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Abstract: Mitochondria are subcellular organelles involved in essential cellular functions, including
cytosolic calcium regulation, cell apoptosis, and reactive oxygen species production. They are the site
of important biochemical pathways, including the tricarboxylic acid cycle, parts of the ureagenesis
cycle, or haem synthesis. Mitochondria are responsible for the majority of cellular ATP production
through OXPHOS. Mitochondrial dysfunction has been associated with metabolic pathologies such
as diabetes, obesity, hypertension, neurodegenerative diseases, cellular aging, and cancer. In this
article, we describe the pathophysiological changes in, and mitochondrial role of, metabolic disorders
(diabetes, obesity, and cardiovascular disease) and their correlation with oxidative stress. We highlight
the genetic changes identified at the mtDNA level. Additionally, we selected several representative
biomarkers involved in oxidative stress and summarize the progress of therapeutic strategies.
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1. Introduction

Mitochondria have a unique double-membrane structure and represent the central
site of metabolism, displaying morphologies, dynamics, and functions specific to each cell
and tissue [1]. They are responsible for the bulk cellular adenosine triphosphate (ATP)
production, through the process of oxidative phosphorylation (OXPHOS). Mitochondria are
also the site of important biochemical pathways, including the tricarboxylic acid cycle and
a part of the ureagenesis cycle or haem synthesis. They are an important regulator of cell
apoptosis and cytoplasmic calcium concentration [2–4]. Mitochondrial deoxyribonucleic
acid (mtDNA) is essential for proper mitochondrial function [2]. Furthermore, mitochondria
are also one of the most important intracellular sites for the formation of reactive oxygen
species (ROS). ROS are a family of free radicals that includes superoxide anions, hydroxyl
and peroxyl radicals, as well as other compounds capable of generating free radicals [5]. Cells
possess numerous systems to counteract the effect of ROS, but their excessive production
has been associated with damage at the protein, lipid, and DNA levels [5,6].
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Pathophysiological changes at the mitochondrial level have recently been associated
with metabolic pathologies, neurodegenerative diseases, cellular aging, and cancer. The
pathological mechanisms underlying these changes are still unknown. In this article, we
describe the genetic changes identified at the mitochondrial level in metabolic pathologies
and their connection with oxidative stress. Metabolic syndrome (MS) represents the accumu-
lation of signs and conditions that, altogether, increase the risk of developing cardiovascular
disease, stroke, and type II diabetes mellitus (T2DM). MS is present if at least three of the
following five criteria are met: abdominal obesity, high blood pressure, high blood sugar,
high serum triglycerides, and low serum high-density lipoprotein [7–9]. It represents a major
health issue in today’s society and is significantly connected to socioeconomic difficulties
encountered around the world. Early identification, diagnosis, and treatment can improve
the long-term life quality and health status of patients with metabolic syndrome [10]. The
selected and described pathologies (cardiac, obesity, and diabetes) are directly related to
oxidative changes generated by excessive ROS and mitochondrial dysfunctions. Therefore,
to understand the involvement of mitochondria in these pathologies, we must describe the
structure and function of mitochondria, the physiological mechanisms of its biogenesis, and
ROS generation at this level.

2. Mitochondrion Structure and Function
2.1. The Electron Transport Chain

The mitochondrion is a cytoplasmic organelle that consists of a double membrane,
matrix, and mtDNA. The outer membrane and intermembrane space are relatively per-
meable in contrast to the inner membrane which has a restrictive permeability, containing
the enzymes required for electron transport [11]. Mitochondria generate the majority
of cellular energy in the form of ATP, through the oxidation of reduced nicotinamide
adenine dinucleotide (NADH) and reduced flavin adenine dinucleotide (FADH2), and
subsequently, the process of oxidative phosphorylation [12]. Molecules derived from the
catabolism of glucose (glycolysis), fatty acids (beta-oxidation), and amino acids (deamina-
tion/transamination) are further referred to the tricarboxylic acid (TCA) cycle to generate
the required OXPHOS substrate [13]. An electrochemical gradient generated at the level
of the inner membrane generates OXPHOS. The electron transport chain (ETC) is made
up of five enzyme complexes (I, II, III, IV, and V), located at the level of the mitochondrial
inner membrane. Electrons donated by NADH/FADH2 coenzymes are transferred to
complex I (NADH: ubiquinone reductase) or complex II (succinate dehydrogenase) of the
ETC [14]. The two electrons from NADH are given to ubiquinone (UQ) with the help
of cofactors. Subsequently, ubiquinone is reduced to ubiquinol (UQH2). This transfer
of electrons triggers the introduction of protons from the matrix into the intermembrane
space (through the transfer of two electrons, four protons are introduced). Electrons do-
nated by FADH2 are transferred to the UQ via complex II but are not associated with the
transport of protons from the matrix into the intermembrane space [13]. Afterward, they
are transferred to complex III (cytochrome c reductase), made up of cytochromes b and
c1. The entire process of electron transfer from UQH2 to cytochrome c is called the Q
cycle. Initially, UQH2 binds to complex III, facilitating the access of two protons in the
intermembrane space, while two electrons are released, following different paths. The first
electron is transferred to cytochrome c1 (at this level it reduces Fe3+ to Fe2+), and from this
level, it is then transferred to cytochrome c. The second electron is given to cytochrome
b; subsequently, UQ is partially reduced to a molecule called the semi-quinone radical
ion (Q-). In the second stage, a new UQH2 molecule is attached to complex III following
the same pattern; therefore, a new electron is bound to the cytochrome c level, and the
second electron is bound at the Q level with the formation of a UQH2 molecule. At the
end of this process, four protons are generated in the intermembrane space. Four electrons
are transferred from four cytochrome c molecules to complex IV (cytochrome c oxidase),
where molecular oxygen is bound and reduced to water. Finally, at the level of complex IV,
eight protons are transferred from the matrix (four are used for the formation of two water
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molecules, and the other four are transferred to the intermembrane space) [15]. At the end
of the electron transport process, using one molecule of NADH, 10 protons are generated
towards the intermembrane space (two from complex IV and four each from complex I and
complex III, respectively). In this way, an electrochemical gradient known as mitochondrial
membrane potential is produced. Complex V (F0F1 ATP synthase) consists of two domains:
extramembrane (F1) and transmembrane (F0). This transport of electrons is associated
with the transport of protons from the level of the internal membrane, generating the
electrochemical gradient that is necessary for ATP production [13,14,16] (Figure 1).
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Figure 1. Schematic representation of mitochondrial electron transport chain (ETC). The ETC consists
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2.2. Mitochondrial DNA Structure

