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Abstract: Islet cell transplantation has become a favorable therapeutic approach in the treatment of
Type 1 Diabetes due to the lower surgical risks and potential complications compared to conventional
pancreas transplantation. Despite significant improvements in islet cell transplantation outcomes,
several limitations hamper long-term graft survival due to tremendous damage and loss of islet cells
during the islet cell transplantation process. Oxidative stress has been identified as an omnipresent
stressor that negatively affects both the viability and function of isolated islets. Furthermore, it
has been established that at baseline, pancreatic β cells exhibit reduced antioxidative capacity,
rendering them even more susceptible to oxidative stress during metabolic stress. Thus, identifying
antioxidants capable of conferring protection against oxidative stressors present throughout the
islet transplantation process is a valuable approach to improving the overall outcomes of islet cell
transplantation. In this review we discuss the potential application of antioxidative therapy during
each step of islet cell transplantation.

Keywords: islet cell transplantation; diabetes; oxidative stress; antioxidants; pancreatic β cell
replacement therapy

1. Introduction

Type 1 diabetes (T1D) is a chronic autoimmune disorder characterized by the selective
destruction of insulin-secreting pancreatic β cells. Diabetes has been linked extensively with
secondary complications, including neuropathy, nephropathy, retinopathy, cardiovascular
disease, peripheral vascular disease, and cerebrovascular accident. Currently, the standard
treatment for patients with T1D is the administration of exogenous insulin. The tight
glycemic control has shown to substantially reduce the severity of secondary complications;
however, its tie to a severe incident of hypoglycemia makes it a lifesaving yet unsafe
treatment [1].

In the select few T1D patients who show intractable impaired awareness of hypo-
glycemia, β cell replacement therapy is offered as an alternative therapeutic approach.
Currently, in islet cell transplantation (ICT), although graft survival is reported to be at 80%
five years post-transplantation (PT), insulin independence is found in only 44% of patients
three years PT [2–4]. However, the outcome of ICT differs from center to center, and the
Minneapolis team has reported the highest success rate, with 50% insulin independence
in 25 patients five years PT [3]. Despite much improvement in recent years, currently,
two–three pancreases may be required to achieve sufficient islet mass to achieve insulin
independence in ICT because the majority of islets are lost during the isolation process and
immediately after islet infusion. Antioxidative therapy to improve ICT has gained more
interest in recent years as oxidative stress has been identified as an omnipresent stressor
throughout the entire ICT process: isolation, purification, culture, infusion, and immuno-
suppressive therapy [5] (Figure 1). Therefore, the identification of antioxidants capable
of conferring protection against oxidative stress is an important approach to improving
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overall outcomes of ICT [6]. In this review, we discuss the potential use of antioxidative
therapy during each step of the ICT process to improve islet yield, viability, and function.
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more recently Stancill J. et al. demonstrated that when human EndoC-βH1 cells are ex-
posed to physiologically relevant H2O2 levels (50 μM) in a continuous manner, β cells are 
able to detoxify it through the peroxiredoxin and thioredoxin antioxidant system [8–10]. 
Furthermore, in comparison to the low expression of GPx and CAT, peroxiredoxin, thi-
oredoxin, and thioredoxin reductase genes are readily expressed in mice and rat β cells 
[8]. Thus, further studies in this area to identify highly expressed antioxidative enzymes 
in β cells will be crucial for the optimization of antioxidative therapy.  

The primary sources of ROS production in islet cells are thought to be xanthine oxi-
dase(XO), cytochrome P450-based enzymes, reduced nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase, dysfunctional nitric oxide(NO) synthase, and mitochon-
drial dysfunction [5]. While ROS has generally been associated with imposing harmful 
effects on islet cells through negatively impacting cellular proliferation, survival, and the 
inducing signaling cascades to mediate cellular damage, it is not inherently a detrimental 
process [11]. For example, ROS has been shown to be essential for insulin signaling under 
basal conditions [12]. In mouse INS-1 cells, glucose treatment increased intracellular H2O2 
and treatment with H2O2 scavengers inhibited glucose-stimulated insulin secretion [13]. 
However, induction of oxidative stress in mouse INS-1 cells also resulted in decreased 
glucose-stimulated insulin secretion (GSIS), suggesting that while ROS are necessary for 
GSIS, excessive ROS and oxidative stress impairs insulin signaling. Therefore, pancreatic 
β cells require a state of proper redox balance for optimal function, which is an important 
factor to consider for antioxidative therapy. In fact, several studies have suggested that 
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2. Islet Cells and Oxidative Stress

