
Citation: Leischner, C.; Marongiu, L.;

Piotrowsky, A.; Niessner, H.;

Venturelli, S.; Burkard, M.; Renner, O.

Relevant Membrane Transport

Proteins as Possible Gatekeepers for

Effective Pharmacological Ascorbate

Treatment in Cancer. Antioxidants

2023, 12, 916. https://doi.org/

10.3390/antiox12040916

Academic Editors: Gabriele Carullo,

Roberta Ibba and Carsten Culmsee

Received: 31 January 2023

Revised: 23 March 2023

Accepted: 6 April 2023

Published: 12 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Review

Relevant Membrane Transport Proteins as Possible Gatekeepers
for Effective Pharmacological Ascorbate Treatment in Cancer
Christian Leischner 1,† , Luigi Marongiu 1,2,† , Alban Piotrowsky 1, Heike Niessner 3,4 , Sascha Venturelli 1,5 ,
Markus Burkard 1,* and Olga Renner 1,*

1 Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim,
Garbenstraße 30, 70599 Stuttgart, Germany

2 Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10,
72076 Tuebingen, Germany

3 Department of Dermatology, Division of Dermatooncology, University of Tuebingen, Liebermeisterstraße 25,
72076 Tuebingen, Germany

4 Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”,
72076 Tuebingen, Germany

5 Institute of Physiology, Department of Vegetative and Clinical Physiology, University of Tuebingen,
Wilhelmstraße 56, 72074 Tuebingen, Germany

* Correspondence: markus.burkard@uni-hohenheim.de (M.B.); olga.renner@uni-hohenheim.de (O.R.);
Tel.: +49-711-459-23621 (M.B.); +49-711-459-23618 (O.R.)

† These authors contributed equally to this work.

Abstract: Despite the increasing number of newly diagnosed malignancies worldwide, therapeutic
options for some tumor diseases are unfortunately still limited. Interestingly, preclinical but also
some clinical data suggest that the administration of pharmacological ascorbate seems to respond
well, especially in some aggressively growing tumor entities. The membrane transport and channel
proteins are highly relevant for the use of pharmacological ascorbate in cancer therapy and are
involved in the transfer of active substances such as ascorbate, hydrogen peroxide, and iron that
predominantly must enter malignant cells to induce antiproliferative effects and especially ferroptosis.
In this review, the relevant conveying proteins from cellular surfaces are presented as an integral part
of the efficacy of pharmacological ascorbate, considering the already known genetic and functional
features in tumor tissues. Accordingly, candidates for diagnostic markers and therapeutic targets
are mentioned.
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1. Introduction

For 2020, the cancer incidence, estimated for 36 cancer types in 185 countries, was
about 19.3 million with a total of nearly 10.0 million deaths [1,2]. Worldwide, 28.4 million
new cancer cases are expected for the year 2040, a 47% increase from 2020 [2]. A detailed
cancer diagnosis is essential for appropriate and effective treatment including cancer phe-
notype, tumor stage, and the personal circumstances of patients. Some of the most common
cancer types have high cure probabilities when detected early and treated accordingly.
Unfortunately, a significant variation in treatment availability exists between countries of
different income levels. Comprehensive treatment is reportedly available in more than 90%
of high-income countries but in less than 15% of low-income countries [3]. Remarkably,
small cell lung cancer (SCLC), pancreatic ductal adenocarcinoma (PDAC), advanced ovar-
ian cancer (AOC), triple-negative breast cancer (TNBC), and glioblastoma (GBM) are very
aggressive solid tumors displaying highly invasive phenotypes and treatment resistance [4].
For these tumor entities, there is currently an urgent need for novel treatment approaches.
Vitamin C (ascorbic acid, ascorbate) is not only an essential human micronutrient [5] with a
recommended daily intake of 110 mg [6] but also a bioactive substance acting as a prodrug,
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e.g., for the formation of hydrogen peroxide (H2O2), especially in pharmacological con-
centrations, intravenously administrated in the range of grams per kilogram bodyweight.
Intravenous ascorbate is widely used by complementary and alternate medicine practition-
ers, commonly to treat infectious diseases, cancer, and fatigue [7]. After excluding potential
contraindications, such as glucose-6-phosphate dehydrogenase deficiency, impaired renal
function, and kidney stones, intravenous high-dose vitamin C treatment is an option [8,9].
Sealed vitamin C solutions are stable at room temperature [10] and moreover, vitamin C is
very cost-effective and globally available. These criteria make the exploration of parenteral
high-dose vitamin C a promising approach for cancer therapy [10,11] which is currently
being evaluated in clinical trials. In the early 1970s, it was successfully demonstrated that
intravenous administration of high-dose ascorbate contributes to a significant prolongation
of survival in end-stage cancer patients [12–14]. Interestingly, the peak plasma concentra-
tion found after ascorbate ingestion was 220 µM [15]. Liposomal formulations may result
in slightly higher peak plasma ascorbate concentrations after oral application by increas-
ing the plasma half-life and by enhancing bioavailability [16]. Nevertheless, antitumoral
activity seems to be mainly obtained in the millimolar range which can only be achieved
parenterally [17–19]. Accordingly, pharmacologic vitamin C as mono- or combination
therapy is described as requiring i.v. administration of up to 1.5 g vitamin C per kilogram
body weight, yielding plasma concentrations of ≥20 mM [20]. It is suggested that this
infusion should be performed at least two times a week for a minimum of eight weeks,
according to the evaluation of 71 preclinical and 57 partly ongoing early clinical trials [21].
However, confirmatory placebo-controlled double-blind studies on the efficacy and tolera-
bility of ascorbate use in larger patient cohorts are currently still lacking for definitive proof
and implementation of pharmacological ascorbate’s use in tumor therapy. Nevertheless,
ascorbate therapy was shown not only to be well-tolerated but also to relieve pain and to
improve quality of life in the context of palliative care [7,20–22]. Combined treatments, com-
prising standard treatment protocols (chemotherapy, radiotherapy, targeted therapy, and
others) and high-dose vitamin C have mostly been shown to improve therapeutic efficacy,
disease control, and objective response rates in some early clinical studies of small study
cohorts [7,20–22]. The anti-cancer mechanisms by which vitamin C acts on malignant cells
include immune modulatory effects, epigenome regulation, collagen synthesis, inhibition
of epithelial-mesenchymal transition (EMT) and invasion, and pro-oxidant activity [21].
The most frequently described mechanism is a selective cytotoxic effect on cancer cells
(pro-oxidative), which increases the redox imbalance and causes oxidative stress, DNA
damage, and an arrest of anti-oxidative enzymes, underlining the various antitumoral
effects of vitamin C in relation to the respective treatment [23–30]. However, knowing the
circumstances under which vitamin C and its contributors are able to enter tumor cells
is fundamental. This review provides an overview of the major membrane conveying
proteins implicated in the anticancer action of high-dose ascorbate and co-players that
must enter the cell, particularly focusing on the pro-oxidant facet and highlighting the
relevant transport systems required for this treatment strategy. In this context, the current
knowledge gaps are addressed, and an outlook on future perspectives of high-dose vitamin
C in the context of therapeutic approaches is provided.

