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Abstract: DL-methionyl–DL-methionine (AQUAVI®Met-Met) (Met-Met) (0.10%, 0.20%, 0.30%, and
0.40%) or DL-methionine (DL-Met) (0.10%, 0.20%, 0.30%, and 0.40%) were added to a low-fishmeal
diet in an attempt to reduce fishmeal in the diet of Micropterus salmoides (M. salmoides). The fish
were randomly allocated into ten experimental groups (n = 100), each with 4 replicates of 25 fish
(16.39 ± 0.01 g) each. Compared to 25% FM, 0.40% of DL-Met and 0.10% of Met-Met promoted
growth, and 0.10% of Met-Met decreased FCR. Compared to 25% FM, the supplementation of Met-
Met or DL-Met improved the intestinal antioxidant capacity by upregulating the NF-E2-related
factor 2-mediated antioxidant factors and enzyme activities and nuclear factor kappa-B-mediated
anti-inflammatory factors while downregulating the pro-inflammatory factors, thereby exerting anti-
inflammatory effects. Moreover, 0.10% of the Met-Met diet affected the Firmicutes-to-Bacteroidota
ratio, increased the levels of Proteobacteria, changed the composition of intestinal flora (Roseburia,
Lachnospiraceae_NK4A136_group, and unclassified_Oscillospiraceae), and enhanced intestinal dominant
bacteria (Caldicoprobacter, Pseudogracilibacillus, and Parasutterella), leading to improved gut health.
In summary, the supplementation of DL-Met or Met-Met alleviated the adverse effect of fishmeal
reduction (from 40 to 25%) on the growth performance and intestinal health of M. salmoides.

Keywords: Micropterus salmoides (M. salmoides); Met-Met; intestinal microbiota; antioxidant capacity;
anti-inflammatory

1. Introduction

Nutritional balance is closely related to human health, and fish is crucial for the human
diet due to its rich nutritional content. Fish meat is a source of rich and high-quality protein
that is more accessible and affordable than other animal proteins [1,2]. Since the 1950s,
aquaculture production increased globally, while fishery production remained consistent
since the early 1990s [3]. Moreover, the production of aquaculture for human consumption
exceeded that of the fisheries in 2016 [3]. Aquaculture plays an important role in world food
security by providing aquatic protein [4]. According to a report by FAO [5], the production
of freshwater fish is at least five times that of marine fish, demonstrating the important role
of freshwater fish farming in food security. Micropterus salmoides (M. salmoides) is a native
to North America and was imported into China for farming as food fish. M. salmoides has
fast growth, strong adaptability, and delicious meat [6]; therefore, its production increased
from 243,196 to 802,486 tons during the last decade in China [7]. However, the increased
production necessitates sufficient feed and raw materials for culturing M. salmoides. Fish-
meal (FM) is one of the most important, expensive, and high-quality sources of protein
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due to its good palatability, amino acid balance, and high nutritional value [8]. However,
FM production and its price are projected to increase by 1% and 30%, respectively, by
the year 2030 [9], which may impede the sustainable development of the aquaculture
industry. As a carnivorous fish, M. salmoides requires 40–50% more FM than herbivorous
and omnivorous fish [10]. Therefore, reducing the proportion of FM in M. salmoides feed
is crucial to overcoming the FM production challenge, thereby promoting the sustainable
farming of M. salmoides.

To reduce the FM content, animal- and plant-based protein sources are used as impor-
tant ingredients in aquatic animal feed. However, due to an imbalance of essential amino
acids (EAAs), their extensive use results in several adverse effects [11–13]. Therefore, it is
important to balance the essential nutrients, including EAAs, in the feed to replace FM with
animal- and plant-based proteins without affecting the production performance of the fish.
A potential alternate protein source is poultry by-products, as they have similar protein
contents, reasonable prices, and a stable supply [14]. However, one of the limiting amino
acids in poultry by-product feed is methionine [15], which should be included in aquatic
animal feed to reduce the adverse impact on growth, antioxidant capacity, and immune
function resulting from reduced FM content [16].

Supplementation with EAAs, particularly methionine (Met), was considered an effec-
tive way of replacing FM with animal- and plant-based proteins in aquatic feeds [12,17,18].
Methionine products are commercially available in various forms, such as DL-methionine
(DL-Met) or Met-Met. Met-Met has an advantage over DL-Met in that it is insoluble in water
and absorbed easily [19,20]. Guo et al. found that Met-Met supplementation could improve
the growth performance and antioxidant capacity of Nile tilapia (Oreochromis niloticus) [20].
Mamauag et al. reported similar utilization effects of DL-Met and Met-Met by Red Sea
Bream (Pagrus major) larvae and juveniles [21]. Met-Met is mainly used to supplement
the feed of Litopenaeus vannamei (L. vannamei) with a higher availability than DL-Met [19].
Dietary supplementation with 0.34% of Met-Met could reduce the FM content from 18
to 6% without any adverse effect on the performance of L. vannamei [22]. Moreover, Met-
Met supplementation ameliorates the negative effects on growth caused by limiting Met
content in low-FM diets and effectively improves the immune and antioxidant capacity
of L. vannamei [23]. However, considering the differences between shrimp and fish, the
present study investigated the effects of Met-Met supplementation on the growth, intestinal
antioxidant capacity, immunity, and microbiota of M. salmoides. The outcomes would
facilitate the further evaluation of the application of Met-Met in different species, thereby
limiting the FM content to promote the sustainable development of M. salmoides.

2. Materials and Methods
2.1. Experimental Design

M. salmoides were initially placed in floating net cages in a pond for two weeks
for environmental acclimation. Thereafter, the fish were randomly allocated into ten
experimental groups (n = 100), each with 4 replicates of 25 fish (16.39 ± 0.01 g) each.
Subsequently, M. salmoides was fed to satiety twice daily (07:30 and 17:30 h) for 10 weeks.
The key indicators of water quality monitoring during the culture cycle are listed in Table 1.

Table 1. The key indicators of water quality monitoring during the culture cycle.

Water Environmental Factors Range

Temperature 15–20 ◦C
Dissolved oxygen >6 mg/L

Ammonia nitrogen content <0.1 mg/L
pH 6.8–7.5

2.2. Experimental Diets and Feeding Plan

Met-Met and DL-Met were procured from Evonik Operations GmbH (Hanau, Ger-
many). The commercial product (AQUAVI® Met-Met) is a mixture of four different me-
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thionine stereoisomers (LD-Met-Met, DL-Met-Met, LL-Met-Met, and DD-Met-Met) [19].
The following dietary formulations were used: (1) 40% FM, 25% FM, and 25% FM supple-
mented with varying levels of Met-Met (0.10%, 0.20%, 0.30%, and 0.40%) or DL-Met (0.10%,
0.20%, 0.30%, and 0.40%). The ingredient and proximate analysis of the experimental diets
are shown in Table 2. Amino acid content in diets and Met-Met and DL-Met levels after
supplementation are shown in Table 3. The raw protein materials were crushed using a
pulverizer and re-screened through a 60-mesh screen. The resultant protein ingredients
were mixed sequentially according to the principle of gradual mixing with water and oil
supply. Thereafter, an F-26 (II)-type granulator was used to obtain feed granules. After
drying, the prepared feed was stored at −20 ◦C for further use.

