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Abstract: Membrane transporters are proteins that mediate the entry and exit of substances through
the plasma membrane and organellar membranes and are capable of recognizing and binding to
specific substances, thereby facilitating substance transport. Membrane transporters are divided into
different types, e.g., ion transporters, sugar transporters, amino acid transporters, and aquaporins,
based on the substances they transport. These membrane transporters inhibit reactive oxygen species
(ROS) generation through ion regulation, sugar and amino acid transport, hormone induction, and
other mechanisms. They can also promote enzymatic and nonenzymatic reactions in plants, activate
antioxidant enzyme activity, and promote ROS scavenging. Moreover, membrane transporters can
transport plant growth regulators, solute proteins, redox potential regulators, and other substances
involved in ROS metabolism through corresponding metabolic pathways, ultimately achieving ROS
homeostasis in plants. In turn, ROS, as signaling molecules, can affect the activity of membrane trans-
porters under abiotic stress through collaboration with ions and involvement in hormone metabolic
pathways. The research described in this review provides a theoretical basis for improving plant stress
resistance, promoting plant growth and development, and breeding high-quality plant varieties.

Keywords: membrane transporters; ROS; interaction mechanism

1. Introduction

Membrane transporters are proteins embedded in plasma membranes and organellar
membranes [1]. These proteins are distributed in various tissues or cells and can improve
the efficiency of plants in utilizing water and mineral elements [2,3] and transporting sugars
to provide energy for plants [4,5]. They are also involved in the absorption, transportation,
and detoxification of heavy metal substances by plants [6]. Recent studies have shown
that complex interactions occur between many membrane transport proteins and ROS
in plants. Membrane transporters can be activated by ROS signaling to perform related
transport functions [7]. In turn, the transport of ions, sugars, hormones, amino acids,
and other substances by membrane transporters can trigger a series of physiological
metabolic reactions in plants, which enhance antioxidant enzyme activity, scavenge excess
ROS, and regulate plant tolerance under abiotic stress [8–11]. Under abiotic stress, ROS
accumulate in different forms (1O2, O2

•−, H2O2, and •OH) in the cytosol and in various
plant organelles [12–14]. Excessive ROS can interfere with cell homeostasis, disrupt lipids
and DNA, and ultimately lead to cell apoptosis [15–17]. Therefore, decreasing the excess
ROS content in plants under adverse conditions is highly important in improving plant
stress resistance, which can be achieved by inhibiting ROS generation and promoting ROS
catabolism. ROS signaling also promotes a series of metabolic reactions under abiotic
stress, activating membrane transporter activity to promote substance transport, which
is a highly complex system network [18]. To date, studies on membrane transporters

Antioxidants 2024, 13, 221. https://doi.org/10.3390/antiox13020221 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox13020221
https://doi.org/10.3390/antiox13020221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0001-5740-9278
https://doi.org/10.3390/antiox13020221
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox13020221?type=check_update&version=1


Antioxidants 2024, 13, 221 2 of 21

have focused mainly on their functions under abiotic stress, and less is known about their
involvement in ROS regulation. The relationship between membrane transporters and ROS
has attracted widespread attention. This review classifies membrane transporters based
on their transport characteristics and discusses their involvement in ROS generation and
scavenging pathways under abiotic stress, as well as metabolic responses regulated by ROS
signaling. It also provides insights into improving plant quality and efficiency, enhancing
abiotic stress tolerance, and developing new, high-quality plant varieties.

2. Types of Membrane Transporters in Plants

The study of membrane transporters can be traced back to the 1950s. Subsequently,
membrane transporters were found to exist widely in plants and animals. Membrane
transporters are embedded in the plasma membranes of cells and various organellar
membranes and can be classified into different types based on their transport characteristics
for different substances (Figure 1). These different types of membrane transporters perform
different functions. Ion transporters can transport a variety of ions, including Na+, K+, Ca2+,
H+, and Cl−, as well as heavy metal ions such as Ni2+ and Cd2+, regulating intracellular ion
concentrations and maintaining the cellular pH balance. Sugar transporters can transport
sucrose, fructose, glucose, and various sugar alcohols to provide energy for plants. Amino
acid transporters, hormone transporters, and other secondary metabolite transporters are
involved in the transport of related substances and regulate various metabolic reactions
in plants, playing key roles in research on the application of exogenous substances. These
membrane transporters exist in plants as carrier proteins and channel proteins. Through
their absorption and transport functions, they increase the levels of beneficial nutrients
within cells, playing important roles in improving plant growth and development and
enhancing plant tolerance to abiotic stress (Table S1) [19–22].
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2.1. Ion Transporters
2.1.1. Na+ Transporters

Na+ is the most abundant type of cation in extracellular fluid, playing a role in
maintaining cellular water and the acid–base balance [23]. There are two main types of Na+

transporters in plants. The first type is located on the plasma membrane and controls the
transport of Na+ across the plasma membrane. The influx of Na+ is controlled by high-
affinity K+ transporters (HKTs) [24–29], low-affinity transporters (LCTs), nucleotide-gated
channels (CNGCs), and ionotropic glucose receptor (GLR) channels [30–32]. The efflux
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of Na+ is controlled by salt overly sensitive 1 (SOS1) [33]. The second type is located on
the vacuolar membrane and controls the transport of Na+ across the vacuolar membrane.
Na+/H+ antiporters (NHXs) control the transport of Na+ from the cytosol to vacuoles
through the exchange of Na+ and H+ [34], which reduces the Na+ content in the cytosol
and increases plant tolerance. In addition, some studies have indicated an interaction
relationship between NHXs and SOSs, but the specific underlying mechanism still needs
further exploration.