2. Generation of Reactive Oxygen Species and Intracellular Toxicity

Vitamin C is a water-soluble ketolactone with two ionizable hydroxyl groups [31]. In
the absence of catalytic metals, the spontaneous oxidation of ascorbate proved to be quite
slow in various buffer solutions at pH 7.0 [32]. The dominant species for vitamin C at pH 7.0
are mainly ascorbate (AscH− (99.9%)), its protonated form AscH2 (0.1%), and the dianion
Asc2− (0.005%) [31,33]. The predominant mechanism underlying the anticancer activity
of parenteral pharmacological vitamin C is based on its ability to act as a prodrug [34,35]
due to preferential steady-state formation of the ascorbate free radical (AFR; Asc•−) and
H2O2 in the extracellular space but minimal formation in the blood, requiring a threshold
Asc•− concentration of at least ≈ 100 nM [15,16,35]. In the blood, Asc•− formation is
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inhibited by red blood cell membrane-reducing proteins [36] and H2O2 is immediately
degraded by plasma catalase and red blood cell glutathione peroxidase [34,37,38]. Asc•−
formation exponentially correlates to an increasing ascorbate concentration in the extracel-
lular fluid. The lost electron reduces a protein-centered iron atom and donates an electron
to oxygen, forming superoxide (O2•−) with subsequent dismutation to H2O2 extracellu-
larly [35,39]. Plasma membrane-associated nicotinamide adenine dinucleotide phosphate
(NADPH) oxidases (NOXs) can also contribute to the formation of O2•− that dismutates
to H2O2 [40], which can freely diffuse across the plasma membrane or enter the cytosol
through peroxiporins.

Generally, members of the NOX family and a considerable number of mitochondrial
respiratory chain oxidases are the main generators of H2O2 [41–46]. Additionally, other
cellular organelles also contribute to H2O2 production, e.g., the endoplasmic reticulum and
peroxisomes [47–50]. At low intracellular concentrations, H2O2 acts as a signaling agent
that, e.g., promotes proliferation and survival [45,51,52]. However, H2O2 concentrations
produced by pharmacological ascorbate injection are higher than survival-promoting H2O2
concentrations, leading to cell death instead [35]. Among the various oxygen metabolites,
H2O2 is considered to be the most suitable for redox signal transduction and also modulates
the activity of transcription factors [53]. Further, mitochondrial H2O2 metabolism may also
affect calcium signaling [54].

Originally, ascorbate was thought to have prodrug activity, as also suggested by
Chen et al. [35], due to selective H2O2 formation in the extracellular space, but not in the
blood, triggered by external pharmacological ascorbate concentrations [34]. In addition,
there is evidence that when cells are exposed to an external source of H2O2, the rapid degra-
dation of H2O2 inside the cell provides the driving force for the formation of the gradient
across the plasma and other subcellular membranes [55]. The steady-state concentration
of H2O2 in intact cells was calculated to be about 1–10 nM [46]. Supraphysiological con-
centrations of H2O2 (>100 nM), e.g., induced by high-dose ascorbate, lead to intracellular
accumulation of H2O2, destruction of biomolecules, disrupted redox signaling, cell growth
arrest, and cell death [34,46]. Therefore, H2O2 uptake and distribution in cells and tissues
are subject to gradient kinetics (gradients between extracellular and intercellular as well as
between subcellular cellular compartments [46]).

The initiated formation of extracellular H2O2 promotes its accumulation in tumor
tissue [56]. Accumulation of cellular H2O2 mediates increased toxicity in sensitive cells and
displays oxidatively modified proteins in mitochondrial fractions correlating with a decline
in the intracellular ATP level [57] via multiple pathways [35]. For example, H2O2 can cause
DNA single-strand breaks that are usually repaired by polyADP-ribose polymerase (PARP),
but increased PARP activity can consume intracellular nicotinamide adenine dinucleotide
(NAD+), leading to ATP depletion [58,59]. In addition, cancer cells that rely on anaerobic
metabolism for ATP generation (Warburg effect) are deprived of glucose [60]. This is be-
cause the degradation of H2O2 in cells is mediated in part by glutathione (GSH) peroxidase.
However, GSH peroxidase has a high requirement for GSH, which is oxidized to GSH
disulfide (GSSG) during enzyme activity. GSSG is regenerated with reducing equivalents
from NADPH to GSH, which in turn is regenerated from glucose via the pentose shunt.
Glucose, which is used to reduce NADP+ to NADPH, is therefore inaccessible in most
malignant cells for ATP formation [58]. Overall, these findings strongly support the hy-
pothesis that mitochondrial O2•− and H2O2 significantly contribute to the loss of glucose
to the pentose shunt, leading to a decrease in ATP, enhancing cytotoxicity and metabolic
oxidative stress in human cancer cells [61–63]. However, the subsequent NAD+ depletion
and energetic crisis are dependent on the specific tumor genotype [22,64]. Moreover, mito-
chondria in some cancer cells exhibit increased sensitivity to hydrogen peroxide and may
be less efficient at ATP generation than normal cells [62,65,66]. Such increased sensitivity of
mitochondria to H2O2, with or without inefficient baseline ATP production, may also lead
to decreased ATP production. These pathways of ATP depletion induced by H2O2 could be
independent or more than one could be responsible for cell death in sensitive cells [62,65].



Antioxidants 2023, 12, 916 4 of 27

Because primary ATP generation occurs in normal cells via aerobic metabolism, and their
mitochondria may not be as sensitive to H2O2 as those of some cancer cells, these cells
would not be affected by pharmacological ascorbate-induced H2O2. In summary, cancer
cells that largely use oxidative phosphorylation to generate ATP may be more sensitive to
pharmacological ascorbate compared with cancer cells that are predominantly glycolysis-
dependent [67]. Pharmacological ascorbate generates extracellular H2O2 as an essential
initiator of subsequent pro-oxidative damage. However, there is evidence that catalase,
by disproportionating H2O2, blocks the effects of pharmacological vitamin C [22,46,68,69].
Notably, increased levels of different NOXs at the tumor site constitute reliable prognostic
markers in human gastric cancer [70,71]. NOX-derived reactive oxygen species (ROS) were
shown to be a contributor to tumor development, proliferation, invasion, metastasis, and
tumor-mediated angiogenesis [72]. As most tumors have decreased ability to metabolize
H2O2, due to inefficiency or absence of H2O2 metabolizing enzymes, malignant cells are
susceptible to pharmacologic ascorbate [73]. Moreover, H2O2-induced spatiotemporal
changes in intracellular labile iron trigger the destabilization of lysosomal compartments,
promoting a concomitant early response of proteins of iron homeostasis [74]. The intracellu-
lar labile iron pool (LIP) [75] is an important determinant of cellular response to oxidative
stress [74,76,77]. Schoenfeld et al. showed that O2•− and H2O2, derived from increased
mitochondrial metabolism, can increase pools of free, unbound cytosolic iron [22]. This
pharmacological ascorbate-induced LIP increase contributes significantly to the cancer
cell-selective toxicity of pharmacological ascorbate. The increased LIP in cancer cells in
turn contributes to increased oxidation of ascorbate in the cell, generating further H2O2.
This exacerbates the differences regarding labile iron in cancer cells compared to normal
cells. Moreover, this may be due to the H2O2-mediated destruction of iron–sulfur cluster-
containing proteins [78]. In addition, the increased H2O2 concentrations in the presence of
elevated LIP may contribute to enhanced Fenton chemistry that generates hydroxyl radi-
cals and causes oxidative damage [22]. Furthermore, these reactions are thought to occur
preferentially on macromolecules associated with weakly chelated redox-active iron [77].

The specific cell death mechanisms triggered in tumor cells by high-dose ascorbate
are not yet fully understood. Therefore, the role of ferroptosis in the ascorbate-induced
death of cancer cells is unclear; presumably, depending on tumor entity and dosage, other
forms of cell death also occur, such as autophagy and apoptosis [79]. Nevertheless, Wang
et al. were able to demonstrate the induction of ferroptosis by high-dose ascorbate in
anaplastic thyroid cancer cells [80]. Furthermore, it could be shown that ascorbate-induced
accumulation of iron in combination with a simultaneous GSH reduction resulted in the
enhancement of erastin-induced ferroptosis in pancreatic cancer cells [81].