Table 2. Ingredient and proximate analysis of the experimental diets.

Item

Diets

40%
FM

25%
FM

0.10%
DL-
Met

0.20%
DL-
Met

0.30%
DL-
Met

0.40%
DL-
Met

0.10%
Met-
Met

0.20%
Met-
Met

0.30%
Met-
Met

0.40%
Met-
Met

Fishmeal 1 40 25 25 25 25 25 25 25 25 25
Poultry meal 1 1 15 15 15 15 15 15 15 15 15

Blood cell protein 1 3 3 3 3 3 3 3 3 3 3
Soybean meal 1 18 18 18 18 18 18 18 18 18 18

Corn gluten meal 1 2 2 2 2 2 2 2 2 2 2
Soy protein concentrate 1 7 7 7 7 7 7 7 7 7 7

Shrimp paste 2 2 2 2 2 2 2 2 2 2
Rice bran 4.98 3.65 3.53 3.4 3.28 3.15 3.53 3.4 3.28 3.15

Wheat 6 6 6 6 6 6 6 6 6 6
Tapioca 4 4 4 4 4 4 4 4 4 4
Fish oil 5.87 6.02 6.04 6.06 6.08 6.1 6.04 6.06 6.08 6.1

Soybean oil 2 2 2 2 2 2 2 2 2 2
Monocalcium phosphate 2 3.66 3.66 3.66 3.66 3.67 3.66 3.66 3.66 3.67

Choline chloride 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
L-carnitine hydrochloride 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

L-ascorbate-2-phosphate ester 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Vitamin premix feed for

carnivorous fish 2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Trace mineral premix for
carnivorous fish 2 1 1 1 1 1 1 1 1 1 1

L-Lysine 3 0 0.29 0.29 0.3 0.3 0.3 0.29 0.3 0.3 0.3
DL-Met 0 0 0.1 0.2 0.3 0.4 0 0 0 0
Met-Met 0 0 0 0 0 0 0.1 0.2 0.3 0.4

L-threonine 3 0 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23
Proximate analysis (% dry basis)

Protein 47.48 47.28 47.4 47.22 47.51 47.55 47.3 47.45 47.37 47.27
Lipid 12.04 11.95 12.1 12.12 12.13 12.09 12.12 12.02 12.18 12

Gross energy (KJ/g) 20.11 19.77 20 19.99 20.05 19.69 19.89 19.68 19.53 19.65

Note: 1 Fishmeal and other major protein sources were purchased from Wuxi Tongwei feedstuffs Co., Ltd. (Wuxi,
China); 2 Vitamin premix and trace mineral premix were obtained from HANOVE Animal Health Products (IU,
mg/kg of premix). Vitamin premix (IU or mg/kg of premix): vitamin A, 800,000 IU; vitamin D3, 250,000 IU;
vitamin E, 4500 IU; vitamin K3, 600 mg; thiamin, 800 mg; ribofavin, 800 mg; calcium pantothenate, 2000 mg;
pyridoxine HCl, 2500 mg; cyanocobalamin, 8 mg; biotin, 16 mg; folic acid, 400 mg; niacin, 2800 mg; inositol,
10,000 mg; vitamin C, 10,000 mg. Mineral premix (g/kg of premix): magnesium sulfate, 15 g; ferrous sulfate, 30 g;
zinc sulfate, 13.5 g; cupric sulfate, 0.8 g; manganese sulfate, 6 g; zeolite was used as a carrier. 3 L-Lysine and
L-threonine obtained from Feeer Co., Ltd. (Shanghai, China).
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Table 3. Amino acid content in diets and Met-Met and DL-Met levels after supplementation.

Item
Diets

40%
FM

25%
FM

0.10%
DL-Met

0.20%
DL-Met

0.30%
DL-Met

0.40%
DL-Met

0.10%
Met-Met

0.20%
Met-Met

0.30%
Met-Met

0.40%
Met-Met

Essential amino acid

Met 1.03 0.94 1.04 1.13 1.23 1.31 1.10 1.15 1.23 1.35
Lys 3.17 3.13 3.12 3.12 3.13 3.15 3.20 3.14 3.07 3.13
Thr 1.80 1.98 1.98 1.99 1.98 2.00 2.05 1.99 1.94 1.98
Arg 2.68 2.83 2.92 2.91 2.89 2.89 2.90 2.87 2.80 2.92
ILe 1.89 1.99 1.98 1.98 1.99 2.01 2.03 1.99 1.95 1.98
Leu 3.62 3.61 3.60 3.62 3.60 3.65 3.71 3.62 3.56 3.62
Val 2.34 2.35 2.32 2.31 2.29 2.32 2.39 2.32 2.28 2.33
His 1.41 1.29 1.29 1.29 1.28 1.30 1.31 1.29 1.26 1.29
Phe 2.14 2.12 2.10 2.11 2.09 2.13 2.15 2.11 2.07 2.11

Nonessential amino acid

Gly 2.48 2.66 2.64 2.63 2.64 2.67 2.74 2.65 2.59 2.66
Ser 1.91 2.00 2.02 2.03 2.01 2.03 2.08 2.01 1.97 2.02
Pro 2.08 2.19 2.23 2.20 2.21 2.21 2.26 2.24 2.18 2.31
Ala 2.68 2.62 2.61 2.62 2.62 2.64 2.72 2.63 2.58 2.63
Asp 4.49 4.37 4.37 4.37 4.38 4.41 4.48 4.39 4.28 4.37
Glu 6.61 6.58 6.53 6.56 6.55 6.62 6.72 6.58 6.45 6.61
Cys 0.50 0.54 0.53 0.53 0.53 0.54 0.56 0.53 0.53 0.53

Met + Cys 1.53 1.48 1.57 1.66 1.76 1.85 1.65 1.68 1.76 1.88

Other parameters (after supplementation)

DL-Met 0.01 0.02 0.10 0.18 0.27 0.36 0.02 0.02 0.02 0.03
Met-Met <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.09 0.17 0.26 0.37

Note: Methionine (Met), lysine (Lys), threonine (Thr), arginine (Arg), isoleucine (ILe), leucine (Leu), valine (Val),
histidine (His), phenylalanine (Phe), glycine (Gly), serine (Ser), proline (Pro), alanine (Ala), aspartic acid (Asp),
glutamic acid (Glu), serine (Cys).

