Next Article in Journal
Is Root Catalase a Bifunctional Catalase-Peroxidase?
Previous Article in Journal
Effects of β-Carotene and Its Cleavage Products in Primary Pneumocyte Type II Cells
Previous Article in Special Issue
Inorganic Reactive Sulfur-Nitrogen Species: Intricate Release Mechanisms or Cacophony in Yellow, Blue and Red?
Article Menu

Export Article

Open AccessReview
Antioxidants 2017, 6(2), 38; doi:10.3390/antiox6020038

The Reactive Sulfur Species Concept: 15 Years On

1
Department of Pharmacology and Toxicology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
2
Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2 1, Saarbruecken D-66123, Germany
*
Authors to whom correspondence should be addressed.
Academic Editor: Michael J. Davies
Received: 16 March 2017 / Revised: 21 April 2017 / Accepted: 10 May 2017 / Published: 23 May 2017
View Full-Text   |   Download PDF [1630 KB, uploaded 31 May 2017]   |  

Abstract

Fifteen years ago, in 2001, the concept of “Reactive Sulfur Species” or RSS was advocated as a working hypothesis. Since then various organic as well as inorganic RSS have attracted considerable interest and stimulated many new and often unexpected avenues in research and product development. During this time, it has become apparent that molecules with sulfur-containing functional groups are not just the passive “victims” of oxidative stress or simple conveyors of signals in cells, but can also be stressors in their own right, with pivotal roles in cellular function and homeostasis. Many “exotic” sulfur-based compounds, often of natural origin, have entered the fray in the context of nutrition, ageing, chemoprevention and therapy. In parallel, the field of inorganic RSS has come to the forefront of research, with short-lived yet metabolically important intermediates, such as various sulfur-nitrogen species and polysulfides (Sx2−), playing important roles. Between 2003 and 2005 several breath-taking discoveries emerged characterising unusual sulfur redox states in biology, and since then the truly unique role of sulfur-dependent redox systems has become apparent. Following these discoveries, over the last decade a “hunt” and, more recently, mining for such modifications has begun—and still continues—often in conjunction with new, innovative and complex labelling and analytical methods to capture the (entire) sulfur “redoxome”. A key distinction for RSS is that, unlike oxygen or nitrogen, sulfur not only forms a plethora of specific reactive species, but sulfur also targets itself, as sulfur containing molecules, i.e., peptides, proteins and enzymes, preferentially react with RSS. Not surprisingly, today this sulfur-centred redox signalling and control inside the living cell is a burning issue, which has moved on from the predominantly thiol/disulfide biochemistry of the past to a complex labyrinth of interacting signalling and control pathways which involve various sulfur oxidation states, sulfur species and reactions. RSS are omnipresent and, in some instances, are even considered as the true bearers of redox control, perhaps being more important than the Reactive Oxygen Species (ROS) or Reactive Nitrogen Species (RNS) which for decades have dominated the redox field. In other(s) words, in 2017, sulfur redox is “on the rise”, and the idea of RSS resonates throughout the Life Sciences. Still, the RSS story isn’t over yet. Many RSS are at the heart of “mistaken identities” which urgently require clarification and may even provide the foundations for further scientific revolutions in the years to come. In light of these developments, it is therefore the perfect time to revisit the original hypotheses, to select highlights in the field and to question and eventually update our concept of “Reactive Sulfur Species”. View Full-Text
Keywords: cellular thiolstat; redox signalling; sulfur radicals; reactive sulfur species; redoxome cellular thiolstat; redox signalling; sulfur radicals; reactive sulfur species; redoxome
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Giles, G.I.; Nasim, M.J.; Ali, W.; Jacob, C. The Reactive Sulfur Species Concept: 15 Years On. Antioxidants 2017, 6, 38.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Antioxidants EISSN 2076-3921 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top