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Abstract: Obesity is in epidemic proportions in many parts of the world, contributing to increas-
ing rates of non-alcoholic fatty liver disease (NAFLD). NAFLD represents a range of conditions
from the initial stage of fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to
severe fibrosis, through to hepatocellular carcinoma. There currently exists no treatment for the
long-term management of NAFLD/NASH, however, dietary interventions have been investigated
for the treatment of NASH, including several polyphenolic compounds. Ellagic acid is one such
polyphenolic compound. Nutraceutical food abundant in ellagic acid undergoes initial hydrolysis
to free ellagic acid within the stomach and small intestine. The proposed mechanism of action of
ellagic acid extends beyond its initial therapeutic potential, as it is further broken down by the gut
microbiome into urolithin. Both ellagic acid and urolithin have been found to alleviate oxidative
stress, inflammation, and fibrosis, which are associated with NAFLD/NASH. While progress has
been made in understanding the pharmacological and biological activity of ellagic acid and its
involvement in NAFLD/NASH, it has yet to be fully elucidated. Thus, the aim of this review is to
summarise the currently available literature elucidating the therapeutic potential of ellagic acid and
its microbial-derived metabolite urolithin in NAFLD/NASH.

Keywords: ellagic acid; urolithins; non-alcoholic fatty liver disease; non-alcoholic steatohepatitis;
dietarily interventions

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the physiological manifestation of obe-
sity in the liver. This fast-growing epidemic is the most prevalent form of chronic liver
disease globally. The prevalence of NAFLD has increased from 25.24% in 2015 to 29.38% in
2021 [1–3]. This condition now accounts for 45.8% of all cases of chronic-liver-disease-
related deaths worldwide [1,3,4]. NAFLD can advance to non-alcoholic steatohepatitis
(NASH), and approximately 20% of the affected population is likely to develop NASH [1,5].
Hepatic steatosis, alongside hepatocellular injury and inflammation, define NASH as these
are the significant contributors to the onset of cirrhosis and hepatocellular carcinoma [1,6].
Although the specific pathogenesis of NASH remains uncertain, associated risk factors
such as excess caloric intake, sedentary lifestyle, insulin resistance, liver lipogenesis, and
gut microbiota dysbiosis are well established [7–10]. Despite years of extensive global re-
search, there is currently no approved drug for the treatment of NASH [5,10–12]. Oxidative
stress significantly contributes to the progression from NAFLD to NASH evidenced by
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an increase in oxidative stress and impaired antioxidant defence mechanisms throughout
disease progression [7,13]. Several studies have been undertaken to investigate the efficacy
of antioxidants in mitigating this phenomenon [10,14–16]. Ellagic acid is widely recognized
for its antioxidant properties, but it also exhibits anti-inflammatory, antifibrotic, and an-
ticancer properties [17–20]. In recent decades, this common non-flavonoid polyphenolic
compound caught the attention for its hepatoprotective properties and as a therapeutic
agent for treating NAFLD/NASH [14,21,22]. This review focuses on the effectiveness of
ellagic acid in treating NAFLD/NASH by summarising relevant literature concerning its
potential therapeutic mechanism on the liver.

2. Current Understanding of NAFLD/NASH

NAFLD represents a range of conditions from simple fatty liver (non-alcoholic fatty
liver, NAFL) to NASH, which can progress to more severe fibrosis, cirrhosis, and potentially
liver cancer [9,23]. NAFLD is characterised by over-accumulation of triglycerides in hepa-
tocytes and is actively involved in all aspects of the Metabolic Syndrome, including obesity,
type 2 diabetes mellitus, arterial hypertension, and hyperlipidaemia [24–26]. Progression
to NASH is characterised by active liver tissue damage through increased inflammation
and hepatocyte ballooning, as measured by the NAFLD Activity Score (NAS) [6].

Research advocates have campaigned for the renaming of NAFLD to metabolic dys-
function associated with fatty liver disease (MAFLD), arguing that NAFLD is viewed as an
exclusionary term, defined only in the absence of conditions such as viral hepatitis B and C,
autoimmune disorders, or excessive alcohol consumption [27,28]. In contrast to NAFLD,
MAFLD is diagnosed on the onset of hepatic steatosis alongside the presence of one of the
following: obesity/overweight, diabetes mellitus, or indicators of metabolic dysregula-
tion [29,30]. Globally, MAFLD affects 38.8% of adults, carrying the potential to progress to
cirrhosis and instigate significant extrahepatic conditions such as cardiovascular disease
and chronic kidney disease [31,32]. However, the diagnostic criteria and the concept are
novel and yet to be further tested and validated.