2.1.2. K+ Transporters

K+ is the main cation in intracellular fluids and plays an important role in promoting
plant growth and development, enhancing photosynthesis and material synthesis within
plants, and improving sugar and energy metabolism [8,35]. Due to the difference in K+

concentration between soil and plants, the transport of K+ requires energy [36,37]. There are
many K+ transporters in plants, including HKT, KT/HAK/KUP, AKT, two-pore channels
(TPCs), and cation/H+ antiporters. These transporters are distributed on the plasma
membrane and vacuolar membrane and can transport K+ under different conditions. In
1994, HKT was identified as a high-affinity K+ transporter protein that is an alkaline cation
transporter linking cytosolic osmotic homeostasis with plant tolerance under salt stress
and contributing significantly to Na+ transport [27,38]. The KT/HAK/KUP transporter
family belongs to the amino acid polyamine–organocation superfamily, among which the
HAK transporter has more obvious characteristics [39,40]. It regulates the transport of
K+ in low K+ concentration environments and is involved in the redistribution of K+ to
maintain Na+/K+ levels [41,42]. The AKT family includes AKTs and KATs, which are
K+-channel proteins [43]. There are four types of K+-channel proteins, namely inward-
correcting (Kin) channels, weakly-correcting (Kweak) channels, silent (Ksilent) channels, and
outward-correcting (Kout) channels [37,44–47]. TPCs are located on the plasma and vacuolar
membranes, and their main function is to regulate the transport of cytosolic K+ to maintain
normal Na+/K+. In addition, two types of cation/H+ antiporters, CHX and KEA, can also
provide additional K+ transport capacity in high-concentration K+ environments, but their
transport mechanism is unclear [48,49].

2.1.3. Ca2+ Transporters

Ca2+ is an essential nutrient for plants. Ca2+ homeostasis is highly important for
maintaining the integrity of the cell membrane structure and for maintaining intracellular
enzyme activity [50]. Like Na+, Ca2+ membrane transporters are located on the plasma
membrane and control the transport of Ca2+ across the plasma membrane. The influx of
Ca2+ is controlled by mechanosensitive channels (OSCAs), CNGCs, GLRs, TPCs, etc. [51,52].
OSCA1 can play a role in osmotic stress [53], and TPC channels can specifically mediate the
influx of Ca2+ [54]. The efflux of Ca2+ is energy-dependent and is mainly achieved through
Ca2+-ATPase. In Arabidopsis, the autoenriched Ca2+-ATPase (ACA) genes ACA2 and ACA4
have been shown to control the efflux of Ca2+ [55–57]. Another type of Ca2+ membrane
transporter is located on the vacuolar membrane and controls the efflux of Ca2+ from the
cytosol to the vacuole; this process is mainly achieved through Ca2+/cation antiporters [58].
Ca2+/Na+ exchange (NCL) can transport Ca2+ to the vacuole through the exchange of
Ca2+ and Na+ [59], and Ca2+/H+ exchange (VCX, CAX) can transport Ca2+ to the vacuole
through the exchange of Ca2+ and H+ [60,61].

2.1.4. H+ Transporters

Hydrogen atoms lose electrons to form H+, which can regulate the pH inside plants,
promote plant growth and development, and improve nutritional quality [19]. H+-ATPase
and H+-PPase are involved mainly in the transport of H+ in cells. H+-ATPases are divided
into plasma membrane H+-ATPases (PMAs) and vacuolar membrane H+-ATPases (VMAs).
PMAs can generate a proton gradient, which drives SOS1 to transport Na+ [62]. VMAs and
V-H+-PPases are located on the vacuolar membrane and are responsible for transporting
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H+ from the cytosol to the vacuole [63,64]. V-H+-PPases have higher activity in young
tissues, while VMAs have higher activity during plant growth and maturity [65]. These
two types of transporters generate H+ gradients on the vacuolar membrane, driving NHXs
to transport Na+ [66,67]. H+ transporters play a crucial role in maintaining ion homeostasis
and improving plant tolerance under abiotic stress through compartmentation.

2.1.5. Anion Transporters

Inorganic anions in plants include chloride (Cl−) and nitrate (NO3
−) ions, which

are regulated both inside and outside the cell by two anion channel proteins: slow an-
ion channels (SLAC/SLAH) and chloride channels (CLC) [68]. SLACs can regulate the
distribution of anions in the xylem in the extracellular space [69,70]. CLCs regulate the
transport of anions through their intracellular compartmentalization effect [71]. In addi-
tion, aluminum-activated malate transporters (ALMTs) are distributed on the plasma and
vacuolar membranes and are involved in the transport of Cl− [72–75]. NTRs are located
on the plasma membrane and rely on the H+ gradient provided by H+-ATPase for NO3

−

transport [76].

