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Abstract: Exercise is a robust stimulus for mitochondrial adaptations in skeletal muscle which
consequently plays a central role in enhancing metabolic health. Despite this, the precise molecular
events that underpin these beneficial effects remain elusive. In this review, we discuss molecular
signals generated during exercise leading to altered mitochondrial morphology and dynamics.
In particular, we focus on the interdependence between reactive oxygen species (ROS) and
redox homeostasis, the sensing of cellular bioenergetic status via 5’ adenosine monophosphate
(AMP)-activated protein kinase (AMPK), and the regulation of mitochondrial fission and fusion.
Precisely how exercise regulates the network of these responses and their effects on mitochondrial
dynamics is not fully understood at present. We highlight the limitations that exist with the techniques
currently available, and discuss novel molecular tools to potentially advance the fields of redox
biology and mitochondrial bioenergetics. Ultimately, a greater understanding of these processes may
lead to novel mitochondria-targeted therapeutic strategies to augment or mimic exercise in order to
attenuate or reverse pathophysiology.

Keywords: exercise; mitochondria; dynamics; energetics; reactive oxygen species; redox signaling;
oxidative stress

1. Introduction

Exercise is a front-line intervention for the prevention and treatment of a large range of chronic
diseases, including obesity, type-2 diabetes, metabolic syndrome, neurological disease, osteoporosis,
and cardiovascular disease [1–4]. While the overall benefits of exercise on health outcomes are
unequivocal, there is poor compliance to the recommended physical activity levels at the population
level worldwide [5,6]. Therefore, much attention has been paid to developing ways to augment or
mimic exercise responses [7,8], which could benefit people who are unwilling or unable to meet
recommended physical activity levels. Despite this, whether a bona fide exercise mimetic (e.g., exercise
in a pill) is at all possible has been questioned, mainly because of the vast range of effects that exercise
has on all levels of physiology [9,10]. Nevertheless, many therapeutic targets are yet to be discovered
since the molecular mechanisms that underlie the beneficial effects of exercise remain incompletely
understood [11,12].

Skeletal muscle is a key endocrine and metabolic organ contributing to 30% of whole body
metabolism at rest, and up to 90% during maximal exercise [13]. Indeed, mitochondrial ATP
synthesis in skeletal muscle is critical to maintain energy homeostasis during the ~100-fold increase
in bioenergetic demand that occurs during exercise [14]. Mitochondrial adaptations involving
an increased synthesis of mitochondrial electron transport system (ETS) proteins (i.e., mitochondrial
biogenesis) following exercise training are therefore linked to improved metabolic health [15,16].
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Discussions of mitochondrial function most commonly refer to respiratory activity of the ETS and the
resulting synthesis of ATP via oxidative phosphorylation (OXPHOS). However, intrinsically linked to
respiratory activity is the generation of reactive oxygen species (ROS), which is currently thought to
occur from at least 11 sites within the ETS and its associated peripheral proteins [17]. The varying rates
of ROS generation due to fluctuating bioenergetic conditions play a vital and interdependent role in
overall mitochondrial function [18]. Furthermore, mitochondrial bioenergetics and ROS generation
are influenced by, and influence, the morphology and dynamics of mitochondria [19–21]. In skeletal
muscle, mitochondrial morphology is a highly connected reticulum that allows the distribution
of substrates and products to areas of the greatest bioenergetic demand [22,23]. Therefore, it is
reasonable to consider how the cellular perturbations imposed by exercise stimuli affect mitochondrial
dynamics and function. For instance, it is known that exercise leads to increased mitochondrial mass
(i.e., biogenesis) and the upregulation of cellular antioxidant defense systems, and that exogenous
non-specific antioxidant supplementation often impairs these adaptive responses. Despite this,
the acute effects of exercise on early molecular responses which regulate intrinsic mitochondrial
function and dynamics remain relatively less understood. In this review, we will discuss the
interdependent molecular mechanisms between mitochondrial dynamics, bioenergetics, and redox
homeostasis, with respect to how an exercise stimulus may act upon this network to orchestrate
beneficial effects on (patho)physiology.

2. Mitochondrial Morphology and Dynamics

Mitochondria are dynamic organelles that constantly move throughout the cell in order to mix
mtDNA and protein contents and to remove damaged components. Mitochondria are also trafficked to
different regions in the cell where energy is needed. This requires changes in mitochondrial movement
throughout the cell (i.e., active transport) and morphology via the delicate balance between the fission
(separation) and fusion (joining) of mitochondrial membranes. These processes are performed by
specialized protein machinery (reviewed extensively in [24–26]) at the outer and inner mitochondrial
membranes (OMM and IMM, respectively). As summarized in Figure 1, fission is actuated by
dynamin-related protein-1 (DRP1), a molecular motor protein that binds to the OMM receptors
mitochondrial fission 1 protein (FIS1), mitochondrial fission factor (MFF), and mitochondrial dynamics
proteins of 49 and 51 kDa (MID51/49), leading to oligomerization as a ring around a mitochondrion [27].
Notably, MFF binds DRP1 with a higher affinity than FIS1 in mammalian cells [28]. Upon guanosine
triphosphate (GTP) hydrolysis, the DRP1 ring constricts around a mitochondrion, separating it into
two or more discreet organelles [29]. Fission may then facilitate mitophagy, a mitochondria-specific
autophagy process which marks damaged regions for lysosomal degradation [30,31].