There has been a long held perception that pancreatic β cells are susceptible to ox-
idative stress due to their inherently low expression of antioxidant enzymes superoxide
dismutase (SOD1/2), glutathione peroxidase(GPx), and catalase (CAT) [7]. However, more
recently Stancill J. et al. demonstrated that when human EndoC-βH1 cells are exposed
to physiologically relevant H2O2 levels (50 µM) in a continuous manner, β cells are
able to detoxify it through the peroxiredoxin and thioredoxin antioxidant system [8–10].
Furthermore, in comparison to the low expression of GPx and CAT, peroxiredoxin, thiore-
doxin, and thioredoxin reductase genes are readily expressed in mice and rat β cells [8].
Thus, further studies in this area to identify highly expressed antioxidative enzymes in β
cells will be crucial for the optimization of antioxidative therapy.

The primary sources of ROS production in islet cells are thought to be xanthine oxi-
dase(XO), cytochrome P450-based enzymes, reduced nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase, dysfunctional nitric oxide(NO) synthase, and mitochon-
drial dysfunction [5]. While ROS has generally been associated with imposing harmful
effects on islet cells through negatively impacting cellular proliferation, survival, and the
inducing signaling cascades to mediate cellular damage, it is not inherently a detrimental
process [11]. For example, ROS has been shown to be essential for insulin signaling under
basal conditions [12]. In mouse INS-1 cells, glucose treatment increased intracellular H2O2
and treatment with H2O2 scavengers inhibited glucose-stimulated insulin secretion [13].
However, induction of oxidative stress in mouse INS-1 cells also resulted in decreased
glucose-stimulated insulin secretion (GSIS), suggesting that while ROS are necessary for
GSIS, excessive ROS and oxidative stress impairs insulin signaling. Therefore, pancreatic β
cells require a state of proper redox balance for optimal function, which is an important
factor to consider for antioxidative therapy. In fact, several studies have suggested that
reductive stress, which results from the accumulation of NADH such as in the case of
excessive glucose metabolism, precedes oxidative stress in diabetes [14]. Considering that
reduced glutathione, one of the primary ROS scavengers stimulated under antioxidative
therapy, has been shown to induce reductive stress, further studies examining the connec-
tion between antioxidative therapy and reductive stress would be vital to improve overall
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islet cell transplantation outcomes [14]. For now, we focus on the oxidative stress and the
application of antioxidative therapy during each step of ICT.

3. Antioxidative Treatment of Islets during Procurement and Preservation

The low content of antioxidant enzymes within the human pancreas, including SOD,
makes the pancreas extremely vulnerable to reactive oxygen stress [6,15]. During pancreas
procurement and cold ischemia during pancreas preservation, either prior to transplant
or islet isolation, oxygen radicals are generated through the xanthine oxidase (XOD) [16]
and NADPH oxidase pathways [17]. These pathways are activated during reperfusion and
generate oxygen radicals too fast for endogenous SOD to cope [16].

The University of Wisconsin (UW) solution was the standard organ preservation solu-
tion for over 30 years in clinical preservation of the pancreas for transplantation. The UW
solution has glutathione and allopurinol as reactive oxygen species (ROS) scavengers.
Glutathione scavenges free radicals, ROS, and reactive nitrogen species (RNS) [18], while
allopurinol inhibits XOD [19]. It was first used for kidney transplantation in 1988 [15],
canine pancreas transplantation in 1989 [20], and human pancreas in 1990 with up to 24 h
of cold preservation [21]. The UW solution was then used for the pancreas allocated for
ICT with the release of the Edmonton protocol in 2006 [22].