Manifestation of NAFLD/NASH

The current understanding of NAFLD/NASH development and progression has shifted
from the traditional two-hit hypothesis to a multiple, parallel-hit hypothesis, where patho-
genetic influences act synergistically [8]. According to the multiple-hit hypothesis, hepato-
cellular damage not only originates from insulin resistance but also from dysbiosis of the
gut microbiota, overnutrition, secretion of hormones from adipose tissue, and genetic and
epigenetic factors [7,8]. Insulin resistance plays a pivotal role in altering lipid metabolism
in the body, where it stimulates hepatic de novo lipogenesis and adipose tissue lipolysis,
causing an escalated influx of fatty acids to the liver [33–36]. This results in elevated levels of
inflammatory cytokine and adipokine secretion due to adipose tissue dysfunction [34,37].
Adipokines such as adiponectin and leptin induce insulin resistance, stimulate lipogenesis,
and trigger inflammation, resulting in the accumulation of triglycerides within hepato-
cytes and their damage [38–40]. Cytokines play a crucial role in promoting inflammation
in the liver. Pro-inflammatory cytokines such as tumour necrosis factor-alpha (TNF-α),
interleukin-6 (IL-6), and interleukin-1 β (IL-1β) activate and enhance liver inflammation,
leading to hepatic inflammation and hepatocyte damage [41–43]. Intrahepatic accumulation
of fatty acids induces the production of lipotoxic lipids, which then increase endoplasmic
reticulum stress and mitochondrial dysfunction. More importantly, in the liver, this results
in an increase in oxidative stress and inflammation, causing the progression of NASH from
steatosis [11,44,45]. Dysbiosis of the gut microbiome has also been found to activate the
innate immune system, causing a cascade of inflammatory cytokines to be released from
immune cells [46–50]. Subsequently, the gut microbiome has been identified as a key player
in the progression of NAFLD to NASH; however, further research is needed to fully un-
derstand the role of the gut microbiome. One such mechanism of action is dysbiosis of the
gut microbiome, which alters bile acid production and composition [51–53]. Alterations in
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bile acids can damage hepatocytes by promoting cellular injury, apoptosis, mitochondrial
dysfunction, membrane disruption, and oxidative stress leading to liver damage [54–56].
These interactions further add to the hepatocellular damage, propelling the progression of
NAFLD to NASH [7–9,57].

An increase in oxidative stress has been identified to be a major accelerant in the
progression of NAFLD to NASH [58,59]. Malfunction of cellular organelles, such as the
mitochondria and endoplasmic reticulum drives the increase in oxidative stress seen with
liver damage [44,60]. During the progression of liver disease, uncontrolled accumulation
of free fatty acids and lipotoxic lipids leads to an increase in reactive oxygen species and
the exhaustion of the antioxidant defence system, which includes both enzymes and non-
enzymatic antioxidants in the liver, which in turn may cause changes in hepatocyte structure
and function [61,62]. Collectively, these processes result in chronic inflammation followed
by hepatocyte cell death and hepatic stellate cell (HSC) activation, which then leads to
fibrosis [45,59,60,63,64]. At the cellular level, the development of NASH is characterised
by interactions between resident liver cells and immune-recruited cells, including liver
progenitor cells (LPC), HSCs, and macrophages [26,65–68].

3. Current Treatments

There are no specific medications approved by the European Medicines Agency (EMA)
or the Food and Drug Administration (FDA) for the treatment of NAFLD/NASH [10,12,69,70].
Lifestyle changes that include healthier eating and regular exercise are an effective treat-
ment for NASH [71,72], along with weight loss and bariatric surgery [10,65,71,73–75].
Increased intake of carbohydrates, trans- and saturated fats, animal proteins (red meat),
and processed food coupled with low intake of fibrous food are linked with NAFLD/NASH
progression [76,77]. Portion control and calorie restriction are important, as excessive calo-
rie consumption can lead to weight gain and exacerbate liver fat accumulation [78,79].
Recommendations suggest focusing on whole grains and low-glycemic index foods for
carbohydrate intake and prioritising monounsaturated and polyunsaturated fats over
other types for dietary fat intake [77,79–82]. Additionally, integrating vegetable protein
sources, prebiotic fibers, and probiotic-enriched foods into the diet not only aids in reducing
calorie intake but also fosters healthy gut microbiota [76,83,84]. Moreover, incorporating
antioxidant-rich foods like berries, nuts, and leafy greens can mitigate oxidative stress and
inflammation, crucial factors contributing to liver damage in NAFLD/NASH [78,84,85].
However, unlike communicable diseases, these treatments experience high dropout rates, a
common phenomenon observed with other therapies that require individual behavioural
changes. The dropout rate for lifestyle-based treatments, including diet change and greater
physical activity has been reported to be between 10–80% [86]. These findings illustrate the
necessity for effective treatments utilising pharmacological agents, both as a complement to
lifestyle modifications and as a standalone approach for managing the significant propor-
tion of patients that are unable to adopt “healthier” lifestyles due to mental and physical
impairments, as well as busy lifestyles.

Several therapeutic approaches have been proposed for the treatment of NASH, how-
ever, none have yet been approved [10,12,87,88]. Recent studies indicate that antidiabetic
drugs and glucagon-like peptide 1 (GLP-1) receptor agonists represent promising treat-
ments for NASH [89,90]. Two types of agonists, Liraglutide and Semaglutide, have been
shown to be effective in reducing insulin resistance, liver lipotoxicity, and hyperglycemia
in patients with NASH [89,91,92]. However, a lack of oral administration and an increased
risk of pancreatitis are two known side effects of these drugs [12].