3. Interplay between Ascorbate and Iron

Pharmacological ascorbate therapy affects the oxidation state of iron and increases
free iron in the cytosol, which is a characteristic of various tumors [22,82,83]. Ascorbate
mobilizes iron from ferritin by two separate processes: release of ferritin-bound iron by
ascorbate alone or as labile iron citrate complex, which synergizes ascorbate-dependent
iron mobilization and increases the maximum mobilization rate by about fivefold [84].
Under normal conditions there is a very low concentration of free iron, which is considered
a source of continuous toxicity resulting in iron-ROS production. Since tumor cells are
strongly dependent on iron intake for their growth and proliferation, the influx and efflux
of iron through the cell membrane plays a crucial role in this process [85,86]. In contrast
to iron import, most cells do not have an effective mechanism to export iron, resulting in
an increase in LIP levels when the amount of iron exceeds the storage capacity thereby
affecting cell survival [87]. Ferroptosis is an iron-dependent and lipid peroxidation-driven
regulated cell death pathway [88,89]. In the field of redox biology, iron and other cationic
metals such as copper also exacerbate oxidative stress in ferritin-containing tissue [84].
Therefore, in malignant cells, the electron-transferring properties enable labile iron to
participate in the pro-oxidative reaction of ascorbate to form Asc•−, O2•−, H2O2, and
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OH• providing even more ferrous iron (Fe3+ + AscH– → Fe2+ + H+ + Asc•–), boosting
the Fenton reaction (Fe2+ + H2O2 → Fe3+ + OH•+ OH–) and enhancing pharmacological
ascorbate-induced toxicity [22,31,82]. Hydrogen peroxide forms hydroxyl radicals under
the catalytic action of Fe2+, which is the basis of free radical lipid peroxidation. Hydroxyl
radicals and hydroperoxides are the two most widespread ROS that affect lipids, which may
compromise the integrity of lysosomal membranes during oxidative stress [90–92]. Lipid
peroxidation is a positive feedback chain reaction driven by ROS, including superoxide
peroxides and free radicals, initiating the oxidation of polyunsaturated fatty acids [91]. As
labile iron was shown to be closely related to ascorbate-induced toxicity for different cell
types, the interaction between iron and ascorbate inside and outside cells seems to play
an opposite role [82,93–95]. However, if the hydroxyl radical generated outside the cell
by the Fenton reaction is already reacting extracellularly, it cannot reach its intracellular
targets appropriately, which strongly reduces the anticancer efficacy of ascorbate [94,95].
Consequently, the time-shifted combination of iron with pharmacological ascorbate to
increase the intracellular iron toxicity via enhancing the effect of pharmacological ascorbate
is promising [82,93]. However, this requires the tumor cell to have sufficient capacity for the
uptake of iron. Iron can generally be categorized by the chelate in which it is presented to
the cell, either as transferrin (Tf)-bound iron (TBI) or non-Tf-bound iron (NTBI), depending
on the following major players: transferrin receptors (TfRs), divalent metal transporter
1 (DMT1), and ferroportin 1 (FPN1).

In view of the explanation for ascorbate-induced cytotoxicity, the accumulation of
ascorbate-related co-actors in the cell and the stimulation of the respective uptake mecha-
nisms seem to be relevant aspects for further research on pharmacological ascorbate therapy.
In general, the transport mechanisms of molecules into (and out of) the cell are: (i) diffusion
(passive as O2 molecules or facilitated diffusion along a concentration gradient, through
a protein channel such as aquaporins (AQPs), and through ion channels); (ii) primary or
secondary active transport; and (iii) vesicle-mediated transport (e.g., endocytosis or exocy-
tosis). The relevant shuttle mechanisms for effective pharmacological ascorbate treatment
and ferroptosis induction in cancer are summarized in Table 1.

Table 1. Major proteins involved in the transport of H2O2, vitamin C, and iron across the cell
membrane and their expression in normal and tumor tissues.

Protein
Name Substrate Tissue

Expression
Tumor Tissue

Expression

Functionally
Relevant
Genetic

Polymorphisms

Consequences of
Genetic Variations

Association with Other
Parameters References

AQP1/3/5/
8/9/11

H2O2

widespread, e.g.,
lung, kidney,

pancreas

various, e.g.,
pancreatic cancer
breast, ovarian,
prostate cancer,

CRC, HCC,
glioblastoma

AQP9: SNP
rs1516400

associated with
chemotherapy response
in lung cancer patients

AQP1 expression is
associated with increased
DFS in CRC patients and

AQP3 expression with OS in
gastric cancer patients

[96–108]

AQP11: SNP
rs2276415

associated with kidney
disease in type 2
diabetic patients

SVCT1 vitamin C

epithelial tissue
of kidney, liver,
intestine, lung,

skin

RCC

SNPs rs33972313
and rs11950646

decreased vitamin C
plasma concentration

- [109–112]
SNPs rs659647
and rs11950646

higher risk of follicular
lymphoma

SVCT2 vitamin C widespread, e.g.,
CNS

various, e.g.,
breast cancer,

melanoma, CRC,
pancreatic cancer

multiple SNPs

increased vitamin C
plasma concentration,

increased risk of gastric
cancer, follicular

lymphoma, leukemia,
colorectal adenoma

- [24,113–118]
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Table 1. Cont.

Protein
Name Substrate Tissue

Expression
Tumor Tissue

Expression

Functionally
Relevant
Genetic

Polymorphisms

Consequences
of Genetic
Variations

Association with Other
Parameters References

GLUT1/3/4 DHA
ubiquitous, e.g.,
brain, placenta,

prostate

widespread, e.g., CRC,
HCC, prostate cancer,

lymphoma,
glioblastoma, lung

cancer

GLUT1: SNP
rs710218

increased risk of
CRC, associated

with
susceptibility to

develop
clear-cell renal

carcinoma

increased expression of
GLUT1

is associated with
unfavorable OS and poorer

DFS

[64,119–127]

DMT1 Fe2+

ubiquitous,
strong

expression e.g.,
in proximal
duodenum,

brain, kidney,
placenta

various, e.g., CRC,
ovarian cancer, prostate

cancer, esophageal
adenocarcinoma

SNP 1254T>C
associated with

Parkinson’s
disease high expression is associated

with longer DFS in HCC
patients

[128–136]

SNP
IVS4+44C/A

associated with
increased blood

levels of iron,
lead, and
cadmium

TfR1/2 Fe3+ (Tf-
bound)

widespread, e.g.,
liver, intestine,

activated
immune cells

various, e.g., HCC,
breast cancer, ovarian

cancer, pancreatic
cancer, lung cancer

multiple SNPs associated with
iron biomarkers

TfR1 expression correlates
with tumor stage and is

associated with a high risk
of recurrence and short

patient survival

[137–146]

SNP rs9846149 reduced risk for
gastric cancer

FPN Fe2+

liver, duodenum,
placenta, bone
marrow, breast,

brain

reduced activity in most
tumor entities, e.g.,

cholangiocarcinoma,
breast cancer, pancreatic
cancer, prostate cancer

gain of function
mutations

hepcidin
resistance, HH

type 4B

decreased FPN expression is
associated with reduced
survival in breast cancer

patients

[147–153]

AQP: aquaporin; CNS: central nervous system; CRC: colorectal cancer; DFS: disease-free survival; DMT1: divalent
metal transporter 1; FPN: ferroportin; GLUT: glucose transporter; HCC: hepatocellular carcinoma; HH: hereditary
hemochromatosis; OS: overall survival; RCC: renal cell carcinoma; SNP: single nucleotide polymorphism; SVCT:
sodium-dependent vitamin C transporter; Tf: transferrin; TfR: Tf receptor.