Following the development of the UW solution, recent cold preservation formulations
have been designed to address some of the limitations [23]. The UW solution is chemically
unstable, with strict cold storage requirements, short shelf life, and high viscosity, making it
difficult to flush organs during procurement [24]. The UW solution also inhibits enzymatic
activity during islet isolation, including inhibitory effects from glutathione and allopurinol
used as its antioxidants [25].

There has been considerable research and development into novel preservation solu-
tions over the past decades, including Histidine-tryptophan-ketoglutarate (HTK) solution,
also known as Custodiol, which is an intracellular crystalloid cardioplegic solution used
for myocardial protection. Custodiol (HTK) was first used in the 2000s as an alternative for
UW solution clinically [26], followed by the Institut Georges Lopez-1 (IGL-1) solution [27].
Between 1996 and 2005, the UW solution accounted for almost 60% of organs preserved,
and HTK 11% [26]. IGL-1 is a newer solution that was first used for pig pancreas in
2014 [27], then for human pancreas in 2016 [28], although it was used for liver clinically
in 2010 [29]. In comparison to the UW solution, HTK uses tryptophan, while IGL-1 uses
glutathione and allopurinol (same as UW) as its ROS scavenger [30].

In a single-center, large-scale retrospective analysis of pancreas transplants (n = 252)
using either UW or HTK, there was no demonstrated difference in outcome between the two
groups [31]. This is supported by Indiana University pancreas transplant analysis, showing
no clinically significant difference [32,33]. When tested for use in ICT, HTK and UW have
the same preservation efficacy, but only on the pancreas with cold ischemia <10 h [34].
However, national registry data for pancreas transplants showed an increased incidence of
detrimental effects and earlier graft loss after preservation with HTK compared to UW [35].
Custodiol (HTK) and its variation, Custodiol-N (composition provided in Table 1 [36]), are
now being tested in a multi-prospective, randomized, single-blind, multicenter, phase III
study on pancreas, liver, and kidney preservation prior to transplantation [36,37].

A meta-analysis of patients receiving a simultaneous kidney and pancreas transplanta-
tion, preserved using UW or IGL-1, showed that there is still a lack of data on the immediate
results and no clinical studies on the long-term outcomes [30]. IGL-1 demonstrated good
safety and efficacy in two case series for up to 17 h of preservation [28,38]. For the goal of
supporting ICT, IGL-1 protected β cells yield better than both HTK and UW in preserving
the pancreas from donors after controlled circulatory death (DCD III) [39].

More novel antioxidants have been tested on pancreas preservation and procurement,
such as glutamine, melatonin, ascorbic acid, dimethyl fumarate (Tecfidera), and bardoxolone
methyl analog (dh404). Glutamine, a natural antioxidant, has been shown to improve islet yield,
viability, and endogenous pancreas glutathione level, if perfused into the pancreas prior to
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pancreatectomy both in rats [40] and in pigs [41]. Melatonin (N-acetyl-5-methoxytryptamine)
has a strong antioxidant and anti-inflammatory effect. Melatonin is synthesized from
tryptophan by the pineal gland, in addition to by ovaries, testes, bone marrow, gut, placenta,
and liver [42]. In one research study, pig donors received melatonin and ascorbic acid
(10 mg/kg intravenous) prior to pancreatectomy, while these antioxidants were added at
5 mM into the UW solution during pancreas cold storage. Compared to non-treated donors,
melatonin reduced the oxidative stress markers malondialdehyde and 4-hydroxyalkenals
during procurement, cold ischemia, and reperfusion. Meanwhile, ascorbic acid only
partially reduced oxidative damage 30 min after reperfusion [43]. Dimethyl fumarate has
also been shown to improve islet yield from rats if administered orally for two days prior to
procurement and islet isolation [44]. Similar to DMF, dh404 treatment of Sprague–Dawley
rats enhanced nuclear translocation of nuclear factor erythroid factor-related factor 2(Nrf2)
and elevated heme oxygenase 1 (HO-1) expression in the pancreas and improved islet
yield and viability [45]. Lastly, pretreatment of Sprague–Dawley rats with bilirubin also
enhanced islet survival rate and viability through reducing lipid peroxidation [46]. At this
time, none of these antioxidants are used clinically for pancreas procurement.