mtDNA nucleotide sequences were first identified in 1981, and were further re-
evaluated and subsequently revised in 1999 [17,18]. mtDNA is a double-stranded circular
DNA molecule consisting of 16,569 bp which encodes 37 genes, including 13 polypeptides
essential for the OXPHOS mechanism, 2 ribosomal RNAs (12S and 16S), and 22 transfer
RNAs. mtDNA has a special structure compared to genomic DNA; it does not contain
introns, as genes have absent or reduced portions of non-coding bases between them [19].

Zong et al. described free circulating mtDNA in blood samples with an important
prognostic role in various cancers, cardiac arrest, and sepsis [20]. Subsequently, circulating
free mtDNA was identified as a major mediator of innate immunity and systemic inflam-
matory response. The process of being released into plasma (by an unknown mechanism)
results in the activation of neutrophils, mediated by the Toll-like receptor 9 (TLR9) [21].
mtDNA is also found in the cytosol. It has been shown that oxidative stress, viral or bacte-
rial infections, or miss-packaging lead to its release and are involved in innate intracellular
immune responses [22]. Mitochondrial dysfunctions have been correlated with obesity,
diabetes mellitus, and cardiovascular pathologies. An increased amount of glucose is pre-
disposed to the increased production of ROS, with destructive effects at the mitochondrial
level [23]. The aging process, the reduced action capacity of antioxidants, and the changes
produced at the mitochondrial level can be as important causes of metabolic pathologies.

2.3. Mitochondrial Biogenesis and Dynamics

Most mitochondrial proteins are nuclear-encoded proteins and are translated by cytosolic
ribosomes, processed, and imported into the mitochondria via the TIM/TOM system [24].
The TOM complex is the translocase of the outer mitochondrial membrane and mediates
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the importing of nuclear-encoded proteins into the intermembrane space [25]. There are
two distinct mitochondrial translocase complexes in the inner mitochondrial membrane
(TIM) [26]. The TIM22 and TIM23 complexes recognize and import different classes of
proteins [27]. Mitochondrial dynamics is essential in maintaining mitochondrial homeostasis
and is achieved through two processes: fusion and fission. Imbalances between the two events
generate mitochondrial morphological changes, an excess of fission causes the formation of
fragmented mitochondria, and an excess of fusion triggers mitochondria elongation.

Mitofusins (Mfn) 1 and 2 are proteins involved in the fusion process of the outer
mitochondrial membrane. The fusion of the outer mitochondrial membrane is most often
achieved simultaneously with the fusion of the inner membrane, with the latter being
mediated by the optic atrophy 1 protein (OPA1). The absence of Mfn cuts off the fusion
phenomenon of both membranes. Mitochondrial fission is regulated by dynamin-related
protein 1 (Drp1) and fission protein (Fis1) [28]. Under various metabolic conditions, several
disbalances in such proteins occur during hyperglycaemic conditions, and Drp1 and Fis1
are increased, while Mfn1, Mfn2, and OPA1 are reduced [29].

Mitochondrial biogenesis is a complex process through which cells increase their
mitochondrial mass and require coordination between nuclear and mitochondrial DNA.
This process involves mtDNA transcription and translation processes, and the synthesis,
import, and association of mitochondrial proteins encoded by nuclear DNA [30].

Mitochondrial biogenesis dysfunction has been associated with metabolic disorders such
as obesity and T2DM. A decline in the proliferator-activated receptor gamma coactivator-1α
(PGC-1α), AMP-activated protein kinase (AMPK), and silent information regulator 1 (SIRT-1)
signalling pathways seems to be the underlying mechanism for reduced mitochondrial
biogenesis in the diabetic kidney and the diabetic heart as well, with hypoadiponectinemia
being reported to impair AMPK-PGC-1α signalling [30].

2.4. Mitophagy

Autophagy is a natural mechanism which was highly conservated throughout evolution,
by which the useless cytoplasmic material is transported to lysosomes for destruction [31].
Autophagy is influenced by a variety of factors. The autophagic response promotes the
adaptation to stress and increases cellular viability [32]. Components of the autophagy
response are implicated in regulated cell death [33].

The degradation of mitochondria through selective autophagy is referred to as mi-
tophagy, a process that involves the selective sequestration of damaged or dysfunctional
mitochondria into double-membraned autophagosomes for later lysosomal destruction.
Mitophagy has been described in mammalian cells as being facilitated by two well-studied
pathways, ubiquitin-mediated and receptor-mediated, and is essential for maintaining
cellular fitness [34,35].