2.3. Sampling

The fish were fasted for 24 h before sample collection. A total of 8 fish per group
were selected to evaluate the whole-body composition. In addition, two extra fish were
randomly selected from each net cage. In other words, the intestinal antioxidant indices and
gene expression levels were tested using 8 fish from each group. Furthermore, intestinal
tissue samples from three randomly selected fish from each of the 40% FM (HF), 25% FM
(LF), and 25% FM supplemented with 0.10% Met-Met groups (LFM) were used to analyze
intestinal microbes. The collected samples were stored at −80 ◦C for further analysis.

2.4. The Nutrient Composition and Intestinal Antioxidant Parameter Assays

The experimental assay methods with details of manufacturers or assay kits utilized for
the analyses of serum, intestinal antioxidant parameters, whole fish, and diet composition
are elaborated in Table 4.

Table 4. Experimental assay methods with details of manufacturers or assay kits utilized for sam-
ple analyses.

Items Methods Assay Kits/Manufacturer

GSH The intestine tissues of the M. salmoides fed with different diets
were crushed and mixed with ice-cold normal saline;
afterwards, centrifuging according to the instructions in the
manual to obtain the supernatant was used to detect antioxidant
parameters according to the manufacturer’s instructions.

The intestinal antioxidant parameters were
detected using the kits purchased from
Nanjing Jiancheng Bioengineering Institute
(Nanjing, China).

GSH-Px
SOD
CAT
MDA
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Table 4. Cont.

Items Methods Assay Kits/Manufacturer

Crude
protein

The nutritional components of experimental fish and feed were
tested by AOAC [24].

Detected by automatic Kjeldahl nitrogen
analyzer (K9840) (Hanon Advanced
Technology Group Co., Ltd., Jinan, China).

Crude fat Extracted according to the soxhlet
extraction method.

Crude ash
Detected by incineration in a muffle furnace at
550 ◦C for 24 h (XL-2A) (Hangzhou Zhuochi
Instrument Co., Ltd., Hangzhou, China).

Moisture
Detected by an oven (105 ◦C) (Shanghai Yiheng
Scientific Instrument Co., Ltd.,
Shanghai, China).

Gross energy Measured with an oxygen bomb calorimeter
(C6000, IKA) (Staufen, Germany).

Amino acid

The amino acid contents, except that of
tryptophan, were measured by an amino acid
analyzer (SYKAM S-433D, Germany SYKAM
Instruments Co., Ltd., Eresing, Germany). The
level of tryptophan was measured on the
instrument after alkaline hydrolysis (5 mol/L
NaOH, 110 ◦C, 20 h).

Note: glutathion (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), malondi-
aldehyde (MDA).

2.5. Microbial DNA Extraction and 16S rDNA Sequencing

The intestinal tissues from three M. salmoides fed with HF, LF, and LFM diets were used
for microbiological analysis. The constructed libraries were screened and sequenced on
Illumina NovaSeq 6000. Effective Reads were obtained by quality filtering, double-ended
sequence splicing, and chimera removal. USEARCH software (version 10.0) [25] was used
to cluster Reads and obtain OTUs with 97.0% similarity.

2.6. 16S rDNA Sequencing Data Analysis

The α- and β-diversities were analyzed using QIIME2, and the diversity index was
tested by the independent sample t-test in SPSS 20. The featured sequences were then
classified and labeled by a plain Bayesian classifier, according to the Silv.138 database. The
community structure of samples at the taxonomic level (phylum, class, order, family, genus,
and species) was calculated by QIIME2 (2020.6) software to generate abundance at different
taxonomic levels and mapped using R-language means.

2.7. Quantitative Real-Time PCR Detection

The intestinal tissues of M. salmoides stored at −80 ◦C were transferred to dry ice,
followed by RNA extraction using the standard reagents by Vazyme (Nanjing, China)
according to the manufacturer’s instructions. The RNA quantification and qualitative
analysis for further experiments utilized a spectrophotometer (NanoDrop 2000, Thermo
Fisher Scientific) (Waltham, MA, USA). HiScript® II One Step qRT-PCR SYBR Green Kit
(Vazyme, Nanjing, China) was used to configure the system and detect gene expression
levels. The primer sequences are shown in Table 5. Beta-actin (β-actin) was used as an
internal reference primer, and the gene-relative quantitative levels were estimated by the
standard curve method [26].

2.8. Statistical Analysis

The statistical data were analyzed by SPSS (Version 20) and mean values were com-
pared using one-way ANOVA and Tukey’s method. The values with p < 0.05 were consid-
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ered statistically significant. The quadratic regression equation was used to analyze the
dietary DL-Met and Met-Met requirements for M. salmoides using FCR indicators.

Table 5. Primer sequences for qPCR.

Gene Name Sequence Accession Number/Reference

nrf2 F CCACACGTGACTCTGATTTCTC Gene ID: 119904119
(Transcriptome data)R TCCTCCATGACCTTGAAGCAT

sod
F CCACCAGAGGTCTCACAGCA

[27]R CCACTGAACCGAAGAAGGACT

cat
F CTATGGCTCTCACACCTTC

MK614708.1R TCCTCTACTGGCAGATTCT

gsh-px F ATGGCTCTCATGACTGATCCAAA
MK614713.1R GACCAACCAGGAACTTCTCAAA

keap1 F GCACCTAACCGTGGAACTCAA
[28]R CCAGTTTTAGCCAGTCATTGTTCC

nf-κb F AGAAGACGACTCGGGGATGA
[27]R GCTTCTGCAGGTTCTGGTCT

tnf-α F CTTCGTCTACAGCCAGGCATCG
[29]R TTTGGCACACCGACCTCACC

il-8
F GAGGGTACATGTCTGGGGGA

XM_038713529.1R CCTTGAAGGTTTGTTCTTCATCGT

il-10
F CGGCACAGAAATCCCAGAGC

[29]R CAGCAGGCTCACAAAATAAACATCT

β-actin F ATGCAGAAGGAGATCACAGCCT
AF253319.1R AGTATTTACGCTCAGGTGGGG

Note: nuclear factor erythroid 2-related factor 2 (nrf2), superoxide dismutase (sod), catalase (cat), glutathione
peroxidase (gsh-px), kelch-like ECH-associated protein 1 (keap1), the nuclear factor κB (nf-κb), tumor necrosis
factor-alpha (tnf-α), interleukin 8 (il-8), interleukin 10 (il-10), beta-actin (β-actin).

