 ± 0.97 mg TE/g
sample). Taurine (6) showed the lowest activity in the assay, presenting a value of 26.19 ± 0.53 mg
TE/g sample.

A similar trend was observed for the sulfurated compounds in the FRAP rank, with their Fe3+

reducing activities descending in the following order 1 >> 2 > 5 > 4 ≈ 3 > 6. A significant value
was registered for L-cysteine (1) (761.90 ± 16.69 mg TE/g sample), resulting 5-, 6-, and even 18-fold
higher than the corresponding parameters of GSH (2) (143.03 ± 6.68 mg TE/g sample), EGT (5)
(114.94 ± 1.75 mg TE/g sample), and the lined-up couple, L-cystine (4) (41.59 ± 0.35 mg TE/g sample)
and H-Glo(Cys-Gly-OH)-OH (3) (41.44 ± 0.86 mg TE/g sample), respectively.

In the PM assay, the most efficient compounds were, in descending order, GSH (2) (2.50± 0.11 mmol
TE/g sample), EGT (5) (2.46 ± 0.02 mmol TE/g sample), and L-cysteine (1) (2.28 ± 0.02 mmol TE/g
sample), while the remaining 3, 4, and 6 exhibited only modest or negligible activity.

Finally, L-cystine (4) and H-Glo(Cys-Gly-OH)-OH (3) are the only sulfur-containing compounds
to reveal a consistent and comparable metal chelating activity (84.77 ± 0.11 mg EDTAE/g sample and
70.91 ± 0.17 mg EDTAE/g sample, respectively), followed by taurine (6) with a ca. 4-fold decrease in
efficacy (20.45 ± 2.08 mg EDTAE/g sample).

The analysis of the data concerning the sulfurated compounds 1–5 reveals a strong correlation
between the ABTS and FRAP assays. With respect to the comparison between the ferric reducing
potential, determined by the FRAP assay, and the metal chelating activity, an interesting behavior can
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be observed for the two thiol molecules, L-cystine (4) and H-Glo(Cys-Gly-OH)-OH (3): They show
in fact a Fe3+ reducing power in the low-medium range compared to the more active compounds
of 1, 2 and 5. This effect may be due to the strong metal chelating activity of 3 and 4, not shared by
the other compounds in the series, which interfere with the metal ion-containing FRAP assay [32].
It is interesting to note that, with respect to CUPRAC, FRAP values are subjected to larger variations,
which can be explained with the iron’s slower reaction kinetics if compared to copper, and the reported
interferences, occurring particularly with thiols [32].

In our experiments, L-cysteine (1) revealed the strongest free radical scavenging power and metal
reducing capacity; it is worth noting that the two Cys-based tripeptides, GSH (2) and its oxa-analogue
3, although optimally ranked, were less efficient, thus suggesting that the anti-oxidant potential of the
sulfydrylated amino acid is negatively affected when it is inserted in (α)-glutamyl peptides.

The established potential of the natural anti-oxidant EGT (5) has been confirmed by our
results; however, in contrast with previous studies observing the formation of stable bivalent metal
complexes through the SH group, we did not observe a significant metal chelating activity for this
thiolate [33]. L-cystine (4) showed a somewhat less relevant activity with respect to 5. This finding is in
agreement with the medium anti-oxidant character of the disulfide unit, which is still able to undergo
further oxidation.

As outlined in Table 2, taurine (6) displayed none or very weak activity in DPPH, ABTS, FRAP, and
PM assays, manifesting, however, moderate CUPRAC and metal chelating power. The activity of taurine
towards free radicals has not been demonstrated incontrovertibly. Although the exact mechanisms
underlying the low free radical scavenging effect of this amino acid remain to be established, it has been
suggested that it might be due to the lack of a readily oxidizable functional group [34].

Regarding non-sulfurated compounds, both peptides 7 and 8 are semicarbazone derivatives, and
incorporate the non-proteinogenic amino acid, tert-leucine (tLeu). Ongoing attention is focused on
the chemical, conformational, and medicinal aspects of this natural aliphatic residue [35–37]. Due to
its (α)-branched tert-butyl side chain, tLeu is strongly lipophilic and much more bulky with regards
to isomeric leucine and isoleucine. Excellent reports have highlighted the role of this amino acid, in
terms of steric and polar effects, in decreasing peptide radical formation and stabilization in vivo [38].
On the other hand, semicarbazones, as well as thiosemicarbazones and hydrazones, are known to
possess a wide array of biological activities, essentially due to their ability to form strongly H-bond
stabilized chelates with heavy metals [39].