Semaglutide, an FDA-approved treatment for type 2 diabetes, is recognised for its
greater metabolic effects compared to Liraglutide. In a randomized, placebo-controlled,
phase 2 clinical trial, researchers investigated Semaglutide impact on the histologic res-
olution of NASH in patients diagnosed with biopsy-confirmed NASH and fibrosis [93].
The findings revealed that a significantly higher percentage of patients experienced NASH
resolution with Semaglutide compared to the placebo (59% with the 0.4-mg dose vs. 17%
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with the placebo), but there was no significant difference observed in improving fibro-
sis [93]. The study is currently progressing to the next phase, with an ongoing phase 3 trial
(NCT04822181). Several clinical trials have shown that peroxisome proliferator-activated
receptor (PPAR)-γ agonists, such as pioglitazone, significantly reduce steatosis, inflamma-
tion, and fibrosis, whilst improving levels of plasma alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) [94–97]. However, side effects such as weight gain, bone
loss in women, and possible bladder cancer impede the use of these drugs in the treatment
of NASH [95]. Lanifibranor acts as an oral pan-PPAR agonist. A successfully conducted 2b
double-blind, randomised, placebo-controlled clinical trial on Lanifibranor [98] identified
that patients administered a once-daily dose of 1200 mg demonstrated a significantly higher
reduction percentage (55% vs. 33% for placebo) in the SAF-A score (representing the activity
component of Steatosis, Activity, Fibrosis) with no exacerbation of fibrosis compared to the
placebo group [98]. The study has progressed to the phase 3 trial (NCT03008070).

Recent findings suggest that vitamin E treatment may be more suitable for paediatric
patients with NASH compared to adults [99], targeting oxidative stress and inflamma-
tion [95,100]. However, long-term use of vitamin E has been associated with increased
risks of prostate cancer and haemorrhagic stroke [101–103]. In a randomised, controlled
trial spanning two years, non-diabetic patients with NASH were administered either vi-
tamin E (800 IU, natural form, once daily), pioglitazone (30 mg once daily), or a placebo,
revealing that vitamin E improved NASH in 43% of patients, while pioglitazone showed
no significant effect compared to placebo. Currently, both pioglitazone and vitamin E are
used on a case-by-case basis, as a comprehensive understanding of the risk factors is yet to
be thoroughly understood [2,95,104].

Resmetirom has recently emerged as a promising candidate for the treatment of
NAFLD/NASH. As an agonist for the thyroid hormone receptor-β, Resmetirom aims to
address key metabolic pathways compromised during the progression of NAFLD/NASH,
including lipid metabolism, fibrosis, and inflammation [105]. Results from a randomised,
double-blinded, placebo-controlled phase 2 clinical trial demonstrated significant efficacy
of resmetirom compared to placebo over 12 and 36 weeks. Adult patients exhibited a
significantly greater relative reduction in hepatic fat (32·9% with resmetirom vs 10·4% with
placebo) as assessed by liver biopsy [106]. The most recent randomised, double-blinded,
placebo-controlled phase 3 clinical study (NCT03900429) corroborates these findings, indi-
cating that resmetirom is safe and well-tolerated in NASH patients over 52 weeks [107].

4. Ellagic Acid and Dietary Sources

Ellagic acid (EA) is a polyphenolic, non-flavonoid compound naturally found in a
variety of fruits, such as pomegranates, raspberries, strawberries, and grapes, and nuts, such
as pistachios, pecans, walnuts, and acorns [17,21,108,109]. Ellagic acid is a dilactone with the
chemical name 2,3,7,8-Tetrahydroxy [1] benzopyrano [5,4,3-cde][1]benzopyran-5,10-dione
(C14H6O8; MW: 302.194 g/mol; CAS number, 476-66-4) possessing both a hydrophilic
moiety with four hydroxyl groups and two lactone groups together with a lipophilic moiety
with two hydrocarbon rings [110]. This structure enables EA to accept electrons from
several substrates, thereby participating in antioxidant redox reactions [110,111]. EA is
commercially available as a nutraceutical product and known to attenuate chronic diseases
such as metabolic syndrome, cardiovascular disease, hypertension, and neurodegenerative
diseases [112–115].

4.1. Ellagic Acid Metabolites

Dietary EA is presented in free form or as a hydrolysable complex polymer called
ellagitannins, which can be further metabolized to release free EA and gallic acid [18].
Free EA is primarily absorbed by the stomach and small intestine. The remainder is either
absorbed by the large intestine [17,116,117] or metabolised by the resident gut microbiota
to produce a microbial-derived metabolite known as urolithin [18,118,119]. In the liver, EA
undergoes phase I metabolism, which involves oxidation and hydrolysis followed by phase



Antioxidants 2024, 13, 485 5 of 20

II metabolism [18]. During phase II metabolism, ellagic acid undergoes a series of reactions,
including glucuronidation, sulfation, and methylation. This results in the formation of
ellagic acid glucuronides, methyl ellagic acid glucuronides, and dimethyl ellagic acid
glucuronide, which are found in bile, confirming enterohepatic circulation [18,118,120,121].