4. Antioxidative Treatment of Islets during Isolation and Processing

Following pancreas procurement and preservation, mechanically enhanced enzymatic
digestion to dissociate the islets from their extracellular matrix makes them further suscep-
tible to oxidative stress and cell death [47,48]. Few studies have investigated the impact
of treatment with antioxidants during the isolation of islets on transplantation outcomes.
Thomas et al. reported that supplementation of all the reagents used in the murine islet
isolation process with 1 nM d-Arg-2’,6’-dimethyltyrosine-Lys-Phe-NH2 (SS-31)—a small
water-soluble peptide—preserved mitochondrial polarization, diminished cell apoptosis,
and enhanced islet yield [47]. Additionally, Bottino et al. demonstrated that the activation
of nuclear factor-κB (NF-κB) and poly (ADP-ribose) polymerase (PARP)—the two critical
signaling pathways responsible for inducing oxidative impairment—emerges during the
isolation of insulin-secreting cells. They further showed that the addition of 34 µM man-
ganese [III] 5,10,15,20-tetrakis [1,3-diethyl-2imidazoyl] porphyrin (MnTDE)—a catalytic
antioxidant—to the isolation medium decreased NF-κB signaling and PARP activation
in human islets [48]. Finally, the addition of glutathione ethyl-ester (GEE) during the
distention and digestion of murine islets has been reported to reduce the intracellular
ROS contents of the islets and attenuate islet cell apoptosis, allowing the maintenance of
their viability [49]. Despite these promising benefits, more evidence is required to show
efficacy for the widespread clinical applications of antioxidants used in islet cell isolation
to improve transplantation outcomes.

5. Antioxidative Treatment of Islets during Cell Culture

To disrupt post-isolation oxidative stress and minimize cell loss before transplant,
supplementing the islet cell culture media with exogenous antioxidants such as manganese
superoxide dismutase (MnSOD) is an attractive area of study [50]. Incubation of human
islet cell culture media with 1 nM SS-31 peptide for 72 h decreased islet cell apoptosis and
moderately increased islet viability. SS-31 is a small permeable peptide with the capacity to
accumulate in the inner mitochondrial membrane, act as a scavenger of ROS at their site of
origin, and ultimately prevent cell apoptosis [47,51]. Moreover, treating human islet culture
media with 34 µM MnTDE for 60 h improved insulin secretion and islet survival [48].
Thus, MnTDE has been found to exert protective effects on islet cells when added to the
isolation and culture media.

Curcumin, a hydrophobic polyphenol derived from the rhizome of the herb Curcuma
longa, has also been studied during the past few years as an antioxidant as well as an anti-
inflammatory and anti-cancer reagent for the treatment of different types of cancer, diabetes,
autoimmune disorders, and cardiovascular diseases [52–60]. A study revealed that the
supplementation of murine islet culture media with curcumin significantly decreased the
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secretion of monocyte chemoattractant proteins (MCP-1) compared to untreated islets [61].
The NF-κB pathway regulates the expression of MCP-1 in human β cells, and it has been
suggested that prolonged periods of insulin independence in post-transplant T1D patients
are associated with low levels of MCP-1 in β cells [62,63]. Despite the therapeutic effects of
curcumin, the hydrophobic nature of the molecule requires the utilization of toxic organic
solvents, such as alcohol or dimethylsulfoxide (DMSO), for solubilization. Therefore, it
is necessary to investigate alternative solubilization approaches to eliminate the need for
toxic organic solvents and develop curcumin’s clinical applications. For instance, peptide
micelle-mediated delivery of curcumin with R3V6 established the peptide’s ability as an
appropriate carrier that also preserves islet viability after transplantation [64].