3. Results
3.1. Growth and Feed Utilization

The results showed no significant difference in IW among the groups (p > 0.05; Table 6).
Conversely, significantly decreased FW, WGR, and SGR and an increased feed conversion
ratio (FCR) were observed in LF than in the HF group (p < 0.05). Moreover, the 0.40%
DL-Met or 0.10% Met-Met groups showed similar values for FW, WGR, and SGR with
the 40% FM group; however, only the 0.10% Met-Met group shows similar values with
that of the 40% FM group for FCR (p < 0.05). In addition, the FI and SR of M. salmoides
remained unaffected for all treatment groups (p > 0.05). The quadratic regression equation
estimated the suitable dietary supplement of DL-Met and Met-Met as 0.34% or 0.22% of the
diet, respectively, based on FCR (Figure 1).
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Met 
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Met 
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Leu 5.24 ± 0.70 5.41 ± 0.59 5.54 ± 0.60 5.60 ± 0.57 5.44 ± 0.61 5.59 ± 0.57 5.56 ± 0.57 5.02 ± 0.02 4.92 ± 0.10 4.95 ± 0.03 
Val 3.39 ± 0.36 3.59 ± 0.32 3.72 ± 0.31 3.77 ± 0.31 3.66 ± 0.31 3.76 ± 0.28 3.75 ± 0.29 3.47 ± 0.01 3.40 ± 0.08 3.44 ± 0.01 
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Gly 5.36 ± 0.27 5.77 ± 0.40 5.86 ± 0.38 5.68 ± 0.36 5.78 ± 0.39 5.76 ± 0.40 5.68 ± 0.44 6.02 ± 0.04 6.02 ± 0.03 6.32 ± 0.10 
Ser 2.87 ± 0.26 2.93 ± 0.16 2.95 ± 0.17 2.97 ± 0.18 2.92 ± 0.19 2.97 ± 0.16 2.93 ± 0.17 2.80 ± 0.02 2.75 ± 0.05 2.81 ± 0.03 
Pro 3.50 ± 0.16 3.79 ± 0.19 3.82 ± 0.19 3.74 ± 0.20 3.76 ± 0.19 3.83 ± 0.22 3.74 ± 0.21 3.90 ± 0.02 3.81 ± 0.03 4.03 ± 0.03 
Ala 4.75 ± 0.31 4.94 ± 0.14 5.04 ± 0.15 5.03 ± 0.15 4.95 ± 0.14 5.06 ± 0.15 5.00 ± 0.15 4.85 ± 0.01 4.79 ± 0.05 4.93 ± 0.03 
Asp 9.92 ± 1.12 10.31 ± 0.89 10.53 ± 0.90 10.58 ± 0.86 10.32 ± 0.88 10.51 ± 0.85 10.51 ± 0.84 9.72 ± 0.06 9.54 ± 0.16 9.63 ± 0.07 
Glu 9.92 ± 1.12 10.31 ± 0.89 10.53 ± 0.90 10.58 ± 0.86 10.32 ± 0.88 10.51 ± 0.85 10.51 ± 0.84 9.72 ± 0.06 9.54 ± 0.16 9.63 ± 0.07 
Cys 0.64 ± 0.07 0.67 ± 0.07 0.67 ± 0.05 0.67 ± 0.06 0.62 ± 0.05 0.60 ± 0.06 0.60 ± 0.06 0.56 ± 0.01 0.56 ± 0.01 0.57 ± 0.00 

Met+ Cys 2.61 ± 0.33 2.69 ± 0.29 2.77 ± 0.28 2.78 ± 0.27 2.65 ± 0.26 2.67 ± 0.27 2.66 ± 0.26 2.42 ± 0.03 2.42 ± 0.03 2.43 ± 0.01 
Note: Data are presented as mean ± standard error. Methionine (Met), lysine (Lys), threonine (Thr), 
tryptophan (Trp), arginine (Arg), isoleucine (ILe), leucine (Leu), valine (Val), histidine (His), phe-
nylalanine (Phe), glycine (Gly), serine (Ser), proline (Pro), alanine (Ala), aspartic acid (Asp), glu-
tamic acid (Glu), serine (Cys). 

Figure 1. Quadratic regression equation analysis of feed conversion rate (FCR) in juvenile M. salmoides
fed with different levels of DL-Met and Met-Met.
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Table 6. Effects of different levels of Met-Met and DL-Met supplementation on the growth and feed utilization in juvenile M. salmoides.

Item Diets 1

40% FM 25% FM 0.10% DL-Met 0.20% DL-Met 0.30% DL-Met 0.40% DL-Met 0.10% Met-Met 0.20% Met-Met 0.30% Met-Met 0.40% Met-Met

IW 2, g 16.38 ± 0.03 16.38 ± 0.03 16.39 ± 0.04 16.39 ± 0.03 16.38 ± 0.03 16.41 ± 0.03 16.39 ± 0.02 16.41 ± 0.03 16.40 ± 0.02 16.39 ± 0.02
FW 3, g 60.16 ± 0.73 b 52.34 ± 0.79 a 55.84 ± 1.12 ab 55.94 ± 1.08 ab 56.57 ± 1.73 ab 58.63 ± 1.80 b 58.96 ± 1.26 b 58.15 ± 1.00 ab 58.08 ± 1.48 ab 54.8 ± 1.10 ab

WGR 4, % 267.24 ± 4.46 b 219.51 ± 4.60 a 240.79 ± 6.99 ab 241.39 ± 6.51 ab 245.24 ± 10.13 ab 257.40 ± 11.33 b 259.675 ± 8.06 b 254.42 ± 5.84 ab 254.20 ± 9.20 ab 234.40 ± 6.83 ab

SGR 5, %/d 1.86 ± 0.02 b 1.66 ± 0.02 a 1.75 ± 0.03 ab 1.75 ± 0.03 ab 1.77 ± 0.04 ab 1.82 ± 0.05b 1.83 ± 0.03 b 1.81 ± 0.02 ab 1.81 ± 0.04 ab 1.72 ± 0.03 ab

FCR 6 0.79 ± 0.01 a 0.96 ± 0.02 b 0.88 ± 0.02 ab 0.87 ± 0.02 ab 0.91 ± 0.03 ab 0.85 ± 0.03 ab 0.81 ± 0.03 a 0.84 ± 0.03 ab 0.87 ± 0.02 ab 0.89 ± 0.03 ab

FI 7, g/fish/d 0.32 ± 0.01 0.36 ± 0.01 0.34 ± 0.01 0.34 ± 0.01 0.35 ± 0.01 0.34 ± 0.01 0.33 ± 0.01 0.34 ± 0.01 0.34 ± 0.01 0.34 ± 0.01
SR 8, % 100 99.00 ± 1.00 100 100 98.00 ± 2.00 99.00 ± 1.00 100 100 98.00 ± 1.15 100

1 The 40% FM group (HF) and 25% FM group (LF). Data are presented as mean ± standard error, with different letters indicating differences within the groups (p < 0.05). 2 Initial average
body weight. 3 Final average body weight. 4 Weight gain rate (WGR) (%) = 100 × (final body average weight (g) − initial body average weight (g))/initial weight (g). 5 Specific growth
rate (SGR) (%/d) = 100 × ((ln (final body average weight (g)) − ln (initial body average weight (g)))/days). 6 Feed conversion ratio (FCR) = dry feed fed (g)/wet weight gain (g). 7 Feed
intake (FI) (g fish−1 d−1) = dry feed fed (g)/((final body weight) (g) + initial body weight (g))/2 × days. 8 Survival rate (SR) (%) = 100 × (final number of fish/initial number of fish).
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3.2. The Whole Fish Composition and Amino Acid Composition

As shown in Tables 7 and 8, no significant differences were observed in the whole fish
and amino acid compositions among the groups (p > 0.05).