Ellagitannins are resistant to acid hydrolysis and, as such, are not directly absorbed in
the stomach [122,123]. Hydrolysation and absorption of ellagitannins occurs in the small in-
testine, under a slightly basic or natural pH, which enables further absorption of free EA. EA
is then absorbed across the gut epithelium through passive diffusion [17,124]. Unabsorbed
free EA and ellagitannins are further metabolized and absorbed in the later part of the gas-
trointestinal tract. Urolithins are produced by gut microbiota during the metabolism of EA
in humans [125,126] and several animals including rats [117] and mice [127,128]. Urolithin
is a dibenzopyran-6-one derivative, which is also considered a benzo coumarin or dibenz-
œ-pyrone [129]. During the microbial metabolism of EA, urolithin D is first produced
via lactone ring cleavage and decarboxylation. Then, urolithin D is dehydroxylated from
urolithin C, urolithin A, isourolithin A, and urolithin B, respectively (Figure 1) [17,20,129].
There are three main human metabotypes of urolithin, namely, metabotypes 0 (no urolithin
production), metabotypes A (urolithin A), and metabotypes B (urolithin B, isourolithin
A, and urolithin A) [119]. However, a study by Garcia-Villalba and colleagues revealed
a new urolithin metabolic branch named R [130]. EA metabolism and urolithin produc-
tion vary according to host health, age, gut microbial composition, environmental condi-
tions, and metabotypes [14,119,131,132]. The presence of specific bacterial genera such as
Gordonibacter and Ellagibacter has been shown to be necessary for the conversion of EA
into urolithins [118,119,133,134]. Two gut microbial species, Gordonibacte urolithinfaciens
and Gordonibacte pamelaeae, can produce urolithin C, whereas Ellagibacter isourolithinfaciens
produces isourolithin A [132,135,136].
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Figure 1. Chemical structures of ellagic acid and the formation of the gut microbial metabolite urolithins.

4.2. Bioavailability of Ellagic Acid, Ellagitannins, and Urolithins

The low bioavailability of ingested EA and its metabolites makes it difficult to detect and
fully understand its metabolism. The level of EA in serum is very low (~200 ng mL−1) [137] but
urolithins and their derivatives are present in micromolar levels, ranging from 0.024 to 35 µM
in human plasma [118,120]. One glass of pomegranate juice (237 mL) can yield up to 300 mg
of ellagitannins or about 120 mg of EA [138]. Around 100 g of raspberries produces 300 mg
of ellagitannins and one strawberry yield up to 70 mg of ellagitannins [139]. However,
urolithins have a greater absorption value than EA, possessing a higher lipo-solubility than
free EA and, therefore, are more readily absorbed [17,140,141]. A study that investigated
the metabolites present in defatted walnut powder administered to male Sprague Dawley
rats revealed the presence of urolithin M5, urolithin C, and urolithin D [142]. Urolithin M5
is the first urolithin formed by the opening of one of the two lactone rings of ellagic acid,
followed by decarboxylation [118,130]. These compounds were identified as hydrolyzation
and dehydroxylation products of EA following the administration of defatted walnut power
extract at a dosage of 10 g/kg for two days [142]. Interestingly, the study also detected both
methylated and demethylated metabolites of EA in urine and faeces samples collected from
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the rats [142]. Analysis of blood and urine samples across several clinical studies indicated
that the maximum concentration of EA occurred within 1–2 h and 0–4 h following gastroin-
testinal administrating [21,137,138,143]. This rapid elimination of EA presents a significant
challenge in comprehending its biological functions, biotransformation, and bioavailability
in animal and human systems. Consequently, measuring EA and its metabolites allows
researchers to identify potential targeted biomarkers and gain a deeper understanding of EA
biological activity.

5. Mechanisms of Action

Ellagic acid and its microbial metabolite, the urolithins, have been reported to possess
many beneficial pharmacological properties such as antioxidant, anti-inflammatory, antimu-
tagenic, antidepressant, cardio-protectant, anticarcinogenic, and most of most relevance to
this review, hepatoprotective activity (Figure 2) [18,22,109,144].
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5.1. Oxidative Stress

EA is a recognised antioxidant with implications in modulating various molecu-
lar targets and pathways involved in numerous chronic diseases, including liver dis-
eases [17,109,145]. With its four hydroxyl and two lactone functional groups, EA exhibits
the capacity to scavenge a wide variety of free radical species, including reactive oxygen
species (ROS) and reactive nitrogen species (NOS); thus, protecting against free radical-
induced damage [145–148].