4. Aquaporins

AQPs are channel proteins from a larger family of major intrinsic membrane proteins
and are widely distributed in human tissues with different localizations at cellular and
subcellular levels [96,97]. Since some members of the AQP family facilitate the diffusion
of H2O2, they are also named peroxiporins [154–157] and their function has been related
to both volume regulation and ROS elimination [96]. The regulation of H2O2 permeation
can also contribute to a resistant phenotype of tumors and peroxiporin activity could
modify the cellular antioxidative defense system, thereby contributing to oxidative stress
resistance [158]. AQP1, AQP3, AQP5, AQP8, AQP9, and AQP11 expression was reported
in human tumors, and in some cases correlated with tumor grade, opening new diagnostic
and therapeutic opportunities [56,101,159–168]. Therefore, peroxiporin expression was sug-
gested to be an important determinant modulating cancer cell susceptibility to therapeutic
H2O2 formation induced by pharmacological ascorbate [161,169]. H2O2 plasma mem-
brane permeability was demonstrated to have significant variability across cell lines [170].
Although intracellular H2O2 concentration plays a key role in cellular susceptibility to
adjuvant ascorbate therapy (Table 1), its overall contribution to the therapeutic effectivity
of ascorbate is not clear [161].

5. Ascorbate Transporters

The entrance of vitamin C into the cell is determined by specific transporters. These
belong to a family of nucleobase transporters and are highly conserved through evolu-
tion [110,171]. Human sodium-dependent vitamin C transporter (SVCT) 1 is encoded by
the solute carrier family 23 member 1 (SLC23A1) gene that is mapped on chromosome
5 yielding a 598 amino acid polypeptide (Table 1). SVCT2, as a SLC23A2 gene product
from chromosome 20, is a 650 amino acid polypeptide [172]. Both can actively transport
ascorbic acid against gradients by coupling its entry with sodium influx into the cell, thus
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maintaining the sodium gradient throughout the plasma membrane, which is provided
by Na+/K+-ATPase [173]. Although plasma membrane SVCT2 is a Na+-dependent co-
transporter, it also exhibits absolute dependence on Ca2+ or Mg2+. In contrast, intracellular
SVCT2 is exposed to high ascorbic acid and low Na+, Ca2+, and Mg2+ and is a low-affinity
transporter that lacks Na+ cooperativity [173]. SVCT1 is situated in the brush-border mem-
brane of absorptive epithelial tissue of, e.g., kidney, intestine, liver, lung, and skin [109,110].
In humans, no loss of SLC23A1 has been described to date. Different single nucleotide
polymorphisms (SNPs) have been shown to weaken ascorbate transport and to reduce
plasma levels with a trend toward a higher cancer risk for SLC23A1 variants [111,174–177].
Heterogenic results were reported for gene expression control and there is also limited
information regarding posttranslational modifications and the factors influencing cellular
localization [60,178–181]. In cancer patients, studies evaluating SVTC1 tissue distribution
between normal and malignant cells and also observations of SVTC1 expression under
ascorbate or standard chemo-radiation regimens have not been conducted. SVCT2 is
widely distributed and is therefore the predominant tissue transporter for vitamin C in
most tissues and in blood cells [24,113]. A short isoform of SVCT2, naturally occurring
in humans through alternative splicing, is unable to transport ascorbate and has the abil-
ity to partially inhibit SVCT1 [182,183]. Pathological circumstances associated with liver
metabolic or oxidative stress may affect the expression of vitamin C transporters in differ-
ent ways [178]. SVCT2 is expressed in Lewis lung tumors grown in ascorbate-dependent
mice [184]. SVCT2 protein levels varied over time following a single high-dose ascorbate
injection, but their association with tumor ascorbate levels was complex [184]. In human
breast cancer cells, SVCT2 mRNA levels differed significantly between cell lines [185]. Cel-
lular and subcellular localization of SVCT2 determines its transport activity and depends
on different cell types, ascorbate concentration as well as intracellular Na+ and K+ concen-
trations [186–189]. Expression of SVCT2 in human neuroblastoma tissue was confirmed by
immunofluorescence [190]. SVCT2 protein levels in breast cancer cells were predictive for
ascorbate uptake and cellular sensitivity to ascorbate cytotoxicity [110]. This was confirmed
by overexpression and gene knockdown in vitro [115]. Interestingly, SVCT2 expression
was absent or weak in normal tissues but strongly detected in tumor samples obtained
from breast cancer patients, suggesting that functional SVCT2 sensitizes breast cancer cells
to autophagic damage by increasing the ascorbate concentration and intracellular ROS
production. Therefore, the presence of SVCT2 in breast cancer may act as a predictor for
the effectiveness of ascorbate treatment [115]. SCVT2 was overexpressed in the mitochon-
dria of breast cancer cells, but only marginally presented on the plasma membrane [116].
Augmented expression of mitochondrial SVCT2 appears to be a common hallmark across
all human cancers and might have implications for the survival capacity of cancer cells in
pro-oxidant environments [116,191]. In addition, the analysis of numerous tissue microar-
rays contained in the Human Protein Atlas reveals the intracellular expression of SVCT2
in different cancer tissues [116]. Moreover, it was shown that resistance to cetuximab in
human colon cancer patients with mutated Kirsten rat sarcoma viral oncogene homologue
(KRAS) can be bypassed by ascorbate in an SVCT2-dependent manner. For the treatment of
KRAS-mutated colon cancer, the SVCT2 expression may act as a potent marker for ascorbate
co-treatment with cetuximab [28]. In addition, in low SVCT2-expressing cells, high-dose
ascorbate (>1 mM) showed anti-cancer effects, but low-dose (<10 µM) (as defined by the
authors for both incubation procedures) treatment induced cell proliferation in colorectal
cancer cell lines so that insufficient uptake of ascorbate in low SVCT2-expressing cancer
cell lines cannot generate sufficient ROS to kill the cancer cells [192]. Supplementation
of Mg2+ enhanced the anticancer effect of ascorbate by inhibiting the hormetic response
at a low dose, also providing a more pronounced anticancer response in cells with low
SVCT2 expression compared to ascorbate treatment alone [193]. In hepatocellular car-
cinoma (HCC), the synergistic effect of ascorbate and sorafenib was shown in patients
without elucidating the role of vitamin C transporters [194]. In cholangiocarcinoma cell
lines, ascorbate worked synergistically with cisplatin [195]. Thereby, SVCT2 expression
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was inversely correlated with the half-maximal inhibitory concentration (IC50) values of
ascorbate [196]. Furthermore, SVCT2 knockdown endowed cholangiocarcinoma cells with
treatment resistance, and the SVCT2 expression level was suggested as a positive outcome
predictor for ascorbate treatment in this tumor entity [195]. In the liver, a close relationship
between B-cell lymphoma 2 (BCL2) and SLC23A2 with several other genes was revealed
to play an important role in the expression levels of these genes [197]. In line, a decreased
ascorbate uptake mediated by SLC2A3 (alt. GLUT3) promotes leukemia progression and
impedes ten-eleven translocation 2 (TET2) restoration [198]. High expression levels of
SVCT2 were related to a good prognosis in patients with pancreatic adenocarcinoma [117].
Otherwise, only a limited association between ascorbate concentrations and its transporters
was identified in renal cell carcinoma (RCC) cells and clinical samples [111]. Positron emis-
sion tomography (PET) imaging and tissue distribution analysis showed that cancer cells
with high SVCT2 expression enhanced the accumulation of labeled ascorbate derivatives in
mice after tumor formation. Correlations of SLC23A2 gene polymorphisms related to ascor-
bate levels and disease risks depend on tumor entity and study population [175,199–201].
Two SNPs related to increased vitamin C plasma concentrations and several others were
identified as posing a high risk of gastric cancer, follicular lymphoma, chronic lymphocytic
leukemia, colorectal cancer (CRC), or head and neck cancer [175–177,199,201,202].