Mitophagy ubiquitin-mediated pathways are regulated by two key proteins PTEN-
induced putative kinase protein 1 (PINK1) and Parkin. Normally, PINK1 is imported
into healthy mitochondria via the TIM/TOM system and further degraded by proteolytic
reactions. Damaged mitochondria lose membrane potential, which impairs the TIM/TOM
system’s function, resulting in the accumulation of PINK1 on the outer mitochondrial
membrane, which promotes the recruitment of Parkin and the activation of its ubiquitina-
tion ligase activity, leading to the ubiquitination of proteins from the outer mitochondrial
membrane. Further, Parkin promotes the recruitment of autophagy adaptors, such as
optineurin (OPTN) and nuclear dot protein 52 kDa (NDP52), leading to the degradation of
damaged mitochondria [36–38].

The mitophagy receptor pathway is mediated by receptors embedded in the outer mi-
tochondrial membrane, most notably by NIX (known as BCL2 interacting protein 3 like
(BNIP3L)), BCL2 interacting protein 3 (BNIP3), and FUN14 domain containing 1 (FUNDC1),
which are characterized by the presence of an LC3-interacting region (LIR) that can directly
bind to the autophagy mediator LC3 to promote mitophagy when mitochondria are dam-
aged [34,39].
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Mitophagy is implicated in insulin resistance and some cardiac pathological conditions.
The dysfunctional mitophagy mechanism has been linked to the development of insulin
resistance [40]. Moreover, an efficient mitophagical response helps the cardiomyocytes to
survive during the nutritional stress in myocardial infarction [41].

3. Oxidative Stress and Mitochondrial Dysfunctions

Mitochondrial dysfunctions generated by ROS production in the OXPHOS process
are caused by mitochondrial and cellular component damage (DNA, lipids, proteins, and
other molecules) [42]. Metabolic disorders involve the coexistence of numerous risk factors,
such as obesity, abnormal cholesterol, and triglyceride values or blood pressure [8].

Oxidative stress is characterized by the imbalance between the production of ROS and
the action of antioxidants, with the destructive effect of ROS. Most ROS are generated at
the complex I and III levels of the mitochondrial respiratory chain by releasing electrons
from NADH and FADH2 to the ETC [43]. Free radicals have an increased reactivity due to
unpaired electrons, with ROS being one of the most significant recognized classes [44–46].
At the mitochondrial level, through the acceptance of an electron by the molecular oxygen,
the superoxide anion (O2

•−) is generated. It interacts with other molecules or generates
secondary ROS [46]. O2

•− is subsequently transformed into a more stable compound, hy-
drogen peroxide (H2O2), under the action of the enzyme superoxide dismutase (SOD). The
considerable presence of this enzyme at the mitochondrial level supports the importance of
O2
•− elimination [23,45,47,48]. H2O2 can be transported through aquaporins, present at

the level of the inner mitochondrial membrane. Moreover, another possibility of eliminat-
ing this compound is diffusion at the cellular level, where it is neutralized and removed
with the aid of several antioxidant enzymes such as catalase, glutathione peroxidase, and
thioredoxin peroxidase [23,49,50]. When it remains unmetabolized, H2O2 interacts with
O2
•− and generates the hydroxyl radical (OH•), a molecule that is extremely reactive

and destructive at the cellular level. Furthermore, in the mitochondrial outer membrane,
there is a monoamine oxidase (MAO) enzyme that acts as another source of H2O2 [51],
which explains the development of efficient H2O2 elimination mechanisms using these
organelles [52]. Another radical entity is represented by the hydroperoxyl radical (HOO•),
the protonated form of O2

•−, which, however, physiologically develops in small amounts
at the cellular level [53]. The latter may be involved in lipid peroxidation too [46]. Another
enzyme located in the intermembrane space, p66Shc, has been identified as playing a role
in ROS production [46,54]. Moreover, singlet oxygen (1O2) has been identified as playing
an important role in the destruction of mtDNA [55]. 1O2 is a mitochondrial permeability
modulator which can be generated through cytochrome c-catalyzed peroxidation, with
carbonyl groups as the substrate [56].

Mitochondria are also a source of reactive nitrogen species (RNS). Nitric oxygen (NO•)
is produced enzymatically by means of nitric oxide synthases (NOS) from amino acids [57].
L-arginine is metabolized in the presence of NOS, forming L-citrulline and NO•. NADPH
and oxygen are also involved in this reaction [58]. Cytochrome c can act as an antioxidant
promoting NO• catabolism, but also O2

•− to O2 oxidation [59]. Another antioxidant
system is the NAD(P)+-dependent transhydrogenase, located at the inner mitochondrial
membrane. It maintains the amount of NADPH in the reduced form by catalyzing the
transfer between NADH and NADP+. In addition, mitochondria contain alpha-tocopherol
(vitamin E) and UQH2, inhibitors of lipid peroxidation [59] (Table 1).