The presence of hydroxyl and peroxyl radicals enables the initiation and multiplica-
tion of lipid peroxidation, respectively. Studies have demonstrated the efficacy of EA in
mitigating lipid peroxidation even at minimal concentrations, such as µM levels, which
is primarily attributed to its potent free radical scavenging properties [149]. Interestingly,
an earlier investigation proposed that EA was a superior free radical scavenger to vitamin
E [150]. Recently, it has been reported that EA inhibited 71.2% of lipid peroxidation, sur-
passing the inhibition levels observed with well-established antioxidants, ascorbic acid and
α-tocopherol (i.e., vitamin E), resulting in 64.5% and 59.7% inhibition, respectively [151].
According to Yu and colleagues [152], EA supplementation in rabbits fed an atherogenic
diet led to significant improvements in their lipid profiles and a reduction in lipid per-
oxidation. This intervention also resulted in the suppression of 8-oxo-2′-deoxyguanosin
(8-(OH)dG) levels, in addition to the expression of caspase-8, caspase-9, and Fas ligand in
the aortic arch. These findings suggest that the reduction in lipid peroxidation contributes
to the antioxidant effects of EA.
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The presence of Ionic cations such as Zn2+, Ca2+, Fe2+, Cd2+, and Cu2+ can promote
oxidation rates in a biological system. However, phenolic compounds such as EA can inhibit
this process due to its chelating property, where, it binds to the cation and forms a complex
that prevents oxidation [153,154]. Ahmed and colleagues [155] have previously described
how EA (500 µmol/Kg BW(body weight)) has a chelating effect that suppresses nickel-
induced oxidative stress in female Wistar rats. Furthermore, Kilic and co-authors [151] have
reported that EA has a similar chelating effect as caffeic acid on ferrous ions. Moreover, EA
and epigallocatechin gallate have a similar binding capability to iron, where this binding
is enabled due to the presence of catechol groups in the former [156]. EA also can chelate
copper and form stable complexes after deprotonation [157]. Collectively, these data
demonstrate that EA is protected from oxidative stress by chelation.

The formation of 8-(OH)dG is a critical step in oxidative damage on DNA, and several
studies have reported that EA drastically reduces 8-(OH)dG formed by oxidative DNA
damage [158,159]. Previous in vitro studies have described this protective effect of EA
via its ability to regulate intracellular mechanisms through direct interaction between
double-strand DNA and EA [160,161]. An in vitro study by Spencer and colleagues [162]
has revealed that EA has the ability to inhibit dopamine/Cu2+-induced oxidative DNA
damage even at very low doses, as low as 1 µM. This suggests EA’s potential protective
mechanism against oxidative stress through shielding DNA damage.

Nuclear factor erythroid 2–related factor (Nrf2) is a cellular antioxidant regulator that
activates during cellular stress to induce genes related to the antioxidant defence system.
Activation of these types of responses or signalling pathways plays a major role in protective
mechanisms against oxidative stress [163,164]. In this regard, EA administration to high-fat
diet (HFD)-fed apolipoprotein E-knockout mice (ApoE−/−), resulted in a reduction in
oxidative stress and atherosclerosis via induction of the Nrf2 signalling pathway [165].
In vitro research conducted by Baek and colleagues [166] reported that EA upregulates the
Nrf2 pathway in human dermal fibroblasts, this then plays a protective role against induced
oxidative stress. Furthermore, another study by Gu and co-authors [167] has described
the protective effect of EA in acute hepatic injury in mice, by inducing Nrf2 expression
and heme oxygenase-1. These studies conclude that EA has protective properties against
oxidative stress through upregulation of the Nrf2 pathway.

5.2. Inflammation

In addition to its well-known antioxidant properties, EA has been reported to pos-
sess anti-inflammatory properties [168]. As mentioned above, both oxidative stress and
inflammation are closely associated [169,170]. Nuclear factor kappa B (Nf-kB) is a key
transcription factor for proinflammatory responses, produced in all cell types and activated
under several types of cell stress induced by obesity, oxidative stress, hyperglycaemia,
hypertension, and bacterial infections [171–173]. A study by Ahad and colleagues [174] has
reported EA supplementation attenuated dyslipidaemia and nephropathy in type 2 diabetic
male Wistar rats. The authors described how EA ameliorated diabetic nephropathy by
inhibiting the expression of the Nf-kB pathway. Nf-kB has also been reported to play a key
role in the regulation of cyclooxygenase-2 (COX-2) expression, which is involved in the
inflammatory process during tumour growth [175]. Administration of EA (100 mg/Kg BW)
can modulate COX-2 mRNA, mainly through downregulation of ROS production, which
in turn inhibits Nf-kB activation [176].

Different kinds of proinflammatory cytokines, such as macrophages and migration
inhibitory factor (MIF), play a crucial role in facilitating an immune response [109]. It
has been shown that MIF induces Nf-kB and chemotaxis during an inflammatory re-
sponse [109,177–179]. EA (50 µM) downregulated the tautomerase activity of MIF and
MIF-mediated proinflammatory responses in peripheral blood mononuclear cells [179]. EA
also suppresses the expression of pro-inflammatory cytokines TNFα, IL-6, and chemokine
C-C, in lipopolysaccharide (LPS)-stimulated macrophages and adipocytes, suggesting
that EA may attenuate inflammation in adipose tissue [180]. Moreover, EA can signifi-
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cantly inhibit TNFα and IL-6 in LPS-stimulated RAW 264.7 cells, even with minimal µM
concentrations (6.25 µM and 12.5 µM) [181]. Even though the exact mechanism of EA
involvement in proinflammatory cytokine modulation is not clear, it has been proposed
that this polyphenol acts through direct inhibition of the Nf-kB pathway.