2.1.6. Other Ion Transporters

Metal ions such as Fe2+, Zn2+, and Mg2+ are regulated by various membrane trans-
porters in plants [77]. Some membrane transporters have specificity for a single type of
ion, while others can transport multiple types. Mg2+ transporters (MGTs) are distributed
in the roots and leaves of plants and are responsible for Mg2+ transport. The iron nico-
tianamine transporter yellow-stripe-like 2 (OsYSL2) is responsible for the transport of
Fe2+ in plants [78]. Metal tolerance proteins (MTPs) control the transport of Zn2+ and are
associated with Zn2+ sensitivity and tolerance [79]. Vacuole iron transporters (VITs) control
the transport of Fe2+, Zn2+, Mg2+ [80], etc. In addition to these elements essential for plant
growth and development, studies have shown that there are many toxic heavy metal ions
in the soil environment. Membrane transporters play a crucial role in heavy metal ion
scavenging, detoxification, soil improvement, and enhancement of plant tolerance to heavy
metal stress. Cation diffusion facility (CDF) transporters are a type of cation/H+ antiporter
that can transport heavy metal ions such as Cd2+, Co2+, and Ni2+ through the exchange
of cations and H+ [81]. Iron-regulated transporters (IRTs) control the transport of Cd2+

and Ni2+ in plants [82]. Natural resistance-associated macrophage proteins (NRAMPs) are
located on the vacuolar membrane and transport Cd2+ to the vacuole for chelation [83].
ATP binding cassette (ABC) transporters are the most ubiquitous in plants and are currently
the largest family of membrane transporters [84]. Multidrug-associated proteins (MRPs)
are ABC transporters that are involved in the transport of Cd2+ in plants, but their specific
mechanism is unclear [85].

2.2. Sugar Transporters

Sugars are important components of plant cells and occur in the form of sucrose, fruc-
tose, glucose, starch, and other substances in plant cells. They are responsible for energy
supply and signal transduction in plants. Sugar transporters ensure the long-distance
distribution of sugars in cells and tissues and are involved in signal transduction for the
perception of abiotic stress and environmental adaptation [86]. There are three main types
of sugar transporters in plants: sugar transporters (SUTs), sugar will be exported trans-
porters (SWEETs), and monosaccharide transporters (MSTs) [4]. SUTs are located on the
plasma membrane and are only found in plants. These proteins have been identified in rice
and Arabidopsis and are responsible for the long-distance transport of sucrose in plants [87].
SWEETs are distributed on both the plasma membrane and the vacuolar membrane and
have been identified in plants such as rice, Arabidopsis, Camellia sinensis, and Dianthus
spiculifolius. They can passively transport sucrose, glucose, and fructose along concen-
tration gradients [87–90]. MSTs belong to the major facility superfamily, which consists
of seven subgroups: early response to dehydration (ERD6), sugar transporter proteins
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(STPs), plastic glucose transporter (pGlcT), inositol transporters (INTs), vacuum glucose
transporters (VGTs), tonoplast sugar transporters (TSTs), and polymer/monosaccharide
transporters (PLTs). The different subfamilies of MSTs are distributed in different locations,
controlling the transport of sucrose, maltose, glucose, sugar alcohols, and other sugars and
regulating various physiological functions in plants, such as sugar distribution and signal
perception [91–95]. Multiple sugar transporters can control sugar transport, and further
research is needed to determine which of these transporters plays a major role in sugar
transport in plants.

2.3. Amino Acid Transporters

Amino acids are key nutrients required by plants and play an important role in
promoting plant photosynthesis and material metabolism and in enhancing plant tolerance.
The amino acid transporter (AAT) family can be divided into two categories: the amino acid
polyamine choline transporter (APC) family and the amino acid/auxin permease (AAAP)
family [96]. The APC transporter superfamily includes cation amino acid transporters
(CATs), polyamine H+ cotransporters (PHSs), and amino acid/choline transporters (ACTs).
CATs control the bidirectional transport of GABA, glutamate, and aspartate between the
cytosol and vacuoles [97]. PHSs mainly play a role in polyamine transport [98]. ACTs
control the bidirectional transport of GABA between the cytosol and mitochondria [99,100].
AAAPs include amino acid permanence transporters (AAPs), lysine/histidine transporters
(LHTs), proline transporters (ProTs), aromatic and neutral amino acid transporters (ANTs),
putative auxin transporters (AUXs), GABA transporters (GATs), etc. [101–105]. The AAAP
family plays an important role in the transport of GABA, lysine, histidine, proline, and
many other amino acids. Although studies on amino acid transporters have been reported
for many years, many of them have not been studied in depth, and fully understanding the
regulation of amino acids by transporters in plants is still highly challenging.