Furthermore, a recent study has shown the antioxidative and protective effects of
tetrahydrocurcumin (THC), one of the major metabolites of curcumin with a more substan-
tial antioxidative power. Supplementing murine islet culture media for 24 h with THC
resulted in a 1.3-fold increase in glucose-induced insulin release compared to islets with-
out THC. Additionally, THC treatment of the culture media attenuated cytokine-induced
damage associated with cell apoptosis. These findings indicate the strong antioxidative
capacity of THC to enhance islet cell function and graft survival PT [65].

Glutathione, a tripeptide synthesized from glutamate, glycine, and cysteine, also
indicated encouraging results as an antioxidant in modulating the pro-inflammatory state
of human islets. The treatment of islet cell culture media and incubation for 48 h with
glutathione significantly reduced the production of MCP-1 in human islets compared to
the untreated group, indicating this antioxidant’s ability to protect the islets and suppress
the inflammation during engraftment [66,67]. Another group evaluated the antioxidative
strength of GEE, the esterified form of glutathione. When human islets were cultured for
24 h in 20 mM GEE supplemented media, they had a significantly lower apoptosis rate than
islets incubated in standard CMRL media. The esterification of glutathione by an ethyl-
ester to form GEE increases its bioavailability and converts it into a lipid-soluble molecule
that can cross the cell membrane and enter the cells [49,68]. Therefore, the observed
improvement in human islet cell viability and the enhanced bioavailability of GEE makes it
an attractive antioxidant scavenger for further clinical islet transplantation studies.

In summary, the activation of NF-κB and PARP pathways are major contributors
to potential oxidative damage during the isolation of insulin-secreting cells. The antiox-
idants and SOD mimetics employed during islet isolation and culture can target these
pathways, suppress the activation of NF-κB, diminish the secretion of MCP-1 and inter-
leukin (IL)-6 by human β cells under stress, and reduce the release of ROS by macrophages.
Managing oxidative stress during isolation and culture can substantially impact islet yield,
viability, and long-term graft function PT [48,50,69,70]. Many reagents have demonstrated
strong antioxidative capacity in vitro and in vivo; however, their clinical applications have
been limited due to a lack of data to establish their safety and efficacy in human islet
transplantation procedures. Among the discussed antioxidants, MnTDE, GEE, and SS-31
appear to be ideal candidates for further investigations as they have shown positive impact
when utilized during both the isolation and culture of pancreatic islets.

6. Antioxidative Treatments during Islet Cell Infusion

During the infusion and immediate post transplantation phase of the islet, islet cells
must overcome multifaceted challenges with hypoxia, hypoxia/reperfusion injury, and
immediate blood-mediated immune response (IBMIR). Islet cells only account for 1% of
the pancreas mass but receive approximately 10% of the total arterial blood delivered to
the pancreas [71]. Furthermore, an islet cluster consists of around 1000–2000 cells per islet
cluster. Keeping in mind that the revascularization of transplanted islets starts 2–4 days
after transplant and requires 10–14 days to complete, it is no surprise that central necrosis
is commonly detected in transplanted islets [72]. Hypoxia/reperfusion induces necrosis
and cell apoptosis by releasing Caspase 3 and stress-related apoptotic factors, produc-
tion of ROS due to inflammation, and activation of JAK/STAT, JNK/p38, and NF-κB
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pathways [73–76]. In addition to hypoxia, IBMIR in pancreatic islet cell transplantation
begins immediately after islet infusion and peaks within three hours [77]. It is charac-
terized by platelet consumption, activation of the coagulation and complement cascade,
and leukocytic infiltration, resulting in significant inflammation and destruction of islet
tissue immediately after transplantation [78,79]. IBMIR represents a major hurdle for trans-
plant, and it is currently being targeted by NF-κB and JNK phosphorylation inhibitors,
anticoagulants, complement inhibitors, and antioxidant administration to reduce inflam-
mation [80–82]. Hypoxia and IBMIR are tightly intertwined. Inflammatory cytokine and
ROS production as a consequence of the islet isolation process and hypoxia results in the
release of damage-associated molecular patterns (DAMP), which acts as a chemoattract for
immune cells and thus activate the innate immune response and subsequently IBMIR [83].
Therefore, targeting hypoxia through attenuation of oxidative stress and improving vascu-
larization are vital to enhancing the viability of islet cells during the immediate PT period.