Another mechanism of interest is the effect of EA on resistin, an adipocytokine which
may be the missing link between obesity and type 2 diabetes [182,183]. Pomegranate fruit
extract suppressed enhanced levels of serum resistin in mice [184]. The authors also showed
that EA reduced resistin levels in 3T3-L1 cells in vitro. Another study by the same authors
demonstrated that EA reduced serum resistin levels without changing mRNA expression in
adipose tissue. Further to this, they demonstrated that EA significantly improved hepatic
steatosis and serum lipid composition in KK-Ay mice, thus further contributing to EA in
the suppression of resistin secretion in vivo [185].

6. Therapeutic Efficacy

Recent studies, both in vivo and in vitro, have shown that EA forms several natural
metabolites that have potential therapeutic properties for chronic diseases such as liver
disease [18,21,109]. Research has focused on this nutraceutical due to its pharmacokinetic
properties, safety, and efficiency [109,186,187]. A study conducted to determine the role of
muscadine grape extract vs muscadine grape wine in obesity has demonstrated that both
supplementations reduced plasma triglycerides, free fatty acids, and cholesterol levels [188].
However, muscadine grape extract also demonstrated a higher lipid-lowering effect on
both triglycerides content and adipose tissue mass and possesses a higher content of EA
(18 mg EA/Kg BW) than the wine. The wine, which has similar polyphenolic content
but lower EA content (1.1 mg EA/Kg BW), demonstrated lower metabolic improvements,
suggesting EA might play a crucial role in improving the Metabolic Syndrome.

The involvement of gene regulation in fatty acid oxidation has been studied by Cao and
colleagues [189], demonstrating that supplementation of punicalagin (150 mg EA/Kg BW),
one of the main ellagitannins in pomegranate, attenuated HFD-induced obesity in rats
through mechanisms involving AMP-activated protein kinase (AMPK) activation [189].
The AMPK pathway is known to be involved in the regulation of energy homeostasis
via inhibiting de novo lipogenesis and adipogenesis [190]. Raspberry seed flour supple-
mentation (100 mg EA/Kg BW) in a high sucrose diet mouse model has been used to
demonstrate a reduction in hepatic endoplasmic reticulum stress, dyslipidemia, and adi-
pose tissue inflammation, supporting the role of EA in preventing sugar toxicity [191].
Panchal and colleagues suggested EA supplementation (80 mg EA/kg BW) to be beneficial
to improving the liver structure and function of HFD-induced male Wistar rats via blunting
oxidative stress and inflammation. Administration of EA supplementation in the above
study reduced the Metabolic Syndrome by regulating the protein levels of Nrf2, Nf-kB,
and carnitine palmitoyl transferase-1 to their basal levels [108]. Further to this, EA has
been proposed as a therapeutic nutrient for NAFLD. This was demonstrated when large
lipid accumulation in HFD-induced liver disease was eliminated by punicalagin-enriched
pomegranate extract (150 EA mg/kg/day) treatment in a rat model, where a marked
reduction in liver triglyceride and cholesterol levels was observed [61]. Defatted walnut
power extract contains many active polar substances including EA [192–194]. Ren and col-
leagues [195] have conducted a study investigating the anti-NAFLD effects of this walnut
extract on an HFD-induced mouse model. The results showed that defatted walnut power
extract reduced the expression of Nf-kB and the mitogen-activated protein kinases (MAPK)
family, thus inhibiting inflammation in the liver during disease progression. This study
also demonstrated that the administration of defatted walnut power extract improved the
gut microbiota diversity disrupted by NAFLD [195]. A more recent study demonstrated
that EA ameliorates high fructose-induced hyperuricemia and NAFLD through activation
of C1q/tumour necrosis factor-related protein (CTRP3) and inhibition of ATP citrate lyase
(ACL) in male albino rats [196]. Hyperuricemia occurs due to the damaged metabolism of
uric acid [197] and is attributed as a risk factor for NAFLD [198–200].
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New insights into research on EAs have focused on its microbial metabolites, the
urolithins. According to Abdulrahman and colleagues [133], supplementation of urolithin
A to HFD-fed Wistar rats, reduced bodyweight, serum levels of cholesterol and low-density
lipoprotein (LDL), and increased levels of high-density lipoprotein (HDL). Moreover, this
study demonstrated that urolithin A administration reduced the abundance of the specific
microbiome related to weight gain, dysfunction of lipid metabolism, and impaired glu-
cose metabolism, suggesting urolithin A has the potential to act as a therapeutic agent in
obesity [133]. A study on both EA and urolithin A has revealed that in a high-fat/high-
sucrose-fed mouse model, only EA demonstrated the capability to reduce proton leakage
in primary hepatocytes, as opposed to urolithin A; thus, reporting its involvement in
mitochondrial respiratory capacity during insulin resistance [201]. Mitochondrial proton
leak can lead to impaired insulin signalling pathways, contributing to the development of
insulin resistance, a key factor in NAFLD progression [44,202,203]. Intragastrical adminis-
tration of urolithin A (50 or 100 mg/kg per day) improved hepatic steatosis induced by
fructose consumption in a high-fructose-fed mouse model [204]. The results also stated
that urolithin A inhibited lipogenesis while enhancing an increase in β-oxidation in the
liver. Additionally, it promoted hepatic lipophagy through the AMPK/ULK1(Unc-51-like
kinase 1) pathway. The AMPK/ULK1 pathway serves as a key regulator of lipid metabolism
and autophagy within liver cells [205]. This suggests that AMPK/ULK1 regulates hepatic
lipophagy when stimulated by urolithin A, thereby being a potential therapeutic for the
treatment of NAFLD.