6. DHA Transporters

Ascorbate is taken up into cells via SVCTs. Since ascorbate easily oxidizes and trans-
forms into DHA upon a pH change, DHA accumulates through facilitated diffusion via
GLUTs [171,203]. The family of GLUTs consists of 14 members, which are encoded by
the SLC2 genes [204]. They are Na+-independent, ubiquitously distributed, and enable
facilitated diffusion of glucose along its concentration gradient [119]. GLUT1, GLUT3, and
GLUT4 are the specific glucose transporter isoforms that mediate DHA transport and subse-
quent accumulation of ascorbate [205,206]. Malignancies with activated hypoxia-inducible
factor 1 (HIF-1) express high levels of glucose transporters such as GLUT1 [207]. Once in
the cell, DHA is rapidly reduced to ascorbate, which is consumed by the cell [207]. KRAS
or rapidly accelerated fibrosarcoma isoform B (BRAF) mutations that occur in colorectal
cancer may also contribute to glucose uptake and GLUT1 overexpression (Table 1). Human
colorectal cancer cells harboring KRAS or BRAF mutations were selectively killed in vitro
when exposed to high levels of vitamin C [64]. This effect was due to increased uptake
of DHA via GLUT1 [64]. Moreover, cancer cells were able to acquire vitamin C, even if
they expressed an abnormal form of SVCT2, by using GLUTs and converting DHA into
ascorbate [191], a phenomenon that is called the bystander effect [68]. Recently, it was
shown that the uptake of DHA largely affects the redox metabolism of human erythro-
cytes [208], albeit these blood cells do not express SVCTs [24]. For non-small-cell lung
cancer, it was demonstrated that ascorbate but not DHA is the cancer cell-selective toxic
species and the latter was significantly less toxic [22]. Since tumors are regarded as complex
heterogenic tissues with hypoxic areas [209], the Warburg effect is one of the hallmarks of
cancer favoring the suppression of normal oxidative phosphorylation and the adaptation to
hypoxia [210] via upregulating HIF-1 and GLUT expression [207]. Metabolic products such
as lactic acid, originating in tumor cells [211–213], may promote the spontaneous oxidation
of ascorbate to DHA due to pH lowering within the tumor microenvironment [32,33].
Both GLUT-mediated DHA uptake as well as enhanced ascorbate oxidation to DHA may
be initiated in the tumor [214]. Currently, the role of GLUT-mediated DHA uptake in
ascorbate-induced cytotoxicity appears to be only partially relevant, but this remains to be
fully elucidated. Recently, GLUT3 was found to play a role distinct from that of GLUT1
in CRC, suggesting both prognostic value and therapeutic potential for GLUT3 expres-
sion [215]. Overexpression of GLUT3 was used for rapid DHA uptake and transformation
into ascorbate followed by GLUT3 inhibition and attenuation of glucose uptake. This
“suicide cycle” was considered to generate not only high levels of oxidative stress, which
are harmful to CRC cells, but also an energetic crisis due to the blockade of glycolysis and
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reduced GLUT3-mediated glucose input. Therefore, CRC cells with high GLUT3 expression
were found to be highly sensitive to treatment with vitamin C [215].

7. Transferrin Receptors

Extracellular Fe3+ is almost exclusively bound to Tf and reflects the essential insolubil-
ity of trivalent iron at physiological pH. Structurally, serum Tf is primed for Fe3+-binding
upon release into the bloodstream [216]. Therefore, Tf prevents the hydrolysis and pre-
cipitation of the metal ion thus increasing its blood solubility and bioavailability. Serum
Tf also inhibits the reduction of Fe3+ to Fe2+, which, if left uncontrolled, would lead to
iron toxicity from the excessive production of ROS. For instance, there is some evidence
that Tf can bind Fe2+ that enters the bloodstream, providing another Fe-based regulatory
function of serum Tf. The presence of Fe2+ in serum is an indicator of a diseased state with
loss of Fe-homeostasis. Tf may be able to rescue the unwanted Fe2+, rapidly converting
it into Fe3+ via a ferroxidase-like mechanism [216]. TBI import starts by binding to a
dimeric transmembrane glycoprotein as its receptor, which was also suggested as a specific
ferroptosis marker [217]. There are two types of TfRs: TfR1, which is widely expressed
and binds Tf with higher affinity, and the less-common TfR2, which is predominantly
expressed in hepatocytes and erythroid precursors [137,138]. TfR1 is overexpressed on
many different types of cancer cells, often at levels many times higher than in normal cells,
which correlates with advanced tumor stage and poor prognosis [141]. TfR1 is a 90 kDa
type II transmembrane glycoprotein consisting of 760 amino acids that is found as a dimer
linked by disulfide bonds on the cell surface [139]. The TfR1 monomer is composed of a
large extracellular C-terminal domain of 671 amino acids containing the Tf-binding site, a
28 amino acid transmembrane domain, and an intracellular N-terminal domain containing
61 amino acids [141]. Each subunit is capable of binding one free Fe3+ and Tf may thus have
up to two atoms of iron attached. Diferric Tf or holo-Tf (two iron atoms bound to Tf) has
the highest affinity (KD1 < 0.1 nM, KD2 = 3.8 nM, pH 7.4) compared to apo-Tf (Tf-lacking
iron; KD1 = 49 nM, KD2 = 344 nM, pH 7.4) [137]. Since TfR1 is found as a dimer and can bind
two Tf molecules, the receptor preferentially binds diferric Tf to the “bottom” of the TfR1
close to the cell membrane referred to as the “basal portion” and forms a ligand-receptor
complex on the cell surface, which is constitutively internalized via clathrin-mediated
endocytosis [139]. In general, TfR1 is expressed at low levels in most normal cells [144].
Numerous genes, such as transcription factors, growth factors, cytokines as well as HIF-1α,
are involved in regulating the gene expression of TfR1 [141,144,218–220]. An association
was shown between some pathophysiologic conditions and genetic alterations within
the TfR [221–225]. However, there is limited evidence of an association between genetic
variants of TfRs and cancer. Recently, the genetic susceptibility related to the hepcidin-
regulating gene pathway, including TfR1 and TfR2, was shown to be associated with PDAC
risk [226]. In many cancers, TfRs expression is significantly dysregulated, and iron uptake
is abnormal [144]. The expression of TfR1 appears to be significantly higher in tumor
tissues compared to adjacent non-cancerous tissues [142]. In this context, the expression
of TfR1 and TfR2 negatively correlates with tumor differentiation. When TfR1 is signifi-
cantly overexpressed, it correlates with tumor stage, and is associated with progression
and poor prognosis, high risk of recurrence, and short patient survival [142–144]. In light
of these analyses, TfR1 has been proposed as a prognostic marker for many tumors [227].
However, it should be considered that the role of TfR1/2 in tumor prognosis might be
tumor-specific [228,229]. TfR2 is also frequently expressed in human cancer cell lines [230].
In vitro investigations of iron loading or iron deprivation provided evidence that TfR2 is
modulated in cancer cell lines according to cellular iron levels. Iron loading caused two
different mechanisms: in some cells a downregulation of total TfR2 and in other cell types
a downregulation of membrane-bound TfR2, without affecting the levels of total cellular
TfR2 [230]. In both conditions, iron deprivation caused the opposite effect compared to iron
loading [230]. Mutations within TfR2 have functional consequences and cause hereditary
hemochromatosis (HH) type 3 [231]. The prevalence of pathogenic TfR2 genotypes depends
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on ethnicity [146,232]. Moreover, some SNPs have been described to be associated with
iron biomarkers [146].