Conversely, to achieve membrane fusion, dimerization of the GTPase mitofusin (MFN1/2)
occurs at the OMM between two or more separate mitochondria, which are drawn together upon
GTP hydrolysis [26,32]. Once MFN1/2 fuses the OMM of adjacent mitochondria, another GTPase
optic atrophy-1 (OPA1) fuses the IMM compartments [33]. OPA1 in its non-processed long form
(L-OPA1) is tethered to the inner membrane facing the intermembrane space (IMS), allowing it to
bind another L-OPA1 on the IMM of the incoming mitochondrion. This process is tightly regulated
under basal conditions, with about half of L-OPA1 degraded by ATP-dependent zinc metalloprotease
1 (YME1L) and metalloendopeptidase mitochondrial 1 (OMA1) into an inactive IMS soluble short
form (S-OPA1) [34,35]. Overall, these fission/fusion events can occur extremely rapidly—often within
a matter of seconds [36].

Various scaffolding proteins are also involved in structure and morphology within and
between mitochondria, which are functionally distinct from fission/fusion proteins. For instance,
intermitochondrial junctions (IMJ) are formed by an OMM protein, CDGSH iron-sulfur
domain-containing protein 1 (also known as mitoNEET, based on its amino acid sequence),
which structurally tethers adjacent mitochondria without actually fusing [37,38]. Within the IMS,
large protein complexes exist, known as the mitochondrial contact site and cristae organizing system



Antioxidants 2018, 7, 7 3 of 21

(MICOS) [39]. Currently, nine subunits and interactors have been identified in mammalian cells as
constituents of MICOS and are named MIC10 to MIC60 based on molecular weight [40]. This includes
proteins otherwise known as mitofilin (MIC60) [41] and a recently discovered MIC13 (also known
as QIL1) [42], which collectively function to tether the OMM to the IMM at cristae junctions (CJ).
At the CJ, MICOS also interacts with cardiolipin, a phospholipid in the IMM which helps give cristae
its curvature [43,44]. The resulting cristae-fold ultrastructure allows for the distribution of OXPHOS
proteins within specific cristae microdomains [45]. This appears to be important for the formation of
respiratory supercomplexes (i.e., clusters of ETS complexes) which enhance ETS/OXPHOS activity by
decreasing the diffusion distances of substrates and electron transfer [20]. Also necessary to maintain
CJ integrity is the redox sensitive protein reactive oxygen species modulator 1 (ROMO1), which has
also been shown to interact with OPA1 [46].
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Figure 1. Overview of key proteins involved in mitochondrial fission and fusion. Fission processes
depicted in orange: dynamin-related protein-1 (DRP1) can bind to a range of receptor proteins
mitochondrial fission factor (MFF), mitochondrial fission 1 protein (FIS1), and mitochondrial dynamics
proteins of 49 and 51 kDa (MID49/51) on the outer mitochondrial membrane. Upon guanosine
triphosphate (GTP) hydrolysis, DRP1 oligomers constrict to divide mitochondria into separate
organelles. Fusion processes depicted in blue: GTPase mitofusin (MFN1/2) of separate mitochondria
dimerize, and then pull together upon GTP hydrolysis to fuse the outer mitochondrial membranes
(OMM). The inner mitochondrial membrane (IMM) is fused by the binding of optic atrophy-1 (OPA1)
which faces the intermembrane space (IMS) while tethered to the IMM of each incoming mitochondria.
Regulation of IMM fusion occurs via proteases metalloendopeptidase mitochondrial (OMA) and
ATP-dependent zinc metalloprotease 1 (YME1L) which cleave the membrane tethered domain of OPA1
from the IMM, rendering it non-functional. GDP: guanosine diphosphate.

A final aspect of mitochondrial dynamics is their active transport throughout the cell to regions of
energetic demand. This is performed by mitochondrial Rho GTPase and trafficking kinesin-binding
protein (MIRO/TRAK) complexes which link the mitochondrial OMM adapter protein MIRO to
kinesin motor proteins which “walk” along microtubules and microfilaments of the cytoskeleton [47].
In certain cell types such as skeletal muscle where intermyofibrillar mitochondria have more restricted
motility due to the ultrastructure of the surrounding contractile machinery, these active transport
proteins are also involved in forming protrusions that sprout from immobilized mitochondria known
as nanotunnels [48,49].

Overall, the importance of mitochondrial dynamics to cellular physiology is highlighted by the
severe detrimental effects to mitochondrial function in the absence of most of these key proteins [50,51].
The expression of these proteins and the processes which modulate their function are dynamically
regulated at multiple levels by various cellular signals. In the following sections, we discuss emerging
evidence for the roles of redox and bioenergetic homeostasis as key regulators of mitochondrial
morphology and dynamics.
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3. Mitochondrial Dynamics and ROS

Mitochondrial dynamics and morphology have increasingly been shown to be regulated
by reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS/RNS are central to
redox homeostasis—the balance between reduction and oxidation reactions via the gain or loss of
electrons. Numerous cytosolic enzymes generate superoxide anion (O2•−), such as nicotinamide
adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidase, monoamine oxidases,
and phospholipases [52]; while the primary form of RNS, nitric oxide, is generated by nitric
oxide synthases (NOS) [52]. In addition, the mitochondrial ETS generates O2•− from at least
11 different sites, at varying rates depending on the respiratory state [17,53]. Dismutation of O2•−
occurs either spontaneously in a first-order reaction, or enzymatically by superoxide dismutase
(SOD) to hydrogen peroxide (H2O2), which can be scavenged by reduced glutathione (GSH),
resulting in oxidized glutathione (GSSG), and by enzymes including glutathione peroxidase (GPX),
thioredoxin/peroxiredoxin (TRX and PRDX), and catalase [54].