Table 7. Effects of Met-Met and DL-Met supplementation on whole body composition in juvenile
M. salmoides.

Item
Diets

40% FM 25% FM 0.10%
DL-Met

0.20%
DL-Met

0.30%
DL-Met

0.40%
DL-Met

0.10%
Met-Met

0.20%
Met-Met

0.30%
Met-Met

0.40%
Met-Met

Moisture, % 73.65 ± 0.10 73.62 ± 0.04 73.70 ± 0.37 73.64 ± 0.13 73.37 ± 0.35 73.74 ± 0.10 73.70 ± 0.19 74.56 ± 0.67 73.38 ± 0.49 73.61 ± 0.10
Lipid, % 5.66 ± 0.15 5.55 ± 0.11 5.24 ± 0.20 5.40 ± 0.08 5.40 ± 0.23 5.49 ± 0.09 5.57 ± 0.08 5.21 ± 0.23 5.34 ± 0.19 5.48 ± 0.14
Ash, % 3.94 ± 0.06 3.86 ± 0.10 4.20 ± 0.08 4.25 ± 0.12 4.21 ± 0.18 4.25 ± 0.04 3.89 ± 0.21 4.13 ± 0.02 4.11 ± 0.10 4.21 ± 0.03

Protein, % 17.31 ± 0.02 17.26 ± 0.12 17.24 ± 0.01 17.18 ± 0.09 17.04 ± 0.13 17.05 ± 0.10 17.06 ± 0.04 17.26 ± 0.02 17.16 ± 0.02 16.95 ± 0.18

Note: 40% FM group (HF) and 25% FM group (LF). Data are presented as mean ± standard error.

Table 8. Effects of Met-Met and DL-Met supplementation on amino acid composition of whole fish in
juvenile M. salmoides.

Item
Diets

40% FM 25% FM 0.10%
DL-Met

0.20%
DL-Met

0.30%
DL-Met

0.40%
DL-Met

0.10%
Met-Met

0.20%
Met-Met

0.30%
Met-Met

0.40%
Met-Met

Essential amino acid

Met 1.97 ± 0.26 2.02 ± 0.23 2.10 ± 0.22 2.11 ± 0.21 2.02 ± 0.22 2.07 ± 0.21 2.06 ± 0.21 2.86 ± 0.02 1.86 ± 0.03 1.86 ± 0.00
Lys 5.76 ± 0.87 5.92 ± 0.76 6.05 ± 0.75 6.10 ± 0.71 5.87 ± 0.75 6.05 ± 0.75 6.00 ± 0.71 5.36 ± 0.03 5.28 ± 0.11 5.29 ± 0.02
Thr 3.11 ± 0.32 3.19 ± 0.23 3.29 ± 0.24 3.34 ± 0.27 3.23 ± 0.27 3.29 ± 0.22 3.27 ± 0.22 3.05 ± 0.02 3.01 ± 0.05 3.05 ± 0.01
Trp 0.69 ± 0.01 0.63 ± 0.02 0.67 ± 0.01 0.67 ± 0.02 0.65 ± 0.02 0.66 ± 0.01 0.65 ± 0.02 0.68 ± 0.00 0.64 ± 0.02 0.68 ± 0.00
Arg 4.31 ± 0.36 4.48 ± 0.23 4.53 ± 0.26 4.56 ± 0.24 4.44 ± 0.23 4.53 ± 0.24 4.52 ± 0.23 4.32 ± 0.02 4.30 ± 0.05 4.38 ± 0.02
ILe 3.03 ± 0.39 3.19 ± 0.38 3.33 ± 0.36 3.36 ± 0.35 3.26 ± 0.37 3.35 ± 0.36 3.33 ± 0.35 2.99 ± 0.02 2.96 ± 0.08 2.96 ± 0.02
Leu 5.24 ± 0.70 5.41 ± 0.59 5.54 ± 0.60 5.60 ± 0.57 5.44 ± 0.61 5.59 ± 0.57 5.56 ± 0.57 5.02 ± 0.02 4.92 ± 0.10 4.95 ± 0.03
Val 3.39 ± 0.36 3.59 ± 0.32 3.72 ± 0.31 3.77 ± 0.31 3.66 ± 0.31 3.76 ± 0.28 3.75 ± 0.29 3.47 ± 0.01 3.40 ± 0.08 3.44 ± 0.01
His 1.64 ± 0.18 1.72 ± 0.15 1.74 ± 0.13 1.79 ± 0.12 1.71 ± 0.14 1.76 ± 0.15 1.73 ± 0.13 1.59 ± 0.01 1.60 ± 0.03 1.60 ± 0.01
Phe 3.24 ± 0.33 3.35 ± 0.26 3.43 ± 0.28 3.48 ± 0.26 3.31 ± 0.26 3.36 ± 0.26 3.40 ± 0.27 3.28 ± 0.04 3.21 ± 0.06 3.22 ± 0.04

Nonessential amino acid

Gly 5.36 ± 0.27 5.77 ± 0.40 5.86 ± 0.38 5.68 ± 0.36 5.78 ± 0.39 5.76 ± 0.40 5.68 ± 0.44 6.02 ± 0.04 6.02 ± 0.03 6.32 ± 0.10
Ser 2.87 ± 0.26 2.93 ± 0.16 2.95 ± 0.17 2.97 ± 0.18 2.92 ± 0.19 2.97 ± 0.16 2.93 ± 0.17 2.80 ± 0.02 2.75 ± 0.05 2.81 ± 0.03
Pro 3.50 ± 0.16 3.79 ± 0.19 3.82 ± 0.19 3.74 ± 0.20 3.76 ± 0.19 3.83 ± 0.22 3.74 ± 0.21 3.90 ± 0.02 3.81 ± 0.03 4.03 ± 0.03
Ala 4.75 ± 0.31 4.94 ± 0.14 5.04 ± 0.15 5.03 ± 0.15 4.95 ± 0.14 5.06 ± 0.15 5.00 ± 0.15 4.85 ± 0.01 4.79 ± 0.05 4.93 ± 0.03
Asp 9.92 ± 1.12 10.31 ± 0.89 10.53 ± 0.90 10.58 ± 0.86 10.32 ± 0.88 10.51 ± 0.85 10.51 ± 0.84 9.72 ± 0.06 9.54 ± 0.16 9.63 ± 0.07
Glu 9.92 ± 1.12 10.31 ± 0.89 10.53 ± 0.90 10.58 ± 0.86 10.32 ± 0.88 10.51 ± 0.85 10.51 ± 0.84 9.72 ± 0.06 9.54 ± 0.16 9.63 ± 0.07
Cys 0.64 ± 0.07 0.67 ± 0.07 0.67 ± 0.05 0.67 ± 0.06 0.62 ± 0.05 0.60 ± 0.06 0.60 ± 0.06 0.56 ± 0.01 0.56 ± 0.01 0.57 ± 0.00

Met+ Cys 2.61 ± 0.33 2.69 ± 0.29 2.77 ± 0.28 2.78 ± 0.27 2.65 ± 0.26 2.67 ± 0.27 2.66 ± 0.26 2.42 ± 0.03 2.42 ± 0.03 2.43 ± 0.01

Note: Data are presented as mean ± standard error. Methionine (Met), lysine (Lys), threonine (Thr), tryptophan
(Trp), arginine (Arg), isoleucine (ILe), leucine (Leu), valine (Val), histidine (His), phenylalanine (Phe), glycine
(Gly), serine (Ser), proline (Pro), alanine (Ala), aspartic acid (Asp), glutamic acid (Glu), serine (Cys).