8. Divalent Metal Transporter 1

DMT1 belongs to the SLC11 gene family of metal-ion transporters that use the H+

electrochemical gradient (Table 1) [233]. DMT1 is expressed widely and accepts a broad
range of transition metal ions as substrates, among which Fe2+ is transported with high
affinity (K0.5 ≈ 2 µM). DMT1 accounts both for the intestinal absorption of free Fe2+ and
for Tf-associated endosomal Fe2+ transport in erythroid precursors and many other cell
types. In the intestine, DMT1 is up-regulated dramatically by dietary iron restriction and,
despite high serum iron levels, it is not appropriately down-regulated in HH. DMT1 is
highly expressed in various cancers such as colorectal cancer and ovarian cancer [129–131].
DMT1, TfR1, and ferritin were found to be highly expressed in ovarian cancer cell spheres
and overexpression of DMT1 promoted the progression of ovarian tumors [129].

9. Ferroportin

The iron-efflux protein solute carrier family 40 member 1 (SLC40A1/FPN1) extrudes
iron into the extracellular space and Fe2+ is re-oxidized to Fe3+ by ferroxidases outside the
cell (e.g., ceruloplasmin (CP) or hephaestin (HEPH)). This exporter is localized to chromo-
some 2q and encodes a protein of 570 amino acids (Table 1) [128,234–236]. It has 12 putative
transmembrane domains [237,238]. FPN1 is the major basolateral iron exporter in epithelial
cells, highly expressed in the hepatic Kupffer cells, periportal hepatocytes, duodenal ente-
rocytes, splenic red pulp macrophages, and the placental syncytiotrophoblasts [147]. The
regulation of FPN1 expression is complex with important layers of control at transcriptional,
posttranscriptional, posttranslational, and cell-lineage levels [147]. The primary method
of FPN1 regulation is post-translationally via hepcidin [239]. Once hepcidin has bound to
FPN1, it results in its ubiquitination, internalization, and degradation, playing a central
role in the regulation of body iron levels [240]. Notably, FPN1 regulation varies among
different cell types, allowing additional flexibility in controlling systemic iron flux under
different conditions [128]. In the small intestine, FPN1 production is strongly regulated
by the amount of iron and oxygen and increases the absorption of dietary iron during
iron deficiency and anemia [147]. In contrast to hypoxia and iron deficiency, inflammation
decreases the expression of FPN1 through effects on transcription [241]. In response to
an increased iron load, the liver secretes the peptide hormone hepcidin, which binds to
and induces internalization and degradation of the cellular iron transporter FPN1, thus
controlling the amount of iron released from the cells into the blood [242]. FPN1 is the only
cellular efflux channel for iron, resulting in a decrease in cellular iron output. Clinically
detectable FPN1 mutations are very heterogeneous and can result in two phenotypically
distinct diseases: HH type 4A and HH type 4B (FPN disease). HH type 4B is caused
by gain-of-function mutations resulting in partial or complete hepcidin resistance [147].
Not all FPN1 mutations have been classified based on their phenotypic presentation or
pathogenicity [147,243]. A systematic meta-analysis of FPN1 mutations found over 90 dif-
ferent variants among other disease-causing mutations [243,244] with ethnicity-dependent
incidence [146,244]. Since cancer cells, with their high metabolic rates and rapid multiplica-
tion, have a particularly high requirement for iron, their FPN1 activity is downregulated,
increasing the iron pool [151–153,245]. In contrast, stimulating FPN1 leads to reduced
growth and proliferation of cancer cells due to cellular iron deprivation caused by in-
creased activity of FPN1 [246–248]. Tumor-associated macrophages appear to have an
iron-exporting phenotype which may provide iron to the cancer cells and further promote
tumor growth [249].

10. Other Iron-Related Transport Systems

Under physiological circumstances, iron is incorporated into and transported by
Tf in the blood, which safely sequesters the metal as Fe2+. However, under conditions
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of iron overload, the iron-binding capacity of plasma Tf can be exceeded, resulting in
the appearance of NTBI which is a major contributor to the pathological iron loading
of various tissues. [250–252]. This iron is then taken up by divalent ion transporters,
which also transfer other metals, such as L-type and T-type calcium channels, the zinc-
regulated transporter (Zrt)/iron-regulated transporter (Irt)-like proteins (ZIPs) 8 and 14,
or transient receptor potential canonical channel 6 (TRPC6) [252,253], some of which are
upregulated in cancer [254] or suppressed by mutated p53 [253]. ZIP8 (SLC39A8) was
shown to be involved in the progression of neuroblastoma, metastasis [255], and sensitivity
to chemotherapy [256]. ZIP14 is a member of the SLC39A zinc transporter family, which is
involved in zinc uptake by cells and also transports NTBI and manganese [250]. Aberrant
ZIP14 expression and altered zinc homeostasis were detected for PDAC [257]. ZIP14
transport activity can influence the intracellular concentrations of these ions through
endocytotic trafficking [253]. TRPC6 protein is a nonselective cation channel permitting
the uptake of essential elements such as iron and zinc and displays a large distribution
profile detected in many organs and tissues [112]. However, it is necessary to clarify how
the unique function of these transporters relates to the induction of ferroptosis and affects
iron metabolism as well as the development and treatment options of cancer, especially
in the context of ascorbate-mediated pharmacotherapy. In addition, there is evidence for
an alternative mechanism of iron uptake. Epican (extracellular matrix receptor III, CD44),
as a multifunctional cell surface adhesion receptor, is a regulator of the progression and
metastasis of cancer cells [258] in the context of glycan-mediated iron endocytosis during
EMT, in which iron operates as a metal catalyst to demethylate repressive histone marks
that govern the expression of mesenchymal genes [259]. The role of pharmacological
ascorbate treatment also has to be explored regarding the stem cell marker prominin
1 (PROM1, CD133) which downregulates TfR1-mediated endocytosis of diferric Tf [260],
including CD91 and CD193. These are reported to be highly expressed in cancers and
associated with a dismal prognosis [261–263]. Alternatively, PROM2, another member of
the prominin family of pentaspan membrane glycoproteins, causes ferroptosis resistance by
stimulating exosome-dependent iron export through the formation of ferritin-containing
multivesicular bodies in epithelial and breast carcinoma cells [264]. Therefore, blocking
the iron release pathway on cell membranes increases the susceptibility to ferroptosis.
Furthermore, the inhibition of system Xc−, with decreased cystine uptake, glutathione
depletion, and increased NAPDH oxidation, as well as the release of arachidonic acid
mediators [87,92,265,266] as targeted cysteine deficiency can lead to ferroptosis [89]. As
amino acids cannot diffuse directly into cells, they must be transported across the cell
membrane with the help of specific transport proteins such as system Xc−, an amino acid
antiporter responsible for the intracellular transport of extracellular cystine by exchanging
intracellular glutamate. [267]. The amino acid antiporter SLC7A11 (xCT, system Xc−)
is composed of two different core components: the light-chain subunit SLC7A11 (xCT)
and the highly conserved heavy chain subunit SLC3A2 (4F2hc) [268]. Once inside the
cells, cystine is reduced by system Xc− to cysteine, an essential substrate for glutathione
synthesis [89,267]. Under the conditions of extracellular oxidation, the exchange of cystine
and glutamate is the most upstream event of ferroptosis. The inhibition of the SLC7A11
pathway may be the most critical mechanism for inducing ferroptosis [269,270].