Several studies have monitored mitochondrial dynamics in cell models in response to exogenous
H2O2 (Figure 2). High concentrations (3–16 mM) of exogenous H2O2 were shown to induce dose
dependent mitochondrial fragmentation in human umbilical vein endothelial cells, and also to
increase the expression of a number of both fission and fusion genes [55]. Similarly, the incubation
of C2C12 myocytes (a commonly used skeletal muscle model) at a lower concentration (250 µM) of
exogenous H2O2 for 1–25 h led to a time-dependent fragmentation of the mitochondrial reticulum [56],
although mfn1/2, opa1, dnml1, and fis1 mRNA expression were unaffected [56]. The mechanism(s) for
exogenous H2O2 induced mitochondrial fragmentation in C2C12 myocytes were later shown to involve
increased DRP1 activity [57]. In addition, it was recently shown that mitochondria with a mutation in
an iron-sulfur (Fe-S) cluster in mitoNEET were resistant to H2O2 induced fragmentation [37]. This is
interesting given that Fe-S clusters are typically thought to be oxidized by O2•−, not H2O2. Finally,
mitochondrial transport dynamics were recently shown to be decreased acutely and reversibly by
exogenous H2O2 and intracellular oxidant generation [58].
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Figure 2. Regulatory responses of mitochondrial dynamics machinery to exogenous vs. endogenous
reactive oxygen species (ROS) in the form of superoxide (O2•−) and/or hydrogen peroxide (H2O2).
Exogenous H2O2 application (often used experimentally at supraphysiologic concentrations) leads
to fragmentation via the activation of DRP1 via phosphorylation at Ser616 and also a mitoNEET
dependent mechanism. Endogenous ROS generated in specific microdomains such as sites within
the electron transport system (ETS), NADPH oxidase (NOX) or xanthine oxidase (XO) enzymes
target numerous redox active cysteine residues contained within both fission and fusion proteins via
S-glutathionylation (protein–SSG), disulfide bond formation (S–S), and S-nitrosation (protein–SNO)
post-translational modifications. This allows precise control of mitochondrial dynamics in response to
spatial and temporal changes in ROS. GSSG: oxidized glutathione; GSH: reduced glutathione; GRX:
glutaredoxin; SOD: superoxide dismutase.
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Regarding how these processes are regulated at the molecular level, there is emerging evidence
for the redox regulation of fission/fusion proteins via post-translational modifications (PTMs) [59].
For instance, in addition to the well characterized regulation of DRP1 by phosphorylation at
serine residues 616 and 637 [60], ubiquitination, and sumoylation [25], DRP1 and its interactor
proteins also contain cysteine residues, making them susceptible to redox-mediated PTMs such
as S-glutathionylation and S-nitrosation [59,61,62]. Additionally, a key mechanism for OMM fusion
between adjacent mitochondria involves dimerization of MFN1/2 via disulfide bond formation at
Cys684 in response to elevated levels of oxidized glutathione (GSSG) [63,64]. Although this pro-fusion
response to elevated GSSG is seemingly at odds with the pro-fission response to exogenous H2O2, it is
probably difficult to compare the relatively blunt effects of exogenous vs. spatially and temporally
confined endogenous redox perturbations in vivo.

At the transcriptional level, H2O2 acts as a second-messenger signaling molecule [65] and
may influence the expression of mitochondrial dynamics genes. For instance, the oxidative stress
sensing transcription factor nuclear factor erythroid 2-related factor 2 (commonly referred to as
NRF2), is a master regulator of the expression of numerous stress resistance and antioxidant target
genes [66]. However, NRF2 activation has also recently been shown to promote mitochondrial
fusion by increasing the expression of components of the 20S proteasome that led to the enhanced
ubiquitin-independent degradation of DRP1 [67]. In addition, the peroxisome proliferator-activated
receptor gamma coactivator (PGC1α/β) signaling pathway, central to the mitochondrial biogenesis
transcriptional program, is known to be redox sensitive [68], which may be pertinent since PGC1β
has also been shown to regulate MFN2 expression [69]. Taken together, redox reactions have complex
effects on mitochondrial dynamics at multiple levels of regulation.