2.4. Other Compound Transporters

Compounds such as plant hormones and secondary metabolites can regulate plant
growth and development. Transporter families such as ABC transporters, multidrug and
toxic compound extrusion (MATE) transporters, purine uptake permease (PUP) trans-
porters, and nitrate–peptide (NRT) transporters are involved in the transport of these
compounds [106]. Each of these transporter families performs different transport functions.
The G-type ABC transporter mediates the transportation of abscisic acid (ABA), controls
physiological responses such as stomatal closure and leaf temperature changes in plants,
and increases plant tolerance. B-type and C-type ABC transporters are involved in the
transport of berberine, anthocyanins, and other flavonoids in plant tissues [107,108]. MATE
transporters can transport alkaloids, including nicotine, anabasine, and scopolamine, to
enhance the chemical defense of plants against microorganisms and pests [109]. PUP trans-
porters can transport cytokinins to regulate the differentiation of plant roots and shoots.
NRT transporters have been shown to play a role in the transport of various substrates,
such as peptides, IAA, and GA [110–114]. At present, the transport mechanisms of many
hormones and other compounds in plants are still unclear and require further research.

3. Membrane Transporters Regulate the Generation and Scavenging of ROS

Membrane transporters are involved in the regulation of ROS in plant cells in two ways.
One is to regulate ROS through a series of physiological metabolic reactions during the
execution of transport functions. The other is to regulate ROS by transporting substances
that regulate ROS (Figure 2). Under abiotic stress, plants produce a large amount of ROS.
Membrane transporters an inhibit ROS generation through ion transport and promote ROS
scavenging by enhancing the activity of antioxidant enzymes and transporting related
substances through ROS scavenging functions, ultimately achieving ROS homeostasis
in plants (Table 1). Transgenic studies have also shown that overexpressing membrane
transporters can protect plants from oxidative stress and improve tolerance.
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3.1. Membrane Transporters Involved in the Generation of ROS
3.1.1. Membrane Transporters Directly Inhibit ROS Generation

Ca2+-ATPase and phosphate transporter1 (PHO1) play important roles in directly
inhibiting the generation of ROS in plants. The respiratory burst oxidase homologs (RBOHs)
are located on the plasma membrane in plants, and their C terminus contains a six-α-
transmembrane helical domain (TMD-I-TMDVI) consisting of an FAD domain and an
NADPH domain, with EF-hand motifs and phosphorylation targets at the N terminus [115].
Ten homologs of RBOH (AtRBOHA−AtRBOHJ) have been identified in Arabidopsis [116].
Ca2+ can activate RBOH activity in various ways, including by direct binding of Ca2+ to
the EF-hand motif on the N terminus, direct binding of Ca2+ to CBL and CIPK, and direct
phosphorylation of CDPK [117–119]. Activated RBOH encodes the NADPH enzyme, which
can transport electrons across the membrane to the outside of the cell, generating superoxide
anions, which are then spontaneously or catalytically converted to H2O2 through the action
of superoxide dismutase (SOD) [120,121]. Ca2+-ATPase can transport Ca2+ to the apoplast
and inhibit excessive Ca2+ accumulation in the cytosol, thereby inhibiting ROS generation.
Induction by phosphatidic acid, a type of phosphate, can also activate RBOH [122]. PHO1
has been identified as a phosphate transporter that controls the efflux of phosphatidic acid
and inhibits its activation of RBOH to inhibit the generation of ROS [123,124].

3.1.2. Membrane Transporters Inhibit ROS Generation by Transporting ABA

G-type ABC (ABCG) transporters can inhibit the generation of ROS through long-
distance transportation of ABA in plants. To date, four types of ABC transporters have been
found to be associated with ABA transport. These four membrane transporters are located
on the plasma membrane. ABCG40 and ABCG30 control the influx of ABA across the
plasma membrane, while ABCG25 and ABCG31 control the efflux of ABA across the plasma
membrane [107,108,125,126]. ABA is a plant hormone that is involved in key processes
related to plant growth, development, and adaptation to abiotic stresses. ABA inhibits
the generation of ROS in plants through various pathways [127]. Maslenkova et al. [128]
reported that ABA in barley can disrupt chloroplast structure, affect PSII function in
chloroplasts, and reduce photosynthetic oxygen production. Subsequently, Xu et al. [129]
found that ABA downregulates the expression of the light-harvesting chlorophyll a/b
binding (LHCB) gene, which is beneficial in reducing the absorption of light energy under
stress conditions, thereby reducing the generation of ROS. Lim et al. [130] found that ABA
can enhance oxidase activity and induce stomatal closure, which reduces CO2 fixation
and inhibits ROS generation and accumulation. Hong et al. [131] found that an important
kinase in the ABA signaling pathway in chloroplasts, OPEN STOMATA 1 (OST1), can
phosphorylate photosynthetic oxygen-producing protein PPD5 and reduce ROS generation.
In addition, multiple ABCB transporters can control the efflux of auxin [132], which can
also cooperate with ABA to regulate cytosolic ROS homeostasis [133,134]. However, ABA
is synthesized in plant roots and plays a role in leaf tissues. Therefore, further research is
needed to determine whether other membrane transporters are involved in the transport
of ABA from roots to leaves.