11. Conclusions and Outlook

Pharmacologic ascorbate treatment was reported to have an anti-cancer potential
over 40 years [12–14]. Some of the biological effects have been demonstrated only in
models that are not directly transferable to humans. In the meantime, some pre-clinical
investigations and a couple of small early phase clinical trials (phase I–II) have shown
the feasibility, selective toxicity, tolerability, and potential efficacy of intravenous high-
dose ascorbate therapy as is promising factors for the treatment of for different tumor
entities [21]. However, the final evidence for the efficacy of high-dose ascorbate therapy in
tumor patients is not yet conclusive. Although there are promising results from phase I
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and IIa studies, there is still a lack of proven results from larger and randomized patient
cohorts such as phase III clinical trials. In addition to its antiproliferative effect on tumor
cells, ascorbate also contributes to improved patient quality of life [21].

It is worth mentioning that there are also publications by Jara et al. [271] and
Ramirez et al. [272] that postulate a proliferation-promoting effect of ascorbate on tumor
cells through in vitro and in vivo results. Therefore, the authors advise against high-dose
ascorbate therapy and point out the possible advantage of vitamin C deficiency in tumor
patients. Thus, these results contradict the vast majority of in vitro and in vivo studies.
However, these contradictory findings can be elucidated by the fact that Jara et al. only
compare orally achievable plasma concentrations with vitamin C deficiency. Furthermore,
the experiments of Ramirez et al. were partly carried out with DHA but not ascorbate, and
the results of the highest investigated pharmacological ascorbate concentration of 500 µM
showed no difference to physiological concentrations. In contrast to the observations of
these two animal models, it is known from clinical findings that vitamin C deficiency is
associated with a poorer prognosis in cancer patients [273].

Nevertheless, there is currently no treatment option that allows the patient to be
completely cured of the majority of tumors. Pharmacological ascorbate therapy could
potentially provide room for optimization and synergism, especially considering that
tumor patients often have scurvy-like low blood levels [5,274]. Regarding ROS generation,
the interaction between iron and ascorbate plays an extraordinarily promising role. Data
from cell models indicate that ascorbate forms AFR and H2O2, and reduces intracellular
unbound iron that, in return, generates a greater amount of ROS [22]. As tumor cells
exhibit increased iron metabolism there is an elevated iron uptake and diminished iron
release contributing to the rise of LIPs [22,275,276]. For effective pharmacological ascorbate
treatment and ferroptosis induction in cancer, vitamin C importers SVCT1 and 2, GLUT1
and 3, iron importers TfRs and DMT1, iron exporter FPN1, as well as AQPs as channel
proteins, can be considered as relevant shuttle systems (Figure 1).
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proteins SVCT1 and SVCT2, whereas DHA uptake is mediated by GLUTs (GLUT1/3/4). Intracellu-
larly, DHA is oxidized by Fe3+ to form the AFR, increasing cellular oxidative stress. Extracellularly
formed H2O2 enters the cell interior through AQP membrane channels, where it forms hydroxyl
radicals (OH•) under the catalytic action of Fe2+ as part of the Fenton reaction. These lead to the
generation of further ROS, lipid peroxidation, and ultimately cell death. Iron import occurs by
TfR via endocytosis for Tf-bound ferric iron (Fe3+) or in the case of unbound ferrous iron (Fe2+) by
various DITs, e.g., DMT1. In contrast, iron export occurs through FPN1. Intracellularly, iron is present
predominantly in the form of Fe2+ bound to ferritin. Red spheres symbolize oxygen atoms; black
spheres carbon atoms; white spheres hydrogen atoms. Black arrows mark the direction of transport
or reaction. AFR, ascorbate free radical; AQP, aquaporin; DHA, dehydroascorbic acid; DIT, divalent
iron transporter; DMT1, divalent metal transporter 1; FPN1, ferroportin 1; GLUT, glucose transporter;
ROS, reactive oxygen species; SVCT, sodium-dependent vitamin C transporter; Tf, transferrin; TfR,
Tf receptor.

Ascorbate has a complex chemistry, enables the reduction of Fe3+, and facilitates iron
uptake (Figure 2) [277].

Antioxidants 2023, 12, x FOR PEER REVIEW 14 of 28 
 

 
Figure 2. Comparison of healthy and malignant tissue. Under physiological conditions, iron status 
is represented by various extracellular parameters. The physiological ascorbate concentration is 80–
100 µM. The transport of Asc, DHA, iron, and H2O2 across the cell membrane is facilitated by various 
transport proteins and receptors. Intracellularly, under physiological conditions, the amount of la-
bile iron is low, therefore the formation of the AFR and hydroxyl radicals is low. In tumor patients, 
a decrease in iron parameters and ascorbate concentration in the extracellular space is often ob-
served. If SVCT2 expression is high in the malignant cells, they are sensitive to ascorbate treatment 
and this is favorable for treatment success. Due to the frequently elevated expression of various 
GLUTs in tumor cells, there is increased uptake of DHA and enhanced formation of AFR. This is 
favored by an elevated pool of intracellular labile iron in cancer cells due to enhanced uptake via 
TfR as well as decreased iron efflux due to reduced FPN1 expression. This leads to supraphysiolog-
ical H2O2 concentrations in cancer cells. Under pharmacologic ascorbate treatment (plasma levels 
up to 20 mM), H2O2 concentration is massively increased and causes cellular damage. AFR, ascor-
bate free radical; AQP, aquaporin; Asc, ascorbate; DHA, dehydroascorbic acid; DIT, divalent iron 
transporter; FPN1, ferroportin 1; GLUT, glucose transporter; Hb, hemoglobin; SVCT, sodium-de-
pendent vitamin C transporter; Tf, transferrin; TfR, Tf receptor. 

In addition, ascorbate decreases the solubility of iron in the ferritin core, increases the 
exchangeable iron pool of ferritin, and thus additionally increases the net iron release rate 
of iron from ferritin [83]. Tumor cells have a limited capacity to regulate LIPs that react 
with pharmacological ascorbate or H2O2 and contribute to additional ROS formation 
[22,278]. Accumulation of unbound cellular iron and ROS elevation consequently results 
in excessive lipid peroxidation and additionally limits the antioxidant resources within 
the tumor cell, leading to gene and protein modifications as well as morphological 
changes, and results in ferroptotic cell death [275,279]. Noteworthy, the significance of 
iron in carcinogenesis has also been documented in experimental animal models [280,281] 
and abnormal iron levels in plasma and tissues are assumed to be directly associated with 
cancer [282]. On the other hand, anemia is a common complication in cancer patients, both 
at diagnosis and during treatment, with remarkable negative impacts on quality of life 

Figure 2. Comparison of healthy and malignant tissue. Under physiological conditions, iron status
is represented by various extracellular parameters. The physiological ascorbate concentration is
80–100 µM. The transport of Asc, DHA, iron, and H2O2 across the cell membrane is facilitated by
various transport proteins and receptors. Intracellularly, under physiological conditions, the amount
of labile iron is low, therefore the formation of the AFR and hydroxyl radicals is low. In tumor patients,
a decrease in iron parameters and ascorbate concentration in the extracellular space is often observed.
If SVCT2 expression is high in the malignant cells, they are sensitive to ascorbate treatment and this
is favorable for treatment success. Due to the frequently elevated expression of various GLUTs in
tumor cells, there is increased uptake of DHA and enhanced formation of AFR. This is favored by an
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elevated pool of intracellular labile iron in cancer cells due to enhanced uptake via TfR as well
as decreased iron efflux due to reduced FPN1 expression. This leads to supraphysiological H2O2

concentrations in cancer cells. Under pharmacologic ascorbate treatment (plasma levels up to 20 mM),
H2O2 concentration is massively increased and causes cellular damage. AFR, ascorbate free radical;
AQP, aquaporin; Asc, ascorbate; DHA, dehydroascorbic acid; DIT, divalent iron transporter; FPN1,
ferroportin 1; GLUT, glucose transporter; Hb, hemoglobin; SVCT, sodium-dependent vitamin C
transporter; Tf, transferrin; TfR, Tf receptor.