Given the complexity of these regulatory processes, it seems likely that the reverse relationship
could also exist—i.e., that manipulation of mitochondrial dynamics can directly alter ROS generation.
Computational simulation has provided interesting insight into how mitochondrial spatial distribution
can have substantial effects on the degree of spatial and temporal ROS signal propagation [70], perhaps
as a function of feed-forward ROS induced ROS Release (RIRR) [71]. Consistent with this notion,
mitofilin, part of the intermembrane tethering MICOS complex, was shown to be required for redox
homeostasis both in cells [72] and C. elegans [41]. Moreover, Mdivi1, a quinazolinone derivative
identified as a DRP1 inhibitor [73], was shown to decrease ROS formation in response to nutrient
overload stress [74]. This suggests that mitochondrial fusion decreases the propensity for mitochondrial
ROS generation or release. It should be noted that the specificity of Mdivi1 for DRP1 has recently been
questioned due to inhibitory effects on complex-I activity [75], although the overall effects of Mdivi1
inhibition of DRP1 to decrease ROS formation are consistent with genetic approaches using an inactive
DRP1 variant [76]. Careful consideration should be given, however, when assessing mitochondrial
dynamics following the deletion or knockdown of a single gene of the fission/fusion machinery due
to possible compensatory responses and/or epistasis [77].

4. Mitochondrial Dynamics and 5’-Adenosine Monophosphate (AMP)-Activated Protein Kinase
(AMPK): Regulation by ROS?

Mitochondrial dynamics and bioenergetics display an interdependent relationship: changes
in mitochondrial network connectivity alter OXPHOS efficiency and function, and vice-versa.
The mechanistic links between sensing cellular energy status and mitochondrial dynamics are
increasingly being thought to involve AMPK (Figure 3). AMPK is a key cytosolic metabolic sensor
comprised of two regulatory β and γ subunits and a catalytic α subunit. In conditions of high
energy turnover when adenylate kinase is unable to prevent elevation of the AMP:ATP ratio,
AMP allosterically regulates AMPK activity, along with PTMs at a number of key residues [78].
Interestingly, Toyama et al. [79] recently showed that impaired mitochondrial bioenergetics (induced
via rotenone and/or antimycin-A treatment to inhibit ETS complexes I and III, respectively) induced
AMPK activation as expected, but that this AMPK response was also necessary for mitochondrial
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fission. Notably, their study identified MFF, the key OMM receptor protein for DRP1, as an AMPK
substrate, and that the phosphorylation of MFF by AMPK was necessary for fission. Further,
they showed that pharmacologic activation of AMPK alone is sufficient to induce mitochondrial
fission, consistent with an earlier investigation [80]. It was also recently shown that AMPK is both
necessary and sufficient for unc-51 like autophagy activating kinase 1 (ULK1) phosphorylation to
initiate mitophagy and mitochondrial transport to lysosomes [81]. Together, these studies demonstrate
that AMPK activation is a key regulator of mitochondrial fission and the functional significance of this
may be to initiate the mitophagy of damaged mitochondrial regions.
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Figure 3. Known and putative roles of 5’-adenosine monophosphate (AMP)-activated protein kinase
(AMPK) and ROS mediated regulation of mitochondrial dynamics processes. Under energetically
stressful conditions, rising AMP levels relative to ATP are sensed by AMPK which leads to
the phosphorylation of downstream targets including: MFF to promote DRP1 binding, unc-51
like autophagy activating kinase (ULK) to induce mitophagy, and A-kinase anchoring protein
mitochondrial (AKAP1) to bind cyclic-AMP-dependent protein kinase (PKA), leading to the inhibitory
phosphorylation of DRP1 Ser637. In addition, ROS may modulate AMPK via AMP:ATP levels,
extracellular signal-regulated kinase (ERK1/2) mediated phosphorylation, and additionally via
glutaredoxin (GRX) mediated S-glutathionylation. However, the redox regulation of AMPK has
not been experimentally shown to directly modulate fission/fusion dynamics.

There is mounting evidence that AMPK activity is redox sensitive [78]. It was originally shown
by Choi et al. that the exposure of 100–600 µM exogenous H2O2 increased AMPK activity due to
an H2O2 induced increase in the AMP:ATP ratio [82]. They also reported a separate mechanism
involving extracellular regulated kinase (ERK1/2) mediated phosphorylation of the critical Thr172
residue in the catalytic α-subunit of AMPK. Later, using AMP-insensitive mutant cells, Zmijewski et al.
demonstrated that AMPK activity was increased by S-glutathionylation of Cys 299 and 304 in the α

subunit, which preceded increases in AMP:ATP [83]. Although Hawley et al. [84] initially questioned
this report, they were later able to recapitulate the earlier finding when AMPK activity was measured
within a shorter timeframe after H2O2 exposure (10 min vs. 1 h) [85]. Shao et al. showed that the
oxidation of other Cys residues (130 and 174) in the α subunit can induce the aggregation of AMPK,
thus blocking its ability to be phosphorylated by its upstream kinases [86], highlighting the importance
of maintaining redox homeostasis for canonical AMPK activity. Consistent with this, Dong et al.
recently showed that elevated GSSG levels inhibited glutaredoxin (GRX) mediated S-glutathionylation
of AMPK necessary to increase its activity in response to 15 min exposure to 10 µM H2O2 [87].
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Collectively, these studies show that ROS can regulate AMPK activity, and that these rapid
regulatory responses may have an important functional significance to maintaining mitochondrial
function in the face of acute cellular stress. However, the hypothesized control of mitochondrial
dynamics specifically via the redox regulation of AMPK has yet to be demonstrated experimentally.