Essential metals such as copper (Cu), manganese (Mn), zinc (Zn), and iron (Fe) are
nutrients in various processes that take place at the intracellular level. Copper (Cu) is
a cofactor for enzyme function and has an increased redox potential, allowing the transfer
of electrons to oxygen and ROS production. An inadequate amount at the cellular level
is associated with a compromised immune system, organ dysfunction, and oxidative
damage [60]. Mn is a cofactor for essential enzymes, including catalase and Mn superoxide
dismutase (Mn-SOD). Mn-SOD catalyzes O2

•− to H2O2 via the Mn2+/Mn3+ cycle, detoxifies
free radicals, and prevents oxidative stress. Catalase converts H2O2 to oxygen and water,
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consequently reducing the production of oxidative stress. Due to these metalloproteins, Mn
is involved in antioxidant defence, immune response, and energy production. Excess Mn
has been correlated with oxidative stress and mitochondrial dysfunction. Mn can interfere
at the mitochondrial level with oxidative phosphorylation, inhibiting F1-ATPase function
and ATP synthesis. Oxidative stress caused by the pro-oxidant capacity of Mn results in
increased mitochondrial solubility for protons and ions, a loss of mitochondrial membrane
potential, changes in oxidative phosphorylation, and mitochondrial swelling. After chronic
exposure to Mn, its accumulation at the mitochondrial level has been observed in neurons
and astrocytes [61–63]. Increased amounts of Zn suppress the Cu and Fe absorption,
causing the production of increased amounts of ROS at the mitochondrial level, disrupting
the activity of various enzymes, and activating apoptotic processes. The imbalance of these
metals causes structural and functional changes in enzymes, receptors, and transporters [63].
Intracellular Fe is found in its reduced form, and it is a cofactor for enzymes located in
the cytosol, mitochondria, and nucleus. Catalase, one of the most important antioxidant
enzymes, contains four haem groups. Free Fe can exchange electrons with surrounding
molecules and form free radicals. Free Fe donates an electron to H2O2 and forms OH• via
the Fenton reaction [64].

Additionally, mitochondria can generate heat due to proton leak. The proton leak
results from the activity of fatty acids on uncoupling proteins (UCPs). UCPs belong to the
family of mitochondrial anion carrier proteins. Five UCPs have been identified in mammals
(UCP1, UCP2, UCP3, UCP4, and UCP5) [65], and they have a purine nucleotide-binding
site. ATP, ADP, GTP, and GDP are inhibitors of proton flux and ROS, and fatty acids are
activators. UCPs can regulate ion transportation, calcium homeostasis, or synaptic plasticity.
UCP1 is expressed in brown adipose tissue, and it is important in the maintenance of body
temperature. UCP2-5 have different physiological actions in specific tissues, reducing
oxidative stress. UCP2 is associated with metabolic disorders such as diabetes, obesity, and
cardiovascular disease [13].

Table 1. ROS/RNS and promoters of free radicals; antioxidant systems; and positive and negative
effects of oxidative stress on diabetes, obesity, and cardiovascular disease.

ROS/RNS and
Promoters of
Free Radicals

Antioxidants System Positive Impacts of Free
Radicals

Negative Impacts of Free
Radicals Ref.

Superoxide radical
anion (O2

•−)
Hydrogen peroxide
(H2O2)
Monoamine oxidase
(MAO)
Singlet oxygen(1O2)
Hydroxyl radical (OH•)
Hydroperoxyl radical
(HOO•)
Nitric oxide (NO•)

Superoxide dismutase
(SOD):
Mn-SOD, Cu/Zn-SOD
Catalase
Glutathione peroxidase
Thioredoxin peroxidase
NAD/NADP
transhydrogenase
Cytochrome c oxidase
Vitamin E
UQH2

Signalling pathways and cell
structures synthesis (within
fibroblasts, endothelial cells,
vascular smooth muscle cells,
cardiac myocytes)
Immune system activity rise
Induction of mitogenic
response
Vasodilation
Angiogenesis
Wound healing

Lipid peroxidation
Damage to cell membranes
and lipoproteins
Cytotoxic and mutagenic
compounds
Conformational
modifications of proteins
DNA lesions
Loss of epigenetic
information
Hypertension
Atherosclerosis

[66,67]



Antioxidants 2023, 12, 658 7 of 19

Table 1. Cont.

ROS/RNS and
Promoters of
Free Radicals

Antioxidants System Positive Impacts of Free
Radicals

Negative Impacts of Free
Radicals Ref.

Disease Biomarkers Mechanism of action and effects of oxidative stress

Diabetes

↑malondialdehyde
↑8-isoprostane
↑4-hydroxynonenal
↑glycated haemoglobin
↑advanced oxidation
protein products
↑protein carbonyls
↓glutathione
↓superoxide dismutase
↓catalase

Lipid peroxidation
Protein oxidation
Decreased insulin activity
Hyperglycaemia
Stimulation of the polyol pathway
Stimulation of glucose autoxidation
Increase in advanced glycosylation end products
mtDNA and proteins conformational modifications

[23,68,
68–71]

Obesity

↑tumour necrosis factor-α
↑nuclear factor-κB
↑interleukin-1β
↑interleukin 6
↑plasminogen activator
inhibitor 1
↓superoxide dismutase
↓catalase
↓vitamin A
↓vitamin E
↓vitamin C

Excess of pro-inflammatory cytokines and expression of
adhesion molecules and growth factors
Depleted antioxidant levels
Increase in free fatty acids
Thrombosis and insulin resistance

[72]

Cardiovascular
Disease

↑oxidized low-density
lipoprotein
↑tumour necrosis factor-α
↑nuclear factor-κB
↑interleukin-1β
↑interleukin 6
↑8-Hydroxyl-2′-
deoxyguanosine
↑myeloperoxidase
↑F2-isoprostanes
↑biopyrrins
↓vitamin C
↓glutathione peroxidase 1
↓total antioxidant status

Endothelial dysfunction
Inflammation in blood vessels
Atherosclerosis
Hypertension
Cardiac hypertrophy
Cardiomyocytes apoptosis
Oxidative damage in DNA
Lipid peroxidation

[73–80]

Note: ↑ is increase, ↓ is decrease.