3.1.3. Membrane Transporters Inhibit ROS Generation by Transporting GABA

ALMT1, GAT1, GABP, CAT9, and other membrane transporters are involved in the
transport of GABA. GABA can regulate cytosolic ion homeostasis, thereby inhibiting
the generation of ROS. During oxidative stress, cytosolic ROS mainly consist of H2O2
generated by NADPH and entering the cytosol through aquaporins and H2O2 generated
by mitochondria [135]. H2O2 from both sources combines with Fe2+ to produce •OH
leading to considerable leakage of K+ and causing cell apoptosis [136]. ALMT1 can achieve
bidirectional transport of GABA on the plasma membrane, and GAT1 can transport GABA
from the apoplast to the cytosol. GABA in the cytosol can activate the corresponding Ca2+-
ATPase to control the efflux of Ca2+, while depolarizing GABA activates the Ca2+-permeable
cation channel (DACC) to reduce Ca2+ influx, maintain normal levels of Ca2+ in the cytosol,
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and inhibit ROS generation [137,138]. In addition, GABA can activate antioxidant enzymes
in plants and promote the scavenging of ROS; however, the mechanism by which GABA
plays a leading role in reducing ROS content has yet to be explored.

3.1.4. Membrane Transporters Inhibit ROS Generation by Transporting Cytokinins (CKs)

ABCs, PUPs, and equivalent nuclear transporters (ENTs) are three membrane trans-
porters involved in the transport of CKs [139]. Moreover, ABCG14 transports CKs from the
cytosol into xylem vessels and plays an important role in the transport process from roots
to shoots [140–142]. PUP14 and ENTs are located on the plasma membrane and control the
transport of CKs from the apoplast to the cytosol [143]. CKs are a class of substances that
promote cytosolic division and synergistically regulate plant cell growth and development
via the action of plant auxin. Wang et al. [144] found that the overexpression of IPT8 (a CK
synthesis gene) in Arabidopsis promotes ROS generation, indicating a correlation between
CKs and ROS generation. Xu et al. [145] reported that CK can inhibit ROS-driven root
growth to inhibit ROS generation under stress. These membrane transporters inhibit the
generation of excessive ROS in plants by transporting CKs. ENT6 may be a transporter
located on the plasma membrane, but this is not certain. Additionally, there are transporters
located on the vacuolar membrane in ENTs, but their identities are also unknown.

3.1.5. Membrane Transporters Inhibit ROS Generation by Transporting Jasmonic Acid (JA)

JAT1 can transport JA and its related metabolites, enabling them to function in
cells [146]. JA is a derivative of a class of fatty acids that are involved in many phys-
iological, metabolic, and stress responses in plants. JA is strongly associated with the
transcription factor MYC2, which is involved in plant responses to various abiotic stresses,
including salinity, drought, heat, and cold [147]. Maruta et al. [148] found that JA can
activate MYC2 under stress and is involved in the regulation of ROS through RBOHD and
RBOHF. However, the specific mechanism through which JA regulates ROS metabolism
has not been fully elucidated, and whether there are other transporters that can transport
JA also needs to be studied.

3.2. Membrane Transporters Involved in the Scavenging of ROS
3.2.1. Membrane Transporters Directly Scavenge ROS

ACA6 and HAK1 play crucial roles in ROS scavenging. Plants scavenge ROS through
enzymatic and nonenzymatic reactions [149,150]. Under abiotic stress, many genes related
to ROS scavenging, such as genes controlling the expression of heat-shock proteins and
calmodulin-binding family proteins, are activated [151]. O2

•− is converted to H2O2 through
catalysis by SOD, then scavenged via enzymatic reactions such as CAT and AsA [152,153].
ACA6 is a Ca2+-ATPase that has been identified in rice. In plants overexpressing OsACA6,
significant increases in the activities of antioxidant enzymes, such as APX, CAT, and
GR, were observed; these enzymes play a role in ROS scavenging. Through salt stress
treatment, it was found that OsACA6 may also interact with membrane transporters such
as H+-ATPase, Zn2+-ATPase, Cd2+-ATPase, ABC transporters, and nitrate transporters
to scavenge excess ROS produced under salt stress [154–156]. HAK1 is a high-affinity
K+ transporter, and overexpression of the OsHAK1 gene can significantly enhance the
activity of antioxidant enzymes such as POX and CAT, scavenge ROS, and enhance plant
tolerance under drought stress [157]. ANN1, an annexin, functions in Ca2+ transport and
OsCDPK interactions. The feedback mechanism of OsANN1 overexpression and H2O2
can activate SOD and CAT activities and scavenge excess ROS [158,159]. In addition,
metal ions can bind to SOD active sites and can be distributed in different cell structures
according to the different binding metal ions. There are also reports that Zn- and Cu-
containing superoxides can scavenge ROS in plant cells. Therefore, determining whether
metal transporters play a role in the binding of metal ions to SOD and other antioxidants is
a worthwhile research direction.
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3.2.2. Membrane Transporters Scavenge ROS by Transporting Proline