5. Exercise Regulation of Mitochondrial Dynamics: Via ROS and/or AMPK?

Exercise generally involves repeated contractions of one or more groups of skeletal muscles.
This can be for prolonged periods of time (i.e., multiple hours) at low-moderate intensity (e.g., aerobic
exercise), and/or for increasingly shorter and more intense bouts such as high intensity interval
exercise (HIIE), sprint (typically <30 s duration). Additionally, resistance exercise consists of high force
contraction in both concentric (shortening under tension) and eccentric (lengthening under tension)
contraction characteristics. Although these different modes of exercise have distinct bioenergetic
requirements, skeletal muscle mitochondrial function is undoubtedly fundamental to bioenergetics in
all of these conditions, as evidenced by the robust induction of mitochondrial biogenesis transcriptional
responses with each of these [15,88,89]. However, a greater understanding of how both acute exercise
(e.g., within a few hours post-exercise), as well as repeated bouts of exercise (i.e., training), is related to
mitochondrial dynamics is necessary.

Seminal studies using transmission electron microscopy in the late 1960s onwards by Penman [90],
Gollnick [91,92], Kiessling [93], Kirkwood [94], and others revealed that exercise induces morphological
changes to mitochondria in skeletal muscle both in rodents and humans. These studies collectively
show that the changes in response to acute exercise involve mitochondrial swelling and/or fragmentation,
but after recovery and/or with exercise training, there is increased mitochondrial volume and
connectivity. More recent studies have focused on measuring the expression of fission/fusion genes
and proteins in response to single sessions of exercise (Table 1), as well as repeated bouts of exercise
training (Table 2).

For instance, it was first shown by Cartoni et al. [95] that mfn1/2 mRNA expression
is unchanged 2 h after a single intense exercise bout, but increased at 24 h post exercise.
This was shown to be mediated by two critical exercise-responsive and transcriptional co-activators
PGC1α and estrogen-related receptor (ERRα), which drive mitochondrial biogenesis; however,
no resulting changes in the protein level of MFN2 were observed at the time points assessed [95].
Subsequently, Perry et al. [96] reported unchanged MFN1/2, FIS1, and DRP1 protein 4 h after a single
session of high intensity interval exercise (HIIE) in humans, but after two weeks of this HIIE training,
MFN1, FIS1, and DRP1 protein content were increased. A number of more recent studies [57,97–99]
have also shown similar skeletal muscle MFN1/2 increases with training, but not all [100,101].
These variable responses may be explained by differences in the nature of the exercise stimulus,
prior training status [102], species, sex, age, nutrition status (including dietary antioxidant intake),
and muscle fiber-type, as recently shown in older humans [103]. Collectively however, most studies
seem to report some increase in the expression of fusion proteins in response to long-term exercise
training (Table 2).
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Table 1. Effects of acute exercise on mitochondrial fission/fusion mRNA and protein responses.

Author, Year
[Reference] Species/Model Acute Exercise Stimulus Summary Skeletal Muscle mRNA and/or

Protein Responses
Evidence for Pro-Fission

Responses
Evidence for Pro-Fusion

Responses

Cartoni et al. 2005 [95] Human (well trained cyclists);
SAOS2 cell culture 45 min ∼80% VO2peak cycling

↑ mfn1/2 mRNA (24 h post), via ERRα and
PGC1α. ↔MFN2 protein abundance 0–24 h

post exercise
n/a ↑ mfn1/2 mRNA (24 h post)

Ding et al. 2010 [104] Rat 2.5 h ∼75% VO2peak
treadmill running

↑ mfn1 mRNA, but ↓MFN1 protein
(0–24 h post); ↑ mfn2 mRNA 24 h post. ↑ fis1

mRNA and FIS1 protein 0–24 h post

↑ fis1 mRNA, ↑ FIS1 and
↓MFN1 protein 0–24 h post

↑ mfn1 mRNA (0–24 h post);
↑ mfn2 mRNA 24 h post.

Perry et al. 2010 [96] Human 1 h ∼90% VO2peak cycling, high
intensity intervals

↔MFN1/2 , FIS1 or DRP1 protein abundance
4 h post exercise n/d n/d

Picard et al. 2013 [105] Mice 3 h voluntary running
(∼1.8 km covered)

↑ intermitochondrial contacts;↔ morphology or
MFN2 and OPA1 protein abundance n/d ↑ intermitochondrial contacts

Jamart et al. 2013 [106] Mice 1.5 h low-intesntiy (~55% VO2
max) treadmill running

↑ DRP1 Ser616 phosphorylation,↔ dnm1l
mRNA,↔ mfn1/2 mRNA ~5 min post-exercise

↑ DRP1 Ser616
phosphorylation n/d

Kitaoka et al. 2015 [97] Rat ~1 h ‘resistance exercise’ electrical
stimulation isometric contraction

↑ DRP1 Ser616 phosphorylation 0 h post
exercise. ↔ DRP1, FIS1, MFN1/2, OPA1 protein

0–24 h post contraction

↑ DRP1 Ser616
phosphorylation 0 h post

exercise
n/d

Kruse et al. 2017 [107] Human (healthy controls and
obese+T2DM) 1 h (70% VO2max) cycling