4. Insulin Resistance, Diabetes and Mitochondrial Dysfunctions

Type 2 diabetes mellitus (T2DM) is a chronic pathology that requires continuous
medical care through pharmacological treatment, but also a reduction in risk factors in-
volved in the etiopathogenesis of the disease. Currently, this condition is characterized
by a permanent increase in incidence and prevalence [81]. In recent years, we notice an
increase in interest towards research and the identification of mitochondrial changes and
their involvement in chronic diseases. There are numerous studies which confirm that
excess ROS and the presence of mitochondrial dysfunctions contribute to the development
of metabolic pathologies and insulin resistance. Obesity, diabetes, and cardiovascular
disease have been linked to mitochondrial dysfunction [82–86].

Hyperglycaemia and T2DM are directly linked to mitochondrial activity, function, and
oxidative stress. Mitochondria produce the largest amount of ROS and ATP. With regards
to hyperglycaemic status, the amount of ROS increases and triggers changes in cellular
homeostasis with the generation of lesions at this level [87]. The increased production of O2

•−
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affects the translocation capacity of glucose transporter 4 (GLUT4) from the intracellular level
to the plasma membrane, resulting in a decrease in insulin action at the tissue level and an
increase in blood glucose amount [70,71]. Hyperglycaemia generates an excessive production
of ROS which favours the appearance of mitochondrial changes and stimulates the polyol
pathway, glucose autoxidation, and an increase in advanced glycosylation end products in
diabetic patients [23,88]. Changes at the OXPHOS level, a reduction in NADH oxidoreductase,
and citrate synthase activity induce insulin resistance [89]. Fatty acid catabolism, a mechanism
called beta-oxidation, is also carried out at the mitochondrial level. The reduction in fatty
acid oxidation, together with the accumulation of lipids and diacylglycerol, drive both the
activation of protein kinase C and increased ROS production. Thus, there are changes
in the mitochondrial functioning mechanism that affect ATP synthesis. A compromise of
mitochondrial function causes a lipid excess and the development of insulin resistance [89,90].
The amplification of oxidative stress generates and maintains inflammation, causes lipid
peroxidation, and initiates changes in the insulin signalling mechanism. Insulin resistance
generated by hyperlipidaemia induces changes in mtDNA and proteins [70].

In diabetic patients, at the level of mononuclear cells, increased amounts of ROS
were identified, as well as spherical and hyperpolarized mitochondria, thus indicating
dysfunctions at this level [91]. The effect of ROS was also proven in pancreatic β cells; the
changes including volume and shape modifications, as well as changes in mitochondrial
function. They affect ATP-dependent K+ channels and insulin secretion. This aspect can
also be explained by the lower amount of antioxidants in β-cells [92]. The reduction in ATP
production and the increase in ROS at the muscle level can trigger an increase in insulin
resistance and diabetes [93] (Figure 2).
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Figure 2. Schematic representation of common pathophysiological mechanisms in diabetes, obesity,
and cardiovascular disease. (TCA, tricarboxylic acid cycle; ETC, electron transport chain; CPT1, carni-
tine palmitoyl-transferase 1; CPT2, carnitine palmitoyl-transferase 2; CACT, carnitine-acylcarnitine
translocase; MPC, mitochondrial pyruvate carrier; IL-1β, interleukin IL-1β; TNF-α, tumour necrosis
factor-α; LDLox, oxidized LDL; DAG, diacylglycerol).

Changes in mtDNA and genomic DNA have also been identified in patients with
diabetes mellitus. A new m.8561C>G mutation in MT-ATP6/8 was identified and correlated
with T2DM and hypergonadotropic hypogonadism [94]. The m.3242A>G mutation and
the 10.4-kb deletion were associated with diabetes and deafness. It is considered that
mitochondrial mutations can accumulate over time (an aspect that correlates with the aging
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process and neurodegeneration) [86]. There is also a correlation between mitochondrial
epigenetic changes and insulin resistance [95]. These changes at the mtDNA level suggest
the importance of continuing research in this field. Changes in the COX7A1 and NDUFB6
genes have been identified in people with insulin resistance and T2DM. Although they are
nuclear genes, they encode subunits of OXPHOS complexes I and IV, respectively [82,95,96].

5. Obesity and Mitochondrial Dysfunctions

Obesity is associated with changes in carbohydrate and lipid metabolism, but also with
insulin resistance, an increased risk of cardiovascular pathologies, and diabetes mellitus [97].
It represents one of the components of the metabolic syndrome and a cause of the devel-
opment of numerous chronic conditions. A caloric imbalance causes the hyperplasia and
hypertrophy of adipose cells. Adipose tissue secretes adipokines that have immunoregula-
tory properties [98]. The maintenance of the inflammatory process by an increase in leptin
and resistin (pro-inflammatory factors) and decrease in adiponectin (an anti-inflammatory
factor) triggers an increase in ROS and oxidative stress [98,99]. Mitochondrial dysfunctions
cause interleukin IL-1β secretion, which affects peripheral insulin sensitivity and interferes
with the endocrine capacity of the adipose tissue [100]. In hyperlipidaemic diets, mito-
chondrial fatty acid oxidation increases, inducing the subsequent generation of increased
levels of acetyl coenzyme A, which further amplifies the levels of NADH and FADH2 in
the tricarboxylic acid cycle, as well as the accumulation of acylcarnitine and ROS formation.
The excess of free fatty acids at the adipocyte level activates NADPH oxidase enzymes with
an increase in ROS. Oxidative stress causes inflammation and boosts lipid peroxidation,
disrupting insulin’s mechanisms of action [70,99,101] (Figure 2).