3.3. Intestinal Antioxidant Parameters

As shown in Figure 2, CAT, SOD, and GSH contents were significantly decreased in
the LF group; however, the corresponding MDA levels were increased in comparison to
the HF group. Moreover, the 0.30–0.40% DL-Met or 0.10–0.30% Met-Met groups showed
significantly increased CAT activities relative to the LF group. Additionally, no differences
were reported between the low-FM group supplemented with the 0.10% Met-Met and
HF group. Furthermore, supplementation with 0.40% of DL-Met or 0.10% of Met-Met in
the LF group significantly increased SOD activity in comparison to the LF group, but no
significant difference was observed among the 0.40% DL-Met, 0.10% Met-Met, and HF
groups. Moreover, Met-Met supplementation significantly increased GSH levels, whereas
DL-Met supplementation had no significant effect when compared with the LF group.
Specifically, supplementation with 0.10% of Met-Met significantly increased GSH compo-
sition compared with the 40% FM group. Moreover, 0.20–0.40% DL-Met or 0.10–0.40%
Met-Met significantly reduced MDA contents in comparison to the LF group. In addition,
no significant difference was observed between the 0.40% DL-Met and the HF groups;
however, 0.10% Met-Met significantly reduced MDA content. On the other hand, GSH-Px
activity was consistent among all the groups (p > 0.05).
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Figure 2. Activity of antioxidant-related parameters in the intestine of M. salmoides. Catalase (CAT)
(A), superoxide dismutase (SOD) (B), glutathione (GSH) (C), glutathione peroxidase (GSH-Px) (D),
malondialdehyde (MDA) (E). The 40% FM group (HF) and 25% FM group (LF). Data are presented as
mean ± standard error, with different letters indicating differences within the groups (p < 0.05).

3.4. Intestinal Antioxidant-Related Gene Levels

Results demonstrated significantly downregulated expressions of the nrf2, cat, and
sod genes and an upregulated expression of the keap1 gene in the LF group compared
with the HF group (p < 0.05; Figure 3). Moreover, the expressions of nrf2 and sod genes
were significantly upregulated by supplementation with 0.20–0.40% of DL-Met, whereas
0.40% of DL-Met upregulated cat gene expression and 0.10–0.40% of DL-Met significantly
downregulated keap1 gene expression when compared with the LF group (p < 0.05). The
results of supplementation with 0.10–0.40% of Met-Met in the LF group showed significantly
upregulated expressions of nrf2, cat, and sod genes and downregulated expression of the
keap1 gene relative to the LF group (p < 0.05). No difference was observed in the level of
the gsh-px gene expression among the groups (p > 0.05).
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(C), superoxide dismutase (sod) (D), glutathione peroxidase (gsh-px) (E). The 40% FM group (HF) 
and 25% FM group (LF). Data are presented as mean ± standard error, with different letters indicat-
ing differences within the groups (p < 0.05). 

3.5. Intestinal Inflammatory-Related Gene Levels 

Figure 3. Expression of antioxidant-related genes in the intestine of M. salmoides. Nuclear factor
erythroid 2-related factor 2 (nrf2) (A), kelch-like ECH-associated protein 1 (keap1) (B), catalase (cat)
(C), superoxide dismutase (sod) (D), glutathione peroxidase (gsh-px) (E). The 40% FM group (HF) and
25% FM group (LF). Data are presented as mean ± standard error, with different letters indicating
differences within the groups (p < 0.05).

3.5. Intestinal Inflammatory-Related Gene Levels

As shown in Figure 4, compared with the HF group, significantly upregulated expres-
sions of nf-κb, tnf-α, and il-8 genes and the downregulated expression of the il-10 gene were
observed in the LF group (p < 0.05). Furthermore, supplementation with 0.30–0.40% of
DL-Met significantly decreased the expressions of the nf-κb, tnf-α, and il-8 genes, respec-
tively, whereas 0.20–0.40% of DL-Met significantly increased the expression of the il-10
gene (p < 0.05). In addition, 0.10–0.30% of Met-Met significantly reduced the expression of
the nf-κb, tnf-α, and il-8 genes, while it increased the expression of the il-10 gene relative to
the LF group (p < 0.05).
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Figure 4. Expression of inflammatory-related genes in the intestine of M. salmoides. The nuclear factor
κB (nf-κb) (A), tumor necrosis factor-alpha (tnf-α) (B), interleukin 8 (il-8) (C), interleukin 10 (il-10) (D).
The 40% FM group (HF) and 25% FM group (LF). Data are presented as mean ± standard error, with
different letters indicating differences within the groups (p < 0.05).

3.6. Microbial Community Analysis in the Intestine

No difference was observed in the ACE index among the samples (p > 0.05; Figure 5A).
Simpson and Shannon indices obtained the lowest and highest values in the LF and
LFM groups, respectively (p < 0.05; Figure 5B,C). Principal coordinate analysis (PCoA)
demonstrated differences in the intestinal microbiota of M. salmoides fed with three different
diets (Figure 5D). The abundance histogram of each sample at the genus level was used
to determine the similarity in microbial abundance among the samples. The species
enrichment levels in three samples within the groups were similar, but they were different
among the groups (Figure 5E). The results of the clustering Heatmap suggested that samples
within the group were similar, while those among the groups were different (Figure 5F).