Healthy subjects 0 h post-exercise mRNA:
↑ mfn2,↔ opa1,↔ dnm1l,↔ fis1; 3 h

post-exercise mRNA:↔ mfn2,↔ opa1, ↓ dnm1l,
↔ fis1; Post-exercise protein content: ↑MFN2

↔ OPA1, DRP1; ↑ DRP1 Ser616
phosphorylation. Obese-T2DM subjects similar,

except↔MFN2 post-ex protein content

↑ DRP1 Ser616
phosphorylation

↑ mfn2 mRNA 0 h post;
↓ dnm1l mRNA 3 h post;
↑MFN2 post-exercise

protein content

↑, increased; ↓, decreased;↔, no change; n/a, not assessed; n/d, not detected.
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Table 2. Effects of long-term exercise training on mitochondrial fission/fusion mRNA and protein responses.

Author, Year [Reference] Species/Model Exercise Training Protocol Summary Skeletal Muscle mRNA and/or Protein
Responses

Evidence for Pro-Fission
Responses

Evidence for Pro-Fusion
Responses

Kirkwood et al. 1987 [94] Rat 10 weeks, 5 day/week, 10–120 min/day
moderate-high intensity treadmill running

↑mitochondrial volume density % in vastus lateralis
(VL) and soleus. ↓mitochondrial surface:volume
ratio in deep VL yet↔ in superficial VL or soleus

n/d ↓mitochondrial surface:
volume

Perry et al. 2010 [96] Human
2 weeks, 3–4 day/week, 1 h/day high

intensity interval cycling exercise
∼90% VO2peak

↑MFN1 , FIS1 and DRP1 protein;↔MFN2 protein
after 2 week training ↑ FIS1 and DRP1 protein ↑MFN1

Konopka et al. 2013 [99] Human 12 weeks moderate intensity cycling
exercise training ↑MFN1/2 and FIS1 total protein ↑ FIS1 protein ↑MFN1/2 protein

Feng et al. 2013 [100] Rat 4 weeks treadmill training ↓MFN2 protein in mitochondrial fraction,↔ in
total homogenate ↓MFN2 in mito fraction n/d

Iqbal et al. 2013 [57] Rat 7 day, 3 h/day electrical stimulation

↑ thickness of the subsarcolemma (SS)
mitochondrial layer by 58%. Intermyofibrillar (IMF)

mitochondria 75% larger and more reticular.
Protein in SS mitochondria: ↑ OPA1 (36%) and

MFN2 (53%); ↓ DRP1 (13%),↔ FIS1.
Whole homogenate similar changes

(therefore, not due to IMF)

n/d ↑MFN2 and OPA1,
↓ DRP1 protein

Fealy et al. 2014 [108] Human 12 weeks, 5 h/week, ~80% Hrmax ↔ DRP1 total protein, ↓ basal DRP1 Ser616
phosphorylation. ↑ opa1 and dnm1l mRNA (basal) ↑ dnm1l mRNA ↑ opa1 mRNA

Kitaoka et al. 2015 [97] Rat 4 weeks ‘resistance exercise’ electrical
stimulation isometric contraction ↑ OPA1 and MFN1/2 protein n/d ↑ OPA1 and

MFN1/2 protein

Marton et al. 2015 [101] Rat 3 months treadmill running training ↑ FIS1, ↓MFN1 protein content ↑ FIS1, ↓MFN1 protein

MacInnis et al. 2017 [98] Human 2 weeks, 3 day/week single-leg cycling
moderate and high intensity in either leg

↑MFN2 protein in whole homogenate, but↔ in
type I or type II fibers analysed separately n/a ↑MFN2 protein

Wyckelsma et al. 2017
[103] Human (older) 12 weeks, ~2 h/week cycling ~90% Hrmax ↓MFN2 protein in type II fibers, but↔ in type I or

whole homogenate. ↔MID49 in whole homogenate
↓MFN2 protein in

type II fibers n/d

↑, increased; ↓, decreased;↔, no change; n/a, not assessed; n/d, not detected.
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A limited number of studies have assessed in vivo responses to exercise under conditions of
knockdown or overexpression of mitochondrial dynamics proteins. Using a haploinsufficient Opa1
mouse model (~50% of wild-type OPA1 expression), Caffin et al. reported an enlarged mitochondrial
ultrastructure with altered cristae morphology [109]. These mutant mice paradoxically displayed
an increased exercise endurance capacity compared to wild-type individuals in response to training,
which was apparently due to a compensatory increase in mitochondrial fatty acid transport and
oxidation. Whether the effects of OPA1 deficiency were primary or compensatory to the observed
exercise phenotype remains to be elucidated. Recently, Weir et al. showed that the deletion of either
fission or fusion proteins was detrimental to C. elegans lifespan and mitochondrial morphology;
whereas the loss of fission and fusion proteins (double knockout) was not [110]. Interestingly,
while these double knockout animals had a relatively normal mitochondrial morphology and were
phenotypically similar to wild-type animals under basal conditions, their mitochondrial morphology
was unable to dynamically respond to energetic stress induced by intermittent fasting. This finding is
consistent with responses in cardiac specific triple-knockout of Mfn1/Mfn2/Drp1 in mice, where the
balanced loss of mitochondrial dynamics resulted in a less severe phenotype than the imbalanced loss
of fission or fusion processes individually [111].