Several antioxidative agents have been shown to confer protection against hypoxic
stress. In vitro, resveratrol and nobiletin, both of which are safe for humans, have been
shown to reduce ROS production and attenuate apoptosis under hypoxic conditions.
Furthermore, resveratrol and nobiletin increased insulin and C-peptide secretion, suggest-
ing improved survival and function of the islet cells [84,85]. Importantly, this was associated
with increased secretion of vascular endothelial growth factors (VEGF), a signal protein that
stimulates the formation of blood vessels [84]. In vivo, resveratrol treatment increased the
vascularization of islet cells transplanted into the kidney capsule of streptozotocin (STZ)-
induced diabetic mice and concurrently improved glucose tolerance and increased insulin
stained area [86]. Bilirubin, an antioxidant product of HO-1, decreased oxidative stress
and death in murine islets under hypoxic stress in vitro [83,87]. In vivo, bilirubin adminis-
tration of STZ-induced diabetic rats with intraportal islet cell transplantation improved
glucose tolerance and reduced serum inflammatory cytokine. Notably, bilirubin-treated
diabetic rats transplanted with a suboptimal dose of islet cells (700 IEQ or 500 IEQ) exhib-
ited significantly lower fasting blood glucose levels compared to the vehicle-treated group,
further supporting the protective effects of bilirubin in islet cell transplantation [88,89].
These results were associated with significant reduction in inflammatory cytokines, includ-
ing interleukin 1 β (IL-1β), tumor necrosis factor-α (TNF-α), MCP-1, and NO, suggesting
additional anti-inflammatory properties of bilirubin. Furthermore, bilirubin also increased
vascularization, as evidenced by increased blood vessel formation in ε-polylysine-bilirubin
conjugate (PLL-BR) encapsulated islet cells transplanted into diabetic mice compared to
control [90]. Unfortunately, its clinical applications have been limited due to its insolubility
and short half-life. Several approaches have been taken to enhance drug delivery of biliru-
bin, such as encapsulation in pluronic F127-chitosan and other supramolecular carriers, and
conjugation with hydrophilic polyethylene glycol (PEG) [83,91,92]. Several other antioxi-
dants have been evaluated for improving islet survival during the immediate PT period.
For example, epigallocatechin gallate (ECG), an Nrf2 activator, has been shown to protect
rat islet cells from hypoxia reperfusion injury in vitro [93]. Pretreating islet cells with
antiaging glycoprotein resulted in improved islet cell engraftment when transplanted into
mice, an effect mediated by suppression of proinflammatory cytokines and chemokines [94].
Lastly, in vitro, exendin-4 protected mice islets against hypoxia-induced apoptosis and
in vivo, exendin-4 treatment significantly improved survival of diabetic mice that received
islet cell transplantation [95].

Lastly, various studies have recently explored the use of stem cell and stem cell-derived
microvesicles to improve revascularization and viability in ICT. Treatment of porcine islets
with human mesenchymal stem cell-derived exosomes under hypoxic conditions signifi-
cantly decreased apoptosis and ROS production [96]. Furthermore, human islet cells treated
with endothelial progenitor cell microvesicles (EPC-MV) exhibited increased development
of capillary-like structures in vitro and in vivo. Interestingly, while rapamycin abrogated
the angiogenic effect of growth factor-enriched medium on islet endothelial cells, the effect
was not completely abolished when treated in EPC-MV, suggesting that EPC-MV induces
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angiogenesis through various pathways [97]. Stem cell-derived exosomes mediate angio-
genesis by transferring pro-angiomiRNA and activating phosphatidylinositol-3-kinase
(PI3K)/Akt, endothelial nitric oxide synthase (eNOS), and NF-κB signaling pathways in
endothelial cells [97–99]. While the use of stem cell-derived microvesicles has gained
interest in more recent years due to its several advantages over stem cell therapy, such as
higher safety profile, lower immunogenicity, and the ability to cross biological barriers,
several limitations, including the difficulty with characterization, pharmacokinetics and
drug targeting, and an unknown safety profile hampers its application in clinical settings.