Xu and colleagues [206] in a recent study, used oral administration of urolithin C on a
choline-deficient amino acid-defined high-fat-diet (CDAHFD) mouse model and demon-
strated significantly improved liver index (weight of liver/body) and NAS score compared
to the control and disease groups [206]. This study also revealed that the administration of
urolithin C inhibited ferroptosis through activation of the hepatic AMP-activated protein
kinase (AMPK) pathway [206]. Ferroptosis is a form of ion-dependent cell death and is
recognised for its involvement in the pathogenesis of NAFLD. It is characterised by ele-
vated oxidative stress and dysfunctional lipid metabolism [207,208]. Xu and colleagues also
demonstrated that urolithin C ameliorated the permeability of the intestinal epithelial and
increased the proportions of certain beneficial bacteria including Parabacteroides goldsteinii
and Lactobacillus vaginalis, improving the dysbiosis caused by CDAHFD [206]. Another
study conducted on Wistar rats on an HFD showed that both urolithins A and B improved
characteristics associated with obesity, including weight gain, lipid accumulation, and
oxidative stress [209]. The results of this study also revealed that both urolithins signif-
icantly downregulated the expression of liver X receptor (LXRα) and sterol regulatory
element-binding protein-1c (SREBP1c) genes, which are involved in de novo lipogenesis.
The authors showed that both urolithins A and B attenuate hepatic endoplasmic reticulum
stress through the downregulation of unfolded protein responses [209].

The biological properties of EA have been investigated in several in vitro studies.
One of the studies revealed that inhibiting HSC activation is highly sensitive to EA [210],
suggesting its potential involvement in antifibrotic mechanisms. Furthermore, an in vitro
study investigating the inhibitory effects of Phyllanthus emblica L. (Indian gooseberry) on
hepatic steatosis and liver fibrosis identified EA as the main compound present in the
water extract of P. emblica fruits [211]. In the study, a two-cell in vitro system to simulate
NASH and hepatic fibrosis features, the authors used human hepatoblastoma HepG2 cells
treated with a mixture of free fatty acids and the rat hepatic stellate HSC-T6 cells induced
by leptin, respectively. The results showed the water extract reduced fat accumulation and
ROS production through the modulation of the AMPK signalling pathway in HepG2 cells.
They also demonstrated the potential for attenuating hepatic fibrosis in HSC-T6 cells and
triggering mitochondrial apoptosis. Thus, indicating that EA has the potential to mitigate
the progression of NAFLD [211].

Ellagic acid suppressed de novo lipogenesis by inhibiting the expression of sterol
regulatory element-binding protein-1(SREBP-1)/fatty acid synthase (FASN) cascade and re-
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ducing steatosis in human hepatoma cell line through activation of AKT/mTORC1 (protein
kinase B/mammalian target of rapamycin) in the liver [212]. Both SREBP-1 and FASN play
a critical role in the increased production of fatty acids and exacerbating liver fat accumula-
tion during NAFLD progression [213,214]. Dysregulation of the AKT/mTORC1 pathway
can contribute to abnormal lipid metabolism, hepatocyte proliferation, and inflammation,
ultimately promoting the development and progression [215,216]. Therefore, EA may hold
therapeutic potential for managing NAFLD by targeting this pathway.

An in vitro study revealed that urolithin A promoted fatty acid breakdown, including
both lipophagy and β-oxidation, via an AMPK-dependent pathway on fructose-treated
HepG2 cells and primary hepatocytes. These in vitro experiments extended the findings
from the high fructose-fed mouse model discussed above [204]. Additionally, a study
conducted on oleic-acid-stimulated Alpha mouse liver 12 (AML12) cells revealed that
urolithin C can activate the hepatic AMPK pathway to alleviate ferroptosis response in vivo
but not in vitro [206]; thus, suggesting a crucial link between urolithin C and hepatic AMPK,
likely through the gut-liver axis discussed earlier. Additionally, this study concluded that
urolithin C was unable to reduce lipid accumulation or inhibit ferroptosis in vitro [206].

Consequently, in vitro findings suggest that both EA and urolithin possess the ability
to regulate lipid metabolism during the progression of NAFLD. However, current data
suggest that EA offers greater advantages compared to urolithin as it can inhibit both
hepatic steatosis and hepatic fibrosis in vitro. Therefore, EA holds promise as a therapeutic
agent for blunting the progression of the disease.

Despite a large amount of evidence being available in the form of pre-clinical studies,
there are no clinical trials to date that have tested EA and its pharmacological properties on
liver disease. A systematic review conducted by Gheflati and colleagues revealed that, even
though many studies consider pomegranate as a tool to manage weight loss, there was no
significant effect of pomegranate on body weight, BMI, and body fat percentage [217].
However, EA and pomegranate juice (naturally high in EA) have been evaluated in
Phase I, II, and III clinical trials, primarily focusing on anticancer properties [218–220]
and skin hyperpigmentation [221,222]. Even though there is a plethora of research on the
potential hepatoprotective properties of EA, such as antioxidant and anti-inflammatory
effects, most of these have not focused on Metabolic Syndrome, NAFLD, or diabetes.