Another recent report by Coronado et al. showed that cardiac mitochondrial fragmentation is
a physiologic response to acute exercise in mice [112]. When treated with the DRP1 inhibitors Mdivi1
or P110 (a peptide inhibitor of FIS1) immediately prior to exercise, mice displayed less exercise-induced
mitochondrial fragmentation, which negatively affected their exercise capacity and impaired their
ex vivo mitochondrial respiratory function. Together, these findings support the notion that mild
mitochondrial fragmentation is a necessary response to increased bioenergetic flux during exercise.

While protein abundance is important for the overall capacity to undergo fission/fusion events,
it is the acute regulatory events such as post-translational protein modifications which trigger the
actual morphological changes observed. For instance, Picard et al. [105] used transmission electron
microscopy to demonstrate that in mouse skeletal muscle following a single three hour session of
“low” intensity voluntary treadmill running (to avoid mitochondrial swelling), both subsarcolemmal
and intermyofibrillar localized mitochondria had an increased number of intermitochondrial contact
points which are associated with subsequent membrane fusion, yet this occurred in the absence of
overt changes to morphology or MFN2 or OPA1 protein abundance. To this end, relatively little is
known about how exercise acutely regulates the function of the fission/fusion machinery (Figure 4).

Exercise acutely and markedly increases bioenergetic fluxes from ATP consumption from
contractile (actin-myosin crossbridge cycling) and noncontractile processes [113]. In skeletal muscle,
the mitochondrial reticulum is known to be highly connected and dynamically regulated by
bioenergetic fluxes in order to optimally distribute substrates, ATP, and mitochondrial membrane
potential [22,114,115]. Since mitochondrial fusion is known to be a membrane potential-dependent
process [116,117], moderate decreases in mitochondrial membrane potential due to maximal energetic
demand [118,119], such as during intense exercise, could shift the balance towards pro-fission. This may
provide some explanation for “swollen” or fragmented mitochondria after acute bouts of intense
exercise [91]. These acute post-exercise pro-fission responses in mitochondrial dynamics may be later
surpassed by pro-fusion adaptive responses. Beneficial changes may include a more tightly packed
cristae morphology [120] and ETS supercomplex assembly to increase the OXPHOS efficiency [121],
which would subsequently allow for a better distribution of energy throughout the muscle cell [22].

Increases in bioenergetic demand during exercise result in an increased AMP:ATP ratio, which is
sensed by AMPK [122–124]. Consistent with the work of Toyama et al. [79], Hoffman et al. reported
that MFF is phosphorylated by AMPK after acute exercise [123], highlighting a pro-fission response to
acute exercise. Another pro-fission response to acute exercise is likely via the increased stimulatory
phosphorylation of DRP1 at Ser616 [97,106], possibly by the upstream kinase ERK1/2 which is known
to be readily activated by exercise [125]. Interestingly, after training, basal DRP1 Ser616 phosphorylation
levels are decreased [108]. Also in response to exercise, Hoffman et al. [123] demonstrated that
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AMPK can phosphorylate the OMM protein A-kinase anchoring protein (AKAP1) at Ser103. Upon its
phosphorylation, AKAP1 binds protein kinase A (PKA) to the OMM, and the increased PKA activity
resulting from exercise [123] phosphorylates DRP1 at Ser637. Phosphorylation at this site is inhibitory
to its GTPase activity [126,127], thus overall exerting a pro-fusion effect in an AMPK dependent manner.
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Figure 4. Proposed effects of exercise on mitochondrial dynamics via AMPK and ROS linked
mechanisms. Exercise of distinct mode, volume, and intensity may have differential effects on cellular
perturbations. This includes an increased bioenergetic demand resulting in an increased AMP:ATP
ratio, along with increased contraction mediated and post-exercise ROS formation. These perturbations
are sensed by AMPK, which initiates a cascade of phosphorylation signaling events that are interlinked
with redox mediated post translational modifications. The specific activation or inhibition of each
fission (depicted in orange) or fusion (depicted in blue) effector results in a net mitochondrial dynamics
response which allows the myocyte to better meet the localized bioenergetic requirements of subsequent
energetic stress.

Furthermore, the recent interest in AMPK as a redox sensitive signaling hub has been considered
in the context of exercise [128]. Indeed, exercise increases net ROS formation during exercise [129–132].
Increased ROS occurs mostly from non-mitochondrial sources during contractile activity such as
NADPH oxidases and xanthine oxidase [17,133,134], and mitochondria are likely a primary source
of O2•− generation in the post exercise period [53]. Importantly, post-exercise mitochondrial O2•−
generation may be altered in a respiratory state-dependent manner [135]. This may be a result of
exercise-induced post-translational modifications to mitochondrial ETS proteins and/or antioxidant
enzymes [53,136–138]. These spatial and temporal changes in ROS formation and removal are
important for appropriate responses to exercise [125,139]. Thus, based on cell-based experiments
and correlative data, it seems reasonable to hypothesize that exercise-mediated alterations in ROS
generation and redox homeostasis could regulate the redox components of mitochondrial dynamics.
This could occur either via direct oxidative modifications to fission/fusion proteins, or indirectly via
a redox sensitive AMPK-mediated mechanism.