3.7. Intestinal Bacterial Community Phenotypes

The horizontal community structure of the intestinal microbiota in three groups is
shown in Figure 6A. At the phylum level, the abundance of Proteobacteria, Bacteroidota,
Actinobacteriota, and Acidobacteriota decreased in the LF relative to the HF group, while
that of the Firmicutes and Fusobacteriota increased. Simultaneously, the abundance of
Proteobacteria and Bacteroidota increased in the LFM compared with the LF group but
decreased for Fusobacteriota. The ternary plot could visually reveal the abundance of
different species in the samples. As shown in Figure 6B, the species enrichment level was
higher in the LFM, followed by HF, and it was lowest in the LF group. LEfSe analysis
of the evolutionary branching map showed the differential bacterial taxa in the intestine
of M. salmoides fed with HF, LF, and LFM diets. In addition, the ratio of Firmicutes to
Bacteroidota in the LF group was significantly higher than that in the HF and LFM groups
(p < 0.05; Figure 6C). Moreover, Proteobacteria were markedly lower in the LF group
(p < 0.05; Figure 6D). In the cladogram, compared with the HF and LF groups, Roseburia,
Lachnospiraceae_NK4A136_group, and unclassified_Oscillospiraceae were unique within the
LFM group (Figure 6E). The differences in genus abundance between the two groups were
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analyzed by Metastats. Figure 6F,G show the comparison among genera of the LFM group
with HF and LF groups, respectively.
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Figure 5. The intestinal tissue samples of three M. salmoides fed with 40% fishmeal (HF), 25% fishmeal
(LF), and 25% fishmeal supplemented with 0.10% of Met-Met (LFM) were used for microbiological
analysis. ACE and Simpson and Shannon indices of the HF, LF, and LFM groups were shown (A–C).
The degree of proximity of the samples on the graph indicated the similarity level (D). The species
diversity, abundance similarity, and dominant species of each sample were compared according to the
intensity of each color (E). The color gradient from blue to red indicates the distance among samples
from near to far (F). Data are presented as mean ± standard error, with different letters indicating
differences within the groups (p < 0.05).
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Figure 6. Each color represents one phylum level, and the color block length (bar chart) represents
the relative abundance of the species, showing only the top ten phylum levels of abundance (A).
Different shapes and points represent different phyla and genus, respectively, and the size of the
points is the relative abundance of the genus. The three vertices represent three groups. The closer
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the point is to a vertex, the higher the abundance of the flora represented at that point in the
sample represented at that vertex (B). Firmicutes/Bacteroidota represent the ratio of Firmicutes to
Bacteroidota (C) and Proteobacteria levels (D) in three samples, with different letters indicating
differences within the groups (p < 0.05); the circles radiating from the inside out represent taxonomic
levels from phylum to species. Each small circle at a different classification level represents a
classification at that level, and the diameter of the small circle is proportional to the relative abundance.
The coloring rule uniformly imparts color to species with no significant differences as yellow, whereas
species with differences are colored according to the highest abundance group where the species
were located. Different colors represent different groups, and nodes with different colors represent
microbial communities that occupy an important position in the groups represented by that color
(E). The first and second columns provided information on species classification and grouping,
respectively. The third and fourth columns listed the average abundance with standard error and
relative abundance histograms of each group, respectively. p value < 0.05 was considered as a
significant difference, ** p < 0.001, *** p < 0.0001, and the blue boxs represents the significantly
increased bacterial genera in the LFM group compared to the HF and LF groups, respectively (F,G).

4. Discussion

Fishmeal is widely used in aquatic animal feed due to its balanced amino acids [30].
Compared to fishmeal, soy protein is known for its low levels of methionine [31]. In the
present study, the content of methionine in soybean meal is the lowest among several main
ingredients in feed (as shown in the Supplementary Materials). In addition, compared
with the plant protein source used in this study, the essential amino acid content of poultry
meal is more similar to that of fishmeal, except for lysine and methionine (as shown in
the Supplementary Materials), which are also the main limiting amino acids in poultry
by-products [32]. Therefore, in the present study, methionine was supplemented with
a low-fishmeal diet to explore its application effect in M. salmoides feed. Peptides have
attracted widespread attention due to their unique transport mechanisms, leading to
faster and more effective absorption rates than free-form crystalline amino acids in the
intestines [21,33,34]. A study on DL-Methionine (DL-Met) and Met-Met showed that
dietary Met-Met supplementation was more effective than DL-Met in L. vannamei [35].
Our results showed that growth-related indicators and feed utilization were decreased
by reducing FM from 40 to 25%. However, compared to 25% FM, the supplementation
of 25% FM with 0.40% DL-Met or 0.10% Met-Met significantly improved FW, WGR, and
SGR. These results suggested the role of DL-Met or Met-Met supplementation in alleviating
the negative effects of low-FM diets. Previous studies showed that DL-Met or Met-Met
could promote the growth of larvae, juvenile Red Sea Bream [21], and L. vannamei [35].
According to the quadratic regression analysis of the FCR index, 0.34% DL-Met or 0.22%
Met-Met added to LF meal resulted in similar growth and feed utilization by M. salmoides
as those feeding on high FM. Therefore, it can be concluded that the M. salmoides diet
with low FM required a higher level of DL-Met supplementation than that of Met-Met to
induce desirable growth. In other words, M. salmoides shows better utilization of Met-Met
than DL-Met. In addition, Xie et al. reported that an improved growth performance of
L. vanname could be achieved by adding 0.10% of Met-Met or 0.30% of DL-Met to a low-FM
diet [35], which further validated our results. Moreover, in the present study, no significant
difference was observed in the whole-body and amino acid composition of M. salmoides
among the groups. The results were similar to those reported in the previous studies on
L. vannamei [36] and Red Sea Bream [21].

Dietary low-FM contents lead to oxidative stress in M. salmoides [37], which is re-
lieved by antioxidant enzymes and related genes mainly through the Nrf2 signaling
pathway [38,39]. Oxidative stress results from the overproduction of reactive oxygen
species (ROS), which are removed by the action of antioxidant enzymes (such as SOD,
GSH-Px, and CAT) [40]. One of the important indicators of oxidative damage in the body
is the increased level of MDA [16]. In the present study, relative to the HF diet, feeding
with the LF diet significantly reduced the intestinal CAT, SOD, and GSH levels, whereas
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the MDA content was increased. This suggests that consuming a low-FM diet could reduce
the antioxidant ability of the intestines of M. salmoides, resulting in oxidative damage.
Furthermore, in comparison to the LF group, CAT, SOD, and GSH levels in the intestines
of M. salmoides increased significantly when DL-Met or Met-Met were added to LF diets.
Specifically, 0.20–0.40% of DL-Met or 0.10–0.40% of Met-Met significantly reduced MDA
content relative to the LF group. Previous studies on Nile tilapia [20] and L. vannamei [23]
reported that 0.20% and 0.10–0.15% of Met-Met increased the antioxidant capacity, respec-
tively. Ji et al. [23] also reported that 0.10–0.25% of Met-Met significantly reduced the
MDA content in L. vannamei. Collectively, these results indicated that supplementing with
DL-Met or Met-Met could effectively alleviate the intestinal oxidative damage caused by a
low-FM diet. Particularly, 0.10% of Met-Met increased GSH and decreased MDA content
in comparison to the HF group, suggesting a more effective role of Met-Met than that
of DL-Met.