Three types of transporters have been found to play a role in proline transport: the
amino acid permease (AAP) family, the lysine histidine transporter (LHT) family, and the
proline transporter (ProT) family [160]. AAPs can also mediate the transport of neutral
amino acids such as glutamate [161], while LHTs transport both neutral and acidic amino
acids [105]. ProTs are a class of high-affinity proline transporters, and research has shown
that ProTs can also transport glycine betaine (GB), which can stabilize PSII complexes
and increase plant tolerance to stress, thereby improving plant antioxidant capacity [162].
Proline exists in a free state in plants and is an osmotic substance. Proline can protect
substances such as DNA, membranes, and enzymes and can also serve as a free radical
scavenger to protect plant growth and development, regulating plant tolerance under
abiotic stress [163]. Proline metabolism is involved in the regulation of intracellular redox
potential. In 1989, Smirnoff and Cumbes [164] first reported that proline can scavenge
•OH. Subsequently, Alia et al. [165] discovered that proline can serve as a quencher for
singlet oxygen. Signorelli et al. [166] proposed a proline cycle to scavenge ROS in which
proline captures •OH through H abstraction, produces P5C, activates the P5CR/NADPH
enzymatic system, and is converted back to proline. Proline can also scavenge ROS by
activating antioxidant enzymes. Hossain et al. [167] demonstrated that proline can activate
the activities of ascorbic acid peroxidase (APX), glutathione reductase (GR), and catalase
(CAT) in mung beans under salt stress, increasing the contents of ascorbic acid (AsA)
and glutathione (GSH) in plants. Hoque et al. [168] found that proline increased the
effects of salt stress on CAT and POD activities in tobacco. Using transgenic technology,
Carvalho et al. [169] demonstrated that proline can enhance the activities of APX in the
cytosol and those of SOD and GR in chloroplasts. Further research has shown that ProTs
can also scavenge ROS by transporting other substances. By transporting glycine betaine
(GB), ProTs can stabilize PSII complexes and enhance plant tolerance to stress, thereby
improving plant antioxidant capacity. ProTs are also low-affinity GABA transporters that
enhance antioxidant enzyme activity by transporting GABA to scavenge ROS.

3.2.3. Membrane Transporters Scavenge ROS by Transporting Mannitol

MATs are mannitol transporters belonging to the PLT subgroup of MSTs. Two MATs
have been identified in celery (AgMaT1 and AgMaT2) and control the transport of the sugar
alcohol mannitol to the cytosol [170,171]. Sugars, as a newly recognized type of antioxidant,
achieve plant redox balance through photosynthesis, respiration, and oxidation between
organelles. Chutipaijit [172] reported that the application of mannitol to rice can increase
antioxidant enzyme activity and ROS scavenging activity. Mannitol can also regulate the
expression of ROS scavenging-related genes through specific signaling cascades, protecting
various structures in the cytosol from oxidative damage. Trehalose is a monosaccharide
that can work synergistically with ABA to protect the PSII system from oxidative stress.
However, there is currently no specific research on trehalose transporters in plants [173].

3.2.4. Membrane Transporters Scavenge ROS by Transporting Polyamines (PAs)

The L-type amino acid transporter (LAT) family is involved in the transport of PAs
in the cytosol and across the plasma membrane. Nine members of the LAT family have
been found in plants, among which LAT1, LAT3, and LAT4 can control the transport of
PAs [174]. LAT1 is located on the plasma membrane and mediates the transport of PAs from
the apoplast to the cytosol [98]. LAT3 and LAT4 are located on the endoplasmic reticulum
and Golgi apparatus, respectively, and are responsible for the distribution and transport
of PAs in the cytosol [98,175]. PAs include putrescine, spermine, and spermidine. In 1986,
Drolet et al. [176] discovered that PAs can scavenge free radicals, including O2•− and •OH.
Chai et al. [177] reported that AtSOS1 can interact with AtPUT3 (AtLAT1) in Arabidopsis,
activating AtPUT3 activity and increasing PA levels to scavenge ROS. Aziz et al. [178]
reported that PAs can directly scavenge ROS through disproportionation reactions. There
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are also reports indicating that PAs can regulate ROS by inhibiting cucumber RBOH activity,
but the specific mechanism still needs further research [179].

Table 1. Membrane transporters involved in ROS generation and scavenging.

Name Species Description Localization Family

ACA6
[154]

Arabidopsis,
Rice

A Ca2+-ATPase responsible for the efflux of
Ca2+ in the cytosol, reducing the
concentration of Ca2+in the cytosol, thereby
reducing the stimulation of RBOH by Ca2+

and reducing the generation of ROS.

Plasma membrane and
endomembranes P-type ATPase

PHO1
[124] Arabidopsis

In Arabidopsis, it controls the efflux of
phosphatidic acid and inhibits its activation
of RBOH.