In summary, there are separate lines of evidence largely from in vitro studies that demonstrate
multiple levels of regulation of the complex relationships between (a) ROS and mitochondrial
dynamics; (b) AMPK and mitochondrial dynamics; and (c) ROS and AMPK. However, to the best
of our knowledge, no studies to date have systematically investigated the potential interdependent
relationships between all three, either in vitro or in vivo. As a systemic physiologic stimulus, it seems
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likely that exercise could simultaneously target all of the aforementioned pathways. Perhaps it is a sum
of all these and likely many other regulatory mechanisms whose interdependent relationships enable
the fine tuning of the overall mitochondrial dynamics responses to exercise. A greater understanding
of these mechanisms may pave the way toward novel therapeutic strategies. However, an experimental
investigation of such a complex system presents a number of methodological challenges.

6. Future Research and Novel Methodologies

Experimental manipulation of ROS is fundamentally challenging given that their effects are
highly dependent upon their spatial and temporal generation. Mitochondrial ETS inhibitors such
as rotenone and antimycin-A lead to O2•− generation at complex I and III. However, a major
limitation is that the effects specific to oxidant generation are difficult to discriminate from the
inhibition of mitochondrial function. Recently, Brand and colleagues have developed small molecules
which bind with high specificity to complex I and III (known as Suppressors of site IQ and IIIQo

Electron Leak—S1QEL and S3QEL, respectively) [140,141]. These molecules reportedly suppress O2•−
generation at these sites without affecting respiratory activity. It will be interesting to investigate
the role of post-exercise mitochondrial O2•− mediated adaptive responses using these molecules,
considering that many “global” antioxidant supplementation studies often impair beneficial exercise
responses [125,134,142–144]. The effects of precise manipulation of site specific ROS formation on
mitochondrial respiratory function may be assessed by high-throughput [145] or high-resolution
respirometry methods [146]. Despite the significant advance that this represents to investigate
mitochondrial ROS-specific effects on physiology, like any pharmacologic intervention, there exists
a lack of ability to rapidly reverse the action.

A novel approach to address this challenge is the utilization of optogenetics, which uses light to
activate genetically encoded photosensitive proteins. To this end, an increasing range of photosensitive
proteins has been developed such as selective ion channels [147,148] and pumps [149], as well as
photoactivatable “caged” kinases [150]. Notably, optogenetic ROS generating proteins (RGPs) are
available, such as KillerRed and SuperNova, which generate O2•− upon illumination. This is achieved
using a specific wavelength of light, allowing for reversible and precise temporal control of ROS
generation [151]. Currently, it is unknown whether there are compartment specific effects of ROS
in response to exercise. These optogenetic tools can be combined with the use of tissue specific
promoters, optogenetic proteins can be expressed in specific cell-types in vivo, and/or be fused
to an endogenous protein to achieve spatial control of oxidant generation in a specific cellular
microdomain [152,153]. In support of this, it was shown very recently that KillerRed targeted to
the mitochondrial matrix can induce acute mitochondrial fission in hippocampal cells [154]. Moreover,
numerous genetically encoded fluorescent redox sensors are available to indicate compartment specific
redox status in vivo [155].

Because light penetration in tissues such as skeletal muscle may pose limitations for some
optogenetic studies, model organisms such as C. elegans, can be utilized due to their transparency
and established methods for genetic manipulation [152]. Importantly, C. elegans have recently been
shown to possess conserved mammalian molecular exercise responses relating to energy metabolism,
mitochondrial redox homeostasis [156], and mitochondrial morphology [157]. Therefore, the collection
of these relatively new tools offers unique opportunities to elucidate the regulatory links between
ROS-AMPK-mitochondrial dynamics in response to exercise. Currently, there are many open questions
including: what are the precise sources of ROS during and after exercise? How does ROS regulate
mitochondrial dynamics in (patho)physiology? Are different tissues and/or subcellular populations
of mitochondria differentially involved in the beneficial exercise phenotype, and are there distinct
mechanisms regulating their dynamics? Does exercise regulate individual aspects of mitochondrial
dynamics (i.e., biogenesis, fission, fusion, motility, and mitophagy) independent of each other, or are
these responses “networked”? Answering these questions could have important implications not only
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for understanding the mechanisms that underlie the benefits of exercise, but also for the plethora of
diseases associated with mitochondrial dysfunction [24,158].

7. Conclusions

In summary, mitochondrial dynamics are critical for organisms to adapt to various stressors;
however, elucidation of the precise underlying molecular mechanisms which regulate these responses
is currently incomplete. Exercise is a potent stressor to mitochondrial bioenergetics and redox
homeostasis, and these signals may be sensed by AMPK to fine tune the regulation of mitochondrial
dynamics (Figure 5). The development of new tools to accurately measure and generate ROS in
a far greater spatial and temporal resolution within specific microdomains will be crucial to better
understand these complex mechanisms in the context of exercise. Collectively, further research in this
field could lead to the identification of novel therapeutic targets to augment or mimic key molecular
aspects of exercise responses, which may have implications for numerous prevalent diseases.Antioxidants 2018, 7, 7  14 of 22 
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