Cells can release extracellular vesicles containing mitochondria. Recipient cells receive
mitochondria through an extracellular vesicle–cell fusion event [102]. The intercellular
transfer of mitochondria has been implicated in many pathological conditions such as
stroke, pulmonary hypertension, and obesity [103].

Adipocytes transfer mitochondria to macrophages in adipose tissue, generating a new
population of macrophages, which is greatly diminished in patients with obesity due to
increased lipid intake because of reduced mitochondrial uptake by macrophages. Mito-
chondrial uptake is mediated by heparan sulphate and it manifests low levels in obese
subjects. The exostosin (EXT) 1 gene and the EXT2 heterodimer are also associated with
the maintenance of lipid metabolism homeostasis and glucose levels [95]. The presence
of deletions in the EXT1 gene in myeloid cells reduces heparan sulphate levels, decreases
mitochondrial transfer, and increases adipose tissue accumulation [104].

It has been shown that numerous components of the ETC have decreased expression
in visceral adipose tissue in women with diabetes. A decrease in the expression of OXPHOS
genes was also noted in these patients [105]. A reduction in the number of mtDNA copies
at blood, muscle, and adipose tissue level has been reported in obese subjects and those
with type 2 diabetes mellitus [106,107]. An association between the reduction in mtDNA
copy numbers and increased mtDNA methylation in the D-loop region was identified in
obese individuals [95].

6. Cardiovascular Disease and Mitochondrial Dysfunctions

Cardiovascular disease is the leading cause of death worldwide. There are a large
number of factors involved in the development of cardiovascular pathologies. Mitochon-
drial changes produced during the aging process explain the functional deficit encountered
in cardiovascular pathologies [108].

Cardiomyocytes contain numerous mitochondria to generate a large amount of
ATP [109]. At the cardiac level, mitochondria are located in interfibrillar, subsarcolem-
mal, and perinuclear regions [110]. Mitochondrial structural changes occur in cardiac
pathologies, with the formation of megamitochondria (giant mitochondria generated by
fusion). Shape changes are also encountered (cristae reorientation and the presence of
intramitochondrial cylinders) [80].



Antioxidants 2023, 12, 658 10 of 19

The largest amount of ATP is obtained at the cardiac level via the beta-oxidation of
fatty acids but, depending on availability, glucose can be used as an energy source. In
cardiac pathologies, insulin signalling is altered, affecting metabolic flexibility. Therefore,
the amount of ATP decreases [80].

Oxidative stress and mtDNA changes are identified in patients with cardiovascular
pathologies. At the cardiac level, ROS are generated through complexes I and III in
neutrophils, endothelial cells, and myocytes. The increase in ROS causes endothelial
dysfunction, inflammation in blood vessels, and the generation of oxidized LDL at the
arterial level. Ultimately, these changes trigger atherosclerosis, hypertension, and cardiac
hypertrophy. In addition, mitochondrial dysfunctions stimulate enzyme activation and
induce cardiomyocyte apoptosis [79,80]. It has been found that ROS association, together
with the increase in pro-inflammatory factors such as tumour necrosis factor-α (TNF-α),
causes mitochondrial and mtDNA functional changes, favouring the development and
progression of cardiovascular pathologies [111] (Figure 2).

Several studies indicate methylation changes in cardiovascular pathologies. Extensive
methylations were found in the MT-CO1, MT-CO2, MT-CO3, and MT-TL1 genes in sub-
jects with these conditions, with the methylation degree of these genes being a potential
predictive marker of cardiovascular pathologies in obese patients [112].

7. Pharmacological Strategies and Lifestyle Interventions in Mitochondrial Dysfunctions

Mitochondrial dysfunctions are involved in the pathophysiological mechanisms that
generate metabolic disorders. In this context, interest shown toward mitochondria can
generate new optimal therapies for these pathologies. The aim is to slow the progression of
mitochondrial dysfunctions and decrease ROS with a subsequent reduction in oxidative stress.

Recent studies support the idea that physical activity improves insulin sensitivity and
mitochondrial function in muscle tissue in patients with T2DM. Caloric restriction reduces
excessive ROS production and inhibits inflammation, thus facilitating the prevention and
treatment of metabolic pathologies [113–115]. In recent years, it has been suggested that a diet
rich in polyphenols might be beneficial in subjects affected by metabolic dysfunction [116].

Due to the multitude of discoveries in the field, interest in mitochondrion-directed
therapy has increased. Although numerous action mechanisms are known, the challenge is
represented by the transportation of active substances at this level due to the barriers that
precede mitochondrial localization. In this regard, some of the drugs that may represent
a new therapeutic solution in metabolic pathologies are selected further.

ETC components may represent a target in pharmaceutical interventions. Rotenone
and Annonaceous acetogenins inhibit NADH ubiquinone oxidoreductase. Moreover, met-
formin is a complex I inhibitor, a drug used in diabetes that increases glucose consumption.
Vitamin E analogues (α-tocopheryl succinate) and 3-bromopyruvate act on complex II.
Complex III inhibitors are antimycin A and myxothiazole. Cyanide is a complex IV in-
hibitor. There are numerous pharmaceutical agents that act on complex V (oligomycin,
apoptolidins, resveratrol, dindolyl methane, and aurovertin) [117,118].