In addition, ascorbate decreases the solubility of iron in the ferritin core, increases the
exchangeable iron pool of ferritin, and thus additionally increases the net iron release rate
of iron from ferritin [83]. Tumor cells have a limited capacity to regulate LIPs that react with
pharmacological ascorbate or H2O2 and contribute to additional ROS formation [22,278].
Accumulation of unbound cellular iron and ROS elevation consequently results in excessive
lipid peroxidation and additionally limits the antioxidant resources within the tumor cell,
leading to gene and protein modifications as well as morphological changes, and results
in ferroptotic cell death [275,279]. Noteworthy, the significance of iron in carcinogenesis
has also been documented in experimental animal models [280,281] and abnormal iron
levels in plasma and tissues are assumed to be directly associated with cancer [282]. On
the other hand, anemia is a common complication in cancer patients, both at diagnosis
and during treatment, with remarkable negative impacts on quality of life and overall
prognosis. It is caused by multifactorial iron deficiency and may be present in almost half
of all patients with solid tumors and hematologic malignancies [283]. The deregulated
iron homeostasis is often found in malignant cancer phenotypes and makes cancer cells
more sensitive to iron deficiency than normal cells, leading to increased iron affinity and
supply as well as inhibition of iron release, thus contributing to iron accumulation [85].
Therefore, numerous approaches have been explored for the treatment of cancer targeting
abnormalities in the intracellular iron metabolism [266]. The strategy, in contrast to iron
depletion, is to supply cells with excess iron in combination with high levels of reactive iron
and therefore cytotoxic levels of ROS [284]. For example, the metal-containing ferrocene
derivatives are stable and exhibit favorable redox properties, and inhibit the proliferation
of tumor cell lines [85]. Additionally, ferumoxytol is an iron oxide nanoparticle approved
by the FDA for the treatment of clinical iron deficiency, and studies have shown that it can
produce excessive amounts of free iron [85]. The resulting ROS can cause cell death, increase
oxidative stress, and reduce tumor burden in mouse leukemia models and patients [85]. In
addition to the above-mentioned iron-related anti-tumor strategies, another therapeutic
approach is to directly target membranous iron transporters [266,284]. In this context,
the availability of uptake systems on the tumor cell surface and the knowledge about
their functionality is important to achieve sufficient ascorbate and iron levels to induce
antiproliferative effects. An aberrant expression and a divergent genetic background have
already been described for the individual ascorbate or iron transporters and for certain
tumor entities [118]. Currently, there is still a lack of knowledge regarding whether a
coordinated interaction among the individual uptake mechanisms to the detriment of
the tumor cells is prevalent or can be therapeutically initiated. At least for co- and pre-
incubation with iron and high-dose ascorbate in vitro, it is already known that in vitro
co-incubation with iron decreases the prodrug activity of ascorbate [82,93–95]. The role
of peroxiporins, which could shuttle released hydrogen peroxide into the cell, is also
unclear. Nevertheless, the establishment of extracellular hydrogen peroxide levels to
achieve target intracellular hydrogen peroxide levels is important to optimize the dose and
duration of intravenous ascorbate, especially since low intracellular hydrogen peroxide
levels could even promote tumor growth whereas high intracellular concentrations are
considered antitumoral [285]. In the blood, the achieved hydrogen peroxide levels seem to
be significantly lower (<50 nM) than in the extracellular space because of degradation by red
blood cell or plasma proteins [35]. In general, hydrogen peroxide formation is influenced by
many extracellular and intracellular factors [34,286]. Regarding the increased demand for
iron in cancer cells, the consideration of non-Tf-bound iron uptake systems as alternative
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routes may be a promising target for investigation (Figure 2). In addition, the tumor
ecosystem, including substances and degradation products as well as oxygen supply and
temperature, is crucial for the optimal functionality of each transporter [266,277,287]. The
generated ascorbate concentration gradient also supports the passive ascorbate transport,
which depends on the plasma membrane potential and pH and determines the steady-state
intracellular ascorbate concentration [288].

Moreover, it is important to also evaluate the impact of the used chemotherapeutic
agents and irradiation, in vitro and in animal models, on the expression and functionality
of the membrane uptake systems related to the high-dose ascorbate-induced cytotoxicity.
The multidrug resistance extrusion systems on the cell surface which are inducible due to
chemotherapeutic treatment as a protection against cytotoxic agents and cellular survival
strategy should also not be neglected [289,290]. Besides the ROS induction and capability of
disrupting intracellular iron metabolism, the anticancer activity of pharmacological ascor-
bate includes its modulation of SVCT2 activity by adding Mg2+, acting on tumor stem cells,
and modulating epigenetics due to a hormetic response [25,193,291]. In summary, there is
an urgent need for a nuanced understanding of the interplay between ascorbate, hydrogen
peroxide transporters, and iron shuttle systems for sufficient ferroptosis induction, and it
is necessary to identify tumors sensitive to ascorbate therapy to further substantiate the
success of this application (Figure 2).
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288. Gąbka, M.; Dałek, P.; Przybyło, M.; Gackowski, D.; Oliński, R.; Langner, M. The Membrane Electrical Potential and Intracellular
pH as Factors Influencing Intracellular Ascorbate Concentration and Their Role in Cancer Treatment. Cells 2021, 10, 2964.
[CrossRef]

289. Oronowicz, J.; Reinhard, J.; Reinach, P.S.; Ludwiczak, S.; Luo, H.; Omar Ba Salem, M.H.; Kraemer, M.M.; Biebermann, H.;
Kakkassery, V.; Mergler, S. Ascorbate-induced oxidative stress mediates TRP channel activation and cytotoxicity in human
etoposide-sensitive and -resistant retinoblastoma cells. Lab. Investig. 2021, 101, 70–88. [CrossRef]

290. Okamoto, K.; Kitaichi, F.; Saito, Y.; Ueda, H.; Narumi, K.; Furugen, A.; Kobayashi, M. Antioxidant effect of ascorbic acid against
cisplatin-induced nephrotoxicity and P-glycoprotein expression in rats. Eur. J. Pharmacol. 2021, 909, 174395. [CrossRef]

291. He, P.; Zhang, B.; Zou, Y.; Zhang, Y.; Zha, Z.; Long, Y.; Qiu, J.; Shen, W.; Lin, X.; Li, Z.; et al. Ascorbic acid analogue 6-Deoxy-6-18F
fluoro-L-ascorbic acid as a tracer for identifying human colorectal cancer with SVCT2 overexpression. Transl. Oncol. 2021, 14,
101055. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/cells10112964
https://doi.org/10.1038/s41374-020-00485-2
https://doi.org/10.1016/j.ejphar.2021.174395
https://doi.org/10.1016/j.tranon.2021.101055

	Introduction 
	Generation of Reactive Oxygen Species and Intracellular Toxicity 
	Interplay between Ascorbate and Iron 
	Aquaporins 
	Ascorbate Transporters 
	DHA Transporters 
	Transferrin Receptors 
	Divalent Metal Transporter 1 
	Ferroportin 
	Other Iron-Related Transport Systems 
	Conclusions and Outlook 
	References