Plasma membrane PHO

ABCG25/31
[126] Arabidopsis

A G-type ABC transporter responsible for
ABA efflux and involved in inhibiting plant
ROS production.

Plasma membrane ABC

ABCG30/40
[126] Arabidopsis

A G-type ABC transporter responsible for
ABA efflux and involved in inhibiting plant
ROS production.

Plasma membrane ABC

ABCG14
[140] Arabidopsis

A G-type ABC transporter that controls the
influx of CK into the cytosol and is also
responsible for the transport of CK from roots
to leaves.

Plasma membrane ABC

CAT9
[97] Tomato

A cationic amino acid transporter responsible
for the bidirectional transport of GABA and
other amino acids between the cytosol and
vacuoles, which involves in inhibiting ROS
generation and promoting ROS scavenging.

Vacuolar membrane APC

GABP
[99] Arabidopsis

A bidirectional amino acid transporter
responsible for the transport of GABA
between the cytosol and mitochondria, which
involves inhibiting ROS generation and
promoting ROS scavenging.

Mitochondrial
membrane APC

ProT2
[160] Arabidopsis

In Arabidopsis, it controls the influx of proline
across the plasma membrane and promotes
the scavenging of ROS.

Plasma membrane AAAP

ALMT1
[75]

Arabidopsis,
Wheat

An aluminum-activated malate transporter
responsible for the transport GABA and Cl−

across plasma membranes to inhibit ROS
generation and promote ROS scavenging.

Plasma membrane and
vacuolar membrane ALMT

GAT1
[101] Arabidopsis

A high-affinity GABA transporter that can
transport GABA from the apoplast to the
cytosol, which involves inhibiting ROS
generation and promoting ROS scavenging.

Plasma membrane AAAP

PUP14
[139] Arabidopsis

In Arabidopsis, it is responsible for
transporting apoplast free radicals or
nucleosides of CK to the cytosol, which
inhibits the generation of ROS.

Plasma membrane PUP

ENTs
[139] Arabidopsis

In Arabidopsis, it is responsible for the
transport of free radicals or nucleosides from
the apoplast and vacuoles into the cytosol,
which inhibits ROS production.

Plasma membrane and
vacuolar membrane ENT
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Table 1. Cont.

Name Species Description Localization Family

JAT1
[146] Arabidopsis

In Arabidopsis, it is responsible for the
transport of JA in cells, which is involved in
inhibiting ROS production.

Vacuolar membrane MATE

HAK1
[157] Arabidopsis

A high-affinity K+ transporter; the
overexpression of HAK1 can significantly
increase the activity of POD, CAT, and other
antioxidant enzymes to scavenge ROS.

Plasma membrane APC

LHT1
[105] Arabidopsis A lysine–histidine transporter that controls

the flow of proline and scavenges ROS. Plasma membrane AAAP

MaT1
[171]

Arabidopsis,
Apium graveolens

A phloem mannitol membrane transporter
that can scavenge ROS through the transport
of mannitol.

Plasma membrane ND

MaT2
[170]

Arabidopsis,
Apium graveolens

An H+/mannitol cotransporter that
transports mannitol to scavenge ROS. Plasma membrane ND

LAT1
[177] Arabidopsis In Arabidopsis, it can control PA influx and

scavenge ROS. Plasma membrane APC

ND: Undetermined.
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4. ROS Signaling Is Involved in the Regulation of Membrane Transporters under
Abiotic Stress

In recent years, the regulation of membrane transporter ROS signaling has also re-
ceived considerable attention. To date, research on ROS as signal molecules that regulate
membrane transporters has focused mainly on ion transporters. ROS signaling can regu-
late the activity of Ca2+ transporters, K+ transporters, and other membrane transporters.
(Table 2) The regulatory effect of ROS on membrane transporters can ensure the normal
physiological and metabolic responses of plants under abiotic stress, such as ion balance in
plants under salt stress and stomatal closure of guard cells under drought stress (Figure 3).

4.1. ROS Signaling Regulates Ca2+ Transporters

OSCA1 and TPC1 are two types of Ca2+ channels that play important roles in the
synergistic regulation of membrane transporters by ROS and Ca2+ [7]. Abiotic stress
activates OSCA1 on the plasma membrane, which transports Ca2+ from the apoplast to the
cytosol [180]. Ca2+ in the cytosol activates the TPC1 channel on the vacuolar membrane,
inducing RBOHD to produce ROS in the apoplast, which is perceived by hydrogen peroxide-
induced Ca2+ increment 1 (HPCA1) [181]. HPCA1 is a leucine-rich repeat receptor-like
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kinase (LRR-RLK). It is located on the plasma membrane and is widely found in plants.
As a sensor for ROS, HPCA1 can sense the apoplastic ROS produced by RBOHD on the
neighboring plasma membrane, mediating the symplastic process of Ca2+ waves in roots.
There may be other mechanisms involved in this process. Evans et al. [182] reported
that ROS can assist in a calcium-induced calcium-release (CICR) mechanism, indirectly
stimulating TPC channels and leading to the transmission of salt stress signals. However,
there are few relevant reports on this topic, and further exploration is needed.