7. Future Perspective of EA as a Pharmacological Therapy

EA stands out as a remarkable polyphenolic compound, possessing a wide range of
pharmacological properties that hold promise in treating various chronic diseases, includ-
ing NAFLD/NASH. Due to its multifaceted biological effects, edible plants containing
EA and their derivatives are recognised as valuable functional foods for enhancing hu-
man health. Moreover, there is evidence suggesting that EA, when combined with other
antioxidant nutraceuticals, exhibits a synergistic therapeutic effect, making it a potential
candidate for combination therapy [113]. Although clinical trials investigating EA’s effects
on NAFLD/NASH are pending, the pharmaceutical and cosmetic industries are already
incorporating this polyphenolic compound into novel supplement preparations. Conse-
quently, given the current widespread popularity of supplementation, it is important to
consider incorporating EA as a dietary intervention for NAFLD/NASH. However, like
many other polyphenols, the lack of comprehensive understanding regarding the underly-
ing mechanisms governing its biological properties limits its capacity as a pharmacological
agent in the market.

8. Conclusions

There is a great need for effective pharmacological treatments for NASH due to the
severity, growing impact on the global health system, and more importantly, the absence of
approved pharmacological treatments. EA exerts its hepatoprotective properties primarily
through scavenging free radicals, modulating cytokine production, and regulating lipid
metabolism. As an excellent antioxidant, EA acts against ROS and activates the NrF2



Antioxidants 2024, 13, 485 11 of 20

pathway to reduce oxidative stress to protect the liver. Remarkably, EA also suppresses Nf-
kB and MAPK pathways, mitigating inflammation during NAFLD/NASH. The evidence
also shows that EA can reduce both triglyceride and cholesterol levels, thus combating
de novo lipogenesis, which is a significant risk factor in NASH progression. In vitro,
findings suggest that EA has the capability to alleviate fibrosis. The primary microbial
metabolite for EA, urolithin, has been shown to improve the gut microbiome in several
mouse models of obesity. Specifically, urolithin A has been shown to lower LDL and
increase HDL levels and is also involved in improving lipid metabolism through gene
regulation, while urolithin C activates the hepatic AMPK pathway, thus counteracting the
pathophysiology of NAFLD. There is an ongoing debate regarding the health benefits of
EA and urolithins for NAFLD/NASH, but there is still a lack of understanding regarding
their biological effect on the liver. Given the involvement of lipid metabolism, oxidative
stress, inflammation, and insulin resistance in the pathogenesis of NASH, findings from
this review suggest that EA may represent a potential food intervention for NASH, not
only to limit but potentially reverse the pathological manifestations of NAFLD/NASH.
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151. Kilic, I.; Yeşiloğlu, Y.; Bayrak, Y. Spectroscopic studies on the antioxidant activity of ellagic acid. Spectrochim. Acta Part A Mol.
Biomol. Spectrosc. 2014, 130, 447–452. [CrossRef] [PubMed]

152. Yu, Y.-M.; Chang, W.-C.; Wu, C.-H.; Chiang, S.-Y. Reduction of oxidative stress and apoptosis in hyperlipidemic rabbits by ellagic
acid. J. Nutr. Biochem. 2005, 16, 675–681. [CrossRef]

153. Craft, B.D.; Kerrihard, A.L.; Amarowicz, R.; Pegg, R.B. Phenol-based antioxidants and the in vitro methods used for their
assessment. Compr. Rev. Food Sci. Food Saf. 2012, 11, 148–173. [CrossRef]

154. Mira, L.; Tereza Fernandez, M.; Santos, M.; Rocha, R.; Helena Florêncio, M.; Jennings, K.R. Interactions of flavonoids with iron
and copper ions: A mechanism for their antioxidant activity. Free Radic. Res. 2002, 36, 1199–1208. [CrossRef] [PubMed]

155. Ahmed, S.; Rahman, A.; Saleem, M.; Athar, M.; Sultana, S. Ellagic acid ameliorates nickel induced biochemical alterations:
Diminution of oxidative stress. Hum. Exp. Toxicol. 1999, 18, 691–698. [CrossRef] [PubMed]

156. Saha, P.; Yeoh, B.S.; Singh, R.; Chandrasekar, B.; Vemula, P.K.; Haribabu, B.; Vijay-Kumar, M.; Jala, V.R. Gut microbiota conversion
of dietary ellagic acid into bioactive phytoceutical urolithin A inhibits heme peroxidases. PLoS ONE 2016, 11, e0156811. [CrossRef]
[PubMed]

157. Galano, A.; Francisco Marquez, M.; Pérez-González, A. Ellagic acid: An unusually versatile protector against oxidative stress.
Chem. Res. Toxicol. 2014, 27, 904–918. [CrossRef] [PubMed]

158. Srinivasan, P.; Vadhanam, M.V.; Arif, J.M.; Gupta, R.C. A rapid screening assay for antioxidant potential of natural and synthetic
agents in vitro. Int. J. Oncol. 2002, 20, 983–986. [CrossRef] [PubMed]
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