A subfamily of mitochondrial proteins is represented by uncoupling proteins (UCPs).
UCPs facilitate H+ transport, ultimately generating heat. Fatty acids stimulate UCP trans-
port. In addition, it was highlighted that adrenaline and prostaglandins determine the
upregulation of UCPs. They are involved in common pathologies, with UCP1 and UCP2 be-
ing associated with diabetes and obesity. Carbonyl cyanide m-chlorophenyl hydrazone and
2,4-dinitrophenol are uncoupling agents for oxidative phosphorylation. UCPs represent
a good pharmacological target for treating obesity and diabetes [118–120].

From a pharmacological point of view, sirtuins (silent information regulator proteins) are
involved in the regulation of glucose and lipid metabolism at the cellular level [121–123]. Resver-
atrol activates SIRT 1, and improves insulin resistance through its antioxidant properties [124].

Mitochondrial fission inhibitors such as mitochondrial division inhibitor 1 (Mdivi 1), P110,
and dynasore have been identified as playing a role in ameliorating oxidative stress [125–127].
Mdivi 1 inhibits the GTPase activity of DRP1, improves myocardial infarction after ischemia,
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and restores mitochondrial changes caused by excess ROS. It was demonstrated in a study
conducted on an animal model that Mdivi 1 reduces inflammation and oxidative stress and
improves endothelial function [94]. Dynasore inhibits the mitochondrial fission phenomenon
and increases the survival chances of cardiomyocytes after ischemia. P110 is a peptide that
inhibits DRP1 activity, with a beneficial effect on mitochondrial morphology and function. Its
effect is demonstrated in cancer and neurological pathologies, but in metabolic dysfunctions,
it is still being studied [94]. Cyclophilin D is a mitochondrial protein known to regulate the
mitochondrial permeability transition pore [128]. This can represent a therapeutic target.

8. Antioxidants

Several studies have highlighted the beneficial effect of antioxidant use in metabolic patholo-
gies [129–132]. An increase in antioxidants, such as vitamin E, vitamin C, coenzyme Q, and
N-acetylcysteine (NAC), is indicated for their oxidative stress reduction [133,134]. NAC is the
acetylated form of the amino acid L-cysteine and is a source of the thiol group (SH) with the poten-
tial to stimulate glutathione biosynthesis. It inhibits the activity of p38 MAP kinase, nuclear factor
kappa B, and redox-sensitive activating protein-1; increases SH availability; and interacts with
NO• forming nitrosothiols. NAC inhibits the oxidative degradation of NO•, thus decreasing the
amount of nitrogen dioxide, peroxynitrite, and nitrotyrosine. NAC therapy has beneficial effects
on oxidative stress, inflammation, epithelial dysfunction, and hypertension [135]. Coenzyme
Q10 (CoQ10) is an antioxidant and plays an important role in lipid structures (cell membranes
and lipoproteins). It is localized at the mitochondrial and extramitochondrial levels and has
three oxidation states (oxidized, partially reduced, and fully reduced). Combining oxidized
CoQ10 with selenium improves the protection against cardiovascular pathologies. Patients with
T2DM have low amounts of COQ10, and supplementation with CoQ10 and selenium leads to
the reduced formation of advanced glycosylation end products. Moreover, the use of CoQ10,
together with selenium and vitamin C, has synergistic antioxidant effects [136].

Although the beneficial effect of using conventional antioxidants in metabolic patholo-
gies is known, in some clinical trials, the results of their benefits are contradictory. Salehi et al.
highlighted the adverse effects of inappropriately using nontargeted antioxidants (vitamin
A, vitamin C, vitamin E, and β-carotene). Excessive vitamin A intake (more than 10,000 IU)
has been associated with increased teratogenicity risk or birth defects. Vitamin C can be
metabolized to oxalate, increasing the risk of calcium oxalate kidney stones, and vitamin E
may increase prostate cancer risk [137]. The excessive use of antioxidants can decrease ROS
production and stimulate the compensatory upregulation of mitogen-activated protein
kinase (MAPK) pathways. Furthermore, it is difficult to calculate the dose of nontargeted
antioxidants used for disease treatment because there are many uncertainties about the
mechanism of absorption and how they are metabolized in different organs. Due to the
adverse effects of conventional antioxidants at the cellular level, the production and use of
mitochondria-targeted antioxidants are becoming more relevant [137,138].

Mitoquinone (MitoQ), mitovitamin E (MitoE), and MitoTEMPO are mitochondria-
targeted antioxidants and are synthesized by attaching the antioxidant to the lipophilic
triphenylphosphonium cation (TPP+). TPP+ is the most widely used lipophilic cation. To per-
meate the mitochondrial membrane, the substances must permit the optimal lipophilic level.
If the molecule has low lipophilicity, it does not penetrate the mitochondrial membrane, and if
lipophilicity is increased, it accumulates at the membrane level [109]. Due to the processes car-
ried out in the ETC, the increase in the mitochondrial membrane potential allows the passage
of these modified antioxidants inside the mitochondria and the action at this level. MitoQ
is an antioxidant in which TPP+ is bound to the UQ. It accumulates at the mitochondrial
membrane, decreases the production of ROS, and prevents the potential changes caused by
oxidative stress [139,140]. MitoQ is now described as a potential pharmaceutical compound
in neurodegenerative pathologies [141–143]. MitoE is a therapeutic agent that crosses the
mitochondrial membrane and protects mitochondria against excess ROS [144]. SkQ1 is also
a mitochondrial antioxidant formed from the conjugation of TPP+ with plastoquinone [145].
SkQ1 has antioxidant effects at low concentrations and can bind to cardiolipin, preventing
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its oxidation. MitoQ and SkQ1 can reduce oxidative stress, decrease protein oxidation, and
prevent lipid peroxidation and cell apoptosis. Animal model studies have revealed their
benefits in metabolic syndrome, obesity, and ischemia–reperfusion injury [109]. Mitochondrial
toxicity is the limiting factor in the use of TPP+ antioxidants. This requires proper dosing and
concentrations below levels at which mitochondrial membrane damage occurs [138].