The nrf2-mediated gene expression of antioxidant enzymes reduces external oxidative
stress [41]. In the present study, relative to the HF group, the LF diet significantly reduced
the expressions of nrf2, cat, and sod genes, whereas the keap1 gene expression levels were
significantly increased. According to a study, dietary low FM could reduce the antioxidant
capacity in juvenile golden pompano (Trachinotus ovatus) by decreasing the nrf2 expres-
sion level in the nrf2 signaling pathway, increasing the keap1 expression level, thereby
inhibiting the expression of oxidative stress-related genes, such as sod, cat, and gsh-px [42].
Similarly, a low-FM diet for M. salmoides could downregulate the intestinal antioxidant
capacity through the nrf2-mediated expression of antioxidant enzymes and related genes.
Compared with the LF group, 0.20–0.40% of DL-Met supplementation significantly upregu-
lated nrf2 and sod genes expression and downregulated keap1 gene expression, whereas
0.10–0.40% of Met-Met the upregulated nrf2, cat, and sod and downregulated the keap1
gene expression in the present study. Conclusively, DL-Met or Met-Met improved the
antioxidant capacity of M. salmoides by regulating the activity of related enzymes and genes
of the Nrf2 signaling pathway.

The nuclear factor (nf-κb) can regulate inflammation through cytokines. As a tran-
scription factor, it regulates the expression of pro-inflammatory genes, including tnf-α and
il-8, and anti-inflammatory genes, such as il-10 [43,44]. In the present study, significantly
upregulated levels of the nf-κb, tnf-α, and il-8 genes and downregulated levels of il-10
were induced by the LF diet relative to the HF group, which is consistent with the results
of a previous study [45]. In addition, our results showed that in comparison to the LF
group, supplementation with DL-Met or Met-Met significantly down- and upregulated
the pro- and anti-inflammatory genes, respectively, in the intestine of M. salmoides. The
above results indicated that consumption of a low-FM diet could lead to intestinal in-
flammation in M. salmoides, and DL-Met or Met-Met supplementation could alleviate the
inflammatory response.

The intestinal microbiome is crucial for human health and is substantially influenced
by diet [46]. Similarly, in fish, intestinal microbiota plays an important role in nutrition,
immunity, and resistance to invading pathogens, and diet greatly influences its composi-
tion [47]. According to a study on Nile tilapia, the addition of Met-Met to fish feed could
influence the composition of intestinal microbiota [20]. The core microbiota are closely
related to the host genotype and remain unaffected by the external environment [48,49].
In the present study, the intestinal tissue samples of M. salmoides fed with the HF, LF, and
LFM diets were used for microbiological analysis. The ACE and Simpson and Shannon
indices in α-diversity are commonly used to evaluate the species richness and diversity.
Our results did not show a significant difference in ACE among the groups, and the lowest
values of the Simpson and Shannon index were observed in the LF group, which were sig-
nificantly increased by Met-Met supplementation. This suggests the potential of Met-Met
in enhancing the diversity of intestinal microbiota. PCoA, UPGMA, and sample clustering
heatmaps for β-diversity analysis revealed that the microorganisms in the three random
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samples within the groups were similar; however, there were significant differences in the
microbiota among the groups.

Nevertheless, an imbalanced Firmicutes-to-Bacteroidota ratio could lead to pathogenic
invasion [50]. In the present study, the Firmicutes-to-Bacteroidota ratio of the LF group
was significantly higher than that of the HF and LFM groups. This suggested that the
low-FM diet may lead to an imbalanced Firmicutes-to-Bacteroidota ratio in the intestine
of M. salmoides, which was more likely to promote pathogenic invasion, thereby reducing
the immunity of fish. However, the supplementation of Met-Met in a low-FM diet could
improve intestinal immunity by regulating the Firmicutes-to-Bacteroidota ratio. Further-
more, Proteobacteria is the core intestinal microbiota of fish [51,52]. Previous studies on the
intestinal tissue samples of grass carp (Ctenopharyngodon idella) revealed that Proteobacteria
is positively correlated with the anti-inflammatory factor tgf-β, suggesting its role in im-
proving the anti-inflammatory ability of fish [53]. Our results showed significantly lower
levels of Proteobacteria in the LM group relative to the HF and LFM groups. Moreover, the
upregulation of pro-inflammatory factors and downregulation of anti-inflammatory factors
might be induced by the imbalanced Firmicutes-to-Bacteroidota ratio or reduced levels of
Proteobacteria in a low-FM diet. However, the relevant regulatory mechanisms of bacterial
abundance and inflammatory factors need further investigation. The results also demon-
strated that Met-Met may improve intestinal health by increasing the abundance of benefi-
cial bacteria. Additionally, the results of the ternary plot showed that Met-Met changed the
bacterial diversity, whereas the LEfSe analysis revealed that the unique Roseburia [54,55],
Lachnospiraceae_NK4A136_group [56], and unclassified_Oscillospiraceae [57] in the LFM group
were beneficial bacteria. Roseburia was negatively correlated with MDA level and positively
correlated with antioxidant enzymes, including SOD in the gut of mice [58]. Moreover, it
plays an anti-inflammatory role in alleviating colitis pathology, suggesting its potential
anti-inflammatory effects [59]. Similarly, Lachnospiraceae_NK4A136_group found in the gut
of mice was positively correlated with anti-inflammatory genes and negatively correlated
with the pro-inflammatory and oxidative stress factors [60]. Therefore, it can be concluded
that changes in the abundance of Roseburia and Lachnospiraceae_NK4A136_group may have
resulted from Met-Met supplementation, thereby enhancing the intestinal oxidation and
anti-inflammatory capacity of M. salmoides. Notably, unclassified Oscillospiraceae produces
butyrate after fermentation in the gut, which helps in the utilization of dietary fiber [61].
The differences in genus abundance between the two groups were analyzed by Metastats.
In the present study, compared with the LF and HF groups, the abundance of probiotic
bacteria, such as Caldicoprobacter, Pseudogracilibacillus, and Parasutterella, was increased
in the LFM group. Moreover, Caldicoprobacter could ferment complex carbohydrates in
the intestine to produce lactic acid, thereby promoting the production of short-chain fatty
acids to maintain intestinal health [62,63]. Pseudogracilibacilluse and Parasutterella are con-
sidered beneficial bacteria [64,65]. In addition, anti-inflammatory effects may be exerted
by the metabolites (7-ketodeoxycholic acid and haloperidol glucuronide) produced by
Parasutterella [66]. This implies that the supplementation of Met-Met in a low-FM diet
could improve the composition and abundance of beneficial bacteria in the gut, thereby
improving intestinal health.

5. Conclusions

An FM reduction from 40 to 25% could affect the growth performance and feed utiliza-
tion, whereas the supplementation with DL-Met or Met-Met improved these parameters.
In addition, Met-Met could enhance the antioxidant and anti-inflammatory capacity and
effectively regulate the abundance of dominant bacteria to promote the intestinal health of
M. salmoides. Moreover, the quadratic regression analysis evaluated the suitable dietary
supplementation of DL-Met or Met-Met as 0.34% or 0.22% of the diet, respectively, based
on FCR. Finally, relative to DL-Met, Met-Met demonstrated a better utilization rate, and
results demonstrated that the effects produced by 0.09% of Met-Met were equivalent to
those produced by 0.36% of DL-Met supplementation.
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