The results of the same panel of tests conducted on Z-tLeu-Asp(OtBu)-Sc (7), Ac-tLeu-Leu-
Asp(OtBu)-Sc (8), and ethyl 2-(D,L)-tert-butyl-mono-malonate (9) indicated that this set of compounds
possess a moderate anti-oxidant character in comparison with the sulfurated ones (Table 2). They were
not active in the DPPH assay, and exhibited extremely large variation in their reducing power and
metal chelating capacity. We hypothesized that, owing to steric inaccessibility of their tBu-scaffolds,
7–9 may react very slow or even be inert to DPPH. However, Ac-tLeu-Leu-Asp(OtBu)-Sc (8)
showed a complete anti-oxidant profile, with a remarkable activity in ABTS (48.01 ± 1.41 mg
TE/g sample), CUPRAC (81.31 ± 1.85 mg TE/g sample), FRAP (170.47 ± 5.50 mg TE/g sample),
PM (2.62 ± 0.13 mmol TE/g sample), and metal chelating power (82.70 ± 3.01 mg EDTAE/g
sample) assays. This latter parameter is perfectly in line with the values displayed by the most
active chelating agents between the sulfur-containing compounds. Both Z-tLeu-Asp(OtBu)-Sc (7)
and 2-(D,L)-tert-butyl-mono-malonate (9) were found devoid of radical scavenging activity; however,
Z-tLeu-Asp(OtBu)-Sc (7) is equipotent to Ac-tLeu-Leu-Asp(OtBu)-Sc (8) in regard to Cu2+ reducing
power (84.30 ± 1.39 mg TE/g sample), and its metal chelating activity is still notable, resulting in half
the value of the tripeptide (43.69 ± 3.40 mg EDTAE/g sample), although it was less efficient in the
FRAP and PM assays. As far as 2-(D,L)-tert-butyl-mono-malonate (9) is concerned, its metal reducing
and chelating behavior is modest and very similar to the one exhibited by taurine (6). In conclusion,
Z-tLeu-Asp(OtBu)-Sc (7) and Ac-tLeu-Leu-Asp(OtBu)-Sc (8), the first tLeu-containing peptides to
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be tested in vitro for their anti-oxidant potential, disclosed quite interesting properties. The overall
behavior of tripeptide 8 is superior compared to dipeptide 7.

Based on these encouraging data, and for the purpose of obtaining further insights on the
protective role of this set of compounds, we investigated 1–9 as inhibitors of acetylcholinesterase
(AChE), butyrylcholinesterase (BChE), tyrosinase, α-glucosidase, and α-amylase. The inhibitory
activity results, collected in Table 3, revealed that our compounds are all effective as tyrosinase
inhibitors. In particular, L-cysteine (1), H-Glo(Cys-Gly-OH)-OH (3), and L-cystine (4) presented
an impressive and quite comparable inhibition profile against the enzyme, with activity values of
216.40 ± 0.17 mg KAE/g sample, 216.95 ± 0.17 mg KAE/g sample, and 217.16 ± 0.55 mg KAE/g
sample, respectively. A marked inhibitory effect was evidenced for peptides, Z-tLeu-Asp(OtBu)-Sc
(7) and Ac-tLeu-Leu-Asp(OtBu)-Sc (8) (163.87 ± 0.90 mg KAE/g sample and 152.69 ± 1.19 mg
KAE/g sample, respectively). The corresponding parameter for EGT (5) resulted ca. half the value
of 4 (100.97 ± 1.71 mg KAE/g sample), while GSH (2), ethyl 2-(D,L)-tert-butyl-mono-malonate
(9), and taurine (6) displayed an almost 5-/6-fold decrease in inhibitory activity with regards to
the most active compound (45.60 ± 0.15 mg KAE/g sample 45.37 ± 0.52 mg KAE/g sample,
and 33.87 ± 1.59 mg KAE/g sample, respectively). All compounds were practically inactive towards
the other selected enzymes.

4. Conclusions

The biological relevance of amino acids and peptides as anti-oxidants and protective agents
for human health needs to be explored. They offer the advantages of being non-toxic, potent,
and chemically versatile substances, with generally good pharmacokinetics and well-defined metabolic
destiny. In this paper, amino acids and peptides were tested in vitro for the first time to assess their
anti-oxidant potential and inhibitory activity towards a panel of enzymes involved in the pathogenesis
of relevant neurodegenerative and metabolic disorders, including AD and T2D.

Sulfur-containing compounds, 1–5, displayed the best anti-oxidant character in the series.
Synthetic peptides, 7 and 8, characterized by the presence of the non-coded tLeu residue in their
sequence and derivatized as semicarbazones, showed good metal reducing power and strong metal
chelating activity.

Furthermore, an inhibitory effect on tyrosinase activity was observed for all the evaluated
compounds. Taken together, our in vitro results demonstrated that the compounds under study
could help in reducing the-enzyme-induced toxicity associated with oxidative stress involved in the
progression of neurodegenerative and metabolic diseases. Closer investigations will be necessary to
unravel the multifaceted potential in the bioactivity of these compounds.
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Abbreviations

ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
ACE Acarbose equivalents
AChE acetylcholinesterase
AcOEt Ethyl acetate
AD Alzheimer’s disease
ATCI Acetylthiocholine iodide
BChE Butyrylcholinesterase
BTCI Butyrylthiocholine chloride
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CECC Carnosine Equivalent Iron Chelation Capacity
ChE Cholinesterase
13C-NMR Carbon-13 nuclear magnetic resonance
CUPRAC Cupric ion reducing antioxidant capacity
DPPH 2,2-diphenyl-1-picrylhydrazyl
DTNB 5,5-dithio-bis(2-nitrobenzoic acid)
EDTA Ethylenediaminetetraacetic Acid
EECC EDTA Equivalent Iron Chelation Capacity
EGT L-ergothioneine
EtOH Ethanol
FRAP Ferric reducing ability of plasma
GALAE Galantamine equivalents
GSH Gluthatione
HAT Hydrogen atom transfer
1H-NMR Proton nuclear magnetic resonance
KAE Kojic acid
L-DOPA Levo-dihydroxy-phenylalanine
LPA Lipid peroxidation assay
NEAC Non enzymatic antioxidant capacity
ORAC Oxygen radical absorbance capacity
OS Oxidative strees
PM Phosphomolybdenum
PNPG p-nitrophenol-alfa-D-glucopyranoside
RNS Reactive nitrogen species
ROS Reactive Oxygen Species
SET Single electron transfer
TAC Total anti-oxidant capacity
Tau Taurine
T2D type 2 diabetes
TEAC Trolox equivalent antioxidant capacity
TLC Thin layer chromatography
TPTZ 2,4,6-tris(2-pyridyl)-S-triazine
TRAP Total radical trapping antioxidant parameter
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