Liposomes are bilipid membrane vesicles used to transport certain bioactive sub-
stances. Liposome-encapsulated antioxidants are composed of cholesterol, phosphatidyl-
choline, phosphatidylglycerol, cholesterol, and antioxidants (quercetin, NAC, and vitamin
E). Liposome-encapsulated antioxidants penetrate at the cellular level through the phe-
nomenon of pinocytosis, the liposomal components fuse with the mitochondrial membrane,
and the antioxidant is released at the mitochondrial level [138]. MITO-Porter is a novel
system used for transporting bioactive components to the mitochondrial level.

It represents a liposomal nanocarrier made up of 1,2-dioleoyl-sn-glycerol-3-phosphatidy-
lethanolamine, sphingomyelin, and stearylated octa arginine peptide (R8). MITO-Porter
binds at the mitochondrial level due to the interaction between R8 and negatively charged
mitochondria [146].

9. Conclusions and Perspectives

Mitochondria are versatile organelles, responsible for most of the cellular chemical
energy production. The structure and function of this subcellular organelle are peculiar, due
to the abounding molecular mechanisms that take place at this level. They are responsible
for cell survival, apoptosis, and homeostasis. These benefits coexist with the high degree
of errors that can occur at the mitochondrial level through ROS. Mitochondrial changes
have been identified in metabolic dysfunctions including insulin resistance/diabetes, hy-
pertension, and dyslipidaemia, but also in cancer or neurodegenerative pathologies. Recent
studies have identified changes in mitochondrial biogenesis and dynamics, as well as the
presence of oxidative stress in metabolic dysfunctions.

In diabetic patients, at the level of mononuclear cells, spherical and hyperpolarized
mitochondria were identified, indicating dysfunctions at this level. In pancreatic β cells,
changes including volume, shape modifications, and mitochondrial dysfunction have
been reported as well. The reduction in ATP production and the increase in ROS at the
muscle level can trigger an increase in insulin resistance and diabetes. In obesity patients,
the excess of free fatty acids at the adipocyte level activates NADPH oxidase enzymes,
with an increase in ROS production. Oxidative stress causes inflammation and boosts
lipid peroxidation, disrupting insulin’s mechanisms of action. The increase in ROS causes
endothelial dysfunction, inflammation in blood vessels, and the generation of oxidized
LDL at the arterial level in cardiovascular diseases.

To reduce the progression of metabolic pathologies, lifestyle interventions, physical ex-
ercises, and dietary changes are indicated. A balanced diet, including fruits, legumes, and
vegetables of different colours, is recommended. Moreover, new pharmaceutical strategies that
can improve the prognosis of these conditions are being investigated and developed. Several
studies have highlighted the beneficial effect of using antioxidants in metabolic pathologies;
vitamin E, vitamin C, coenzyme Q, and NAC administration are indicated for their oxidative
stress reduction effect. However, in some clinical trials, the results of their benefits are con-
tradictory. Due to the adverse effects of conventional antioxidants at the cellular level, the
production and use of mitochondria-targeted antioxidants are becoming more relevant.

The epigenetic role in this context is not fully understood, but changes in mtDNA
have been identified which could be meaningful in the identification and design of the next
therapeutic strategies. It is considered that mitochondrial mutations can accumulate over
time. Several studies indicate methylation changes in cardiovascular pathologies, and the
methylation degree of specific genes can be a potential predictive marker of cardiovascular
pathologies in obese patients. Difficulties in this field arise due to the particularities
encountered at the level of each individual. Large and complex studies are needed in order
to identify and detail the changes at the mitochondrial level and the therapeutic approaches.
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Abbreviations

ATP adenosine triphosphate
OXPHOS oxidative phosphorylation
mtDNA mitochondrial DNA
ROS reactive oxygen species
MS metabolic syndrome
T2DM type II diabetes mellitus
NADH reduced nicotinamide adenine dinucleotide
FADH2 reduced flavin adenine dinucleotide
TCA tricarboxylic acid
ETC electron transport chain
UQ ubiquinone
UQH2 ubiquinol
Q- semi-quinone radical ion Q-
Hs heavy strand
Ls light strand
NCR non-coding region
D-loop displacement loop
OH origin of heavy-strand synthesis
HSP heavy-strand promoter
LSP light-strand promoter
TLR9 toll-like receptor 9
TOM translocase of the outer mitochondrial membrane
TIM translocase of the inner mitochondrial membrane
Mfn mitofusins
OPA1 optic atrophy 1 protein
Drp1 dynamin-related protein 1
Fis1 fission protein
PGC-1α proliferator-activated receptor gamma coactivator-1α
NRF nuclear respiratory factor
TFAmt mitochondrial transcription factor
AMPK AMP-activated protein kinase
SIRT1 silent information regulator 1
O2
•− superoxide radical anions

H2O2 hydrogen peroxide
MAO monoamine oxidase
1O2 singlet oxygen
OH• hydroxyl radical
HOO• hydroperoxyl radical
NO• nitric oxide
RNS reactive nitrogen species
NOS nitric oxide synthases
GLUT4 glucose transporter 4
EXT exostosin
NAC N-acetylcysteine
COQ10 coenzyme Q10
MitoQ mitoquinone
MitoE mitovitamin E
TPP+ triphenylphosphonium cation
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