4.2. ROS Signaling Regulates K+ Transporters

KAT1, HAK5, and SKOR are three different types of K+ transporters. ROS signaling
regulates these three types of K+ transporters through different pathways to improve plant
tolerance. RBOHs produce apoplastic ROS, which are perceived by guard cell hydrogen
peroxide-resistant1 (GHR1). GHR1 triggers membrane depolarization by activating Ca2+

channels, which can inhibit KAT1 activity, promote stomatal closure of guard cells, and
improve plant tolerance under drought stress [183,184]. Garcia-Mata et al. [185] reported
that a single cysteine (Cys) residue can be used as an ROS target to activate the Kout
channel SKOR, mediate the efflux of K+, and, thus, maintain cytosolic Na+/K+ levels.
Huang et al. [186] found that the ROS generated by RBOHD are involved in transcriptional
and post-translational activation upstream of HAK5, improving plant tolerance under
salt stress.

4.3. ROS Signaling Regulates Other Transporters

SLAC1, AHA1, voltage-dependent anion channels (VDACs), and other membrane
transporters can also be regulated by ROS signaling. SLAC1 plays a role in the inhi-
bition of K+ transporters by membrane depolarization caused by ROS signaling [187].
AHA1 is a membrane-localized H+-ATPase that can sense ROS signaling and improve
plant salt tolerance [186]. VDACs are localized to both the plasma membrane and mi-
tochondrial membrane, are regulated by ROS signaling, and play a role in maintaining
mitochondrial integrity [188,189].

Table 2. Membrane transporters involved in ROS signal regulation.

Name Species Description Localization Family

TPC1
[182]

Arabidopsis,
Rice, Wheat

As a voltage-dependent K+ channel, it plays a role
in ROS-associated Ca2+ wave conduction and can
also mediate the distribution of Ca2+ and Mg2+ in
cells, with specificity for Ca2+.

Vacuolar membrane TPC

OSCA1
[53] Arabidopsis

As a mechanosensitive channel, it senses osmotic
stress and is activated by mechanical tension on the
membrane, playing a role in ROS-associated Ca2+

wave conduction and controlling the transport of
Ca2+ from the apoplast to cytosol.

Plasma membrane OSCA

SLAC1
[69] Arabidopsis

A slow anion channel that controls the distribution
of Cl− and NO3

− in the xylem. GHR1 perceives
ROS signals and activates SLAC by interacting
with CPK3.

Plasma membrane SLAC

KAT1
[35] Arabidopsis

An inward-rectifying K+ channel belonging to the
voltage-gated K+ channels that controls the influx
of K+. Apoplast ROS activate the Ca2+ channel of
guard cells and inhibit the activity of KAT1.

Plasma membrane AKT

SKOR
[185] Arabidopsis

An outgoing K+ channel belonging to
voltage-gated K+ channels that controls the efflux
of K+. ROS can be perceived by a cysteine residue
on this channel, activating SKOR.

Plasma membrane SKOR



Antioxidants 2024, 13, 221 12 of 21

Table 2. Cont.

Name Species Description Localization Family

VDACs
[188] Arabidopsis A voltage-dependent anion channel related to the

homeostasis of ROS in plant cells.
Plasma membrane and
mitochondrial membrane VDAC

HAK5
[42]

Arabidopsis,
Rice, Mesembrya
nthemumcry stallinum

A high-affinity K+ transporter that transports K+

into the cytosol at low K+ concentrations; its
activity is controlled by RBOHD.

Plasma membrane APC

AHA1
[186] Arabidopsis

An H+-ATPase that can regulate membrane
repolarization and JA synthesis; its activity is
controlled by RBOHD.

Plasma membrane P-type
ATPase
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5. Conclusions and Perspectives

Recent studies have highlighted the role of membrane transporters in plant growth and
development, as well as their adaptive pathways under abiotic stress [1,21,190–195]. These
studies have greatly improved our understanding of membrane transporters [196–206].
There are various types of membrane transporters. This review provides a detailed classi-
fication and discussion of the transport characteristics and functions of ion transporters,
sugar transporters, amino acid transporters, hormone transporters, and other types of trans-
porters. We reviewed the role of membrane transporters in the generation and scavenging
of ROS, as well as the related mechanisms regulated by ROS signaling to explain the fasci-
nating story of the interaction between membrane transporters and ROS. However, there
are still several unclear and unsolved questions. There are many studies on the regulation
of ROS by exogenous substances, but the transport pathways of some antioxidants and
redox potential regulators are still unknown. Among the multiple membrane transporters
possibly involved in transporting the same substance, which membrane transporters play a
dominant role? ROS can affect the structure and composition of membrane lipids, thereby
affecting the distribution and function of the membrane transporters within them. How-
ever, how do lipid membrane transporters interact in plants? Membrane transporters
can activate transcription factors, which are closely related to ROS regulation. How do
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membrane transporters, transcription factors, and ROS interact with each other? These
questions still require further research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox13020221/s1, Table S1: Abbreviated list of membrane
transporters name/family.
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