7. Antioxidative Treatments in Islet Graft Recipients

After successful engraftment, transplanted islets face rejection and immunosuppres-
sive medication toxicity challenges. The current immunosuppressive medication regi-
men follows a steroid-free protocol, commonly consisting of tacrolimus and rapamycin.
However, immunosuppressors, such as tacrolimus and cyclosporin A, have been shown
to cause β cell apoptosis and decrease insulin secretion [100]. Both tacrolimus and ra-
pamycin have been shown to inhibit the mammalian target of rapamycin (mTOR) pathway,
which has been suggested to be invaluable in maintaining β cell homeostasis and in-
sulin secretion [101,102]. Importantly, the treatment of β cells (CRI-D2 β cell line) with
tacrolimus decreased insulin secretion and viability, which was associated with a dose
and time-dependent increase in ROS production, with a simultaneous decrease in antiox-
idative status [103]. Thus, several antioxidants, such as ginseng, gamma-aminobutyric
acid (GABA), coQ10, antiaging glycopeptides, dipeptidyl peptidase-4 (DDP4) inhibitors,
and exendin-4, have been evaluated for immunosuppressive medication toxicity and have
shown to protect islets against tacrolimus-induced apoptosis through the attenuation of
oxidative stress [94,104–109]. Therefore, the coadministration of antioxidants to combat
the adverse effects of current immunosuppressive medication is a promising approach
to target these issues. Favorably, several antioxidants have been identified as also ex-
hibiting strong immunomodulatory effects: bilirubin, stem cell-derived EV, and DMF.
Usage of these agents, in particular, would provide a double-edged sword against oxida-
tive stress during the early PT period while providing effective immunosuppression for
long-term management.

Stem cell extracellular vesicles (EV’s) and bilirubin have been most extensively studied
for their use as an immunosuppressant for islet cell transplantation. In addition to sup-
pressing the proliferation of PBMCs, stem cell EV and bilirubin have also been shown to be
immunosuppressive through the induction of regulatory T cells. Exosomes of human bone
marrow mesenchymal stem cell (MSC) cocultured with peripheral blood mononuclear cells
(PBMC) successfully suppressed PBMC proliferation and induced regulatory T cells in the
spleen of T1 diabetic mice transplanted with islet cells, rendering them entirely insulin-free
without immunosuppressive medication [110]. The immunosuppressive effects of stem
cell-derived EV may be mediated by its suppressive effects on macrophages, dendritic
cells, and T cells. Recent studies have shown that stem cell-derived exosomes are capable
of inducing phenotype conversion of macrophages into its anti-inflammatory M2 sub-
type through the horizontal transfer of miR146α and STAT3 [111–113]. M2 macrophages
are known to secrete anti-inflammatory molecules, including IL-10, transforming growth
factor β (TGFβ), and epidermal growth factor (EGF), some of which are responsible for
inducing regulatory T cells. Furthermore, miR146α holds an essential role in preventing
hyperactivity of CD4+ and CD8+ T cells and ensuring suppressive activity of regulatory T
cells [114,115]. In terms of dendritic cells, MSC and MSC-EV/exosomes have been found
to induce immunologic tolerance through the direct inhibition of effector dendritic cell
function. In several in vitro studies, coculturing MSC-EV with monocyte-derived dendritic
cells (moDC) attenuated their maturation through decreasing antigen uptake in imma-
ture dendritic cells. These moDCs also displayed low-level MHC Class II expression and
increased secretion of anti-inflammatory cytokines, including IL-10 and TGFβ [116,117].
Moreover, MSC-EV cocultured with moDC expressed lower levels of CCR7, the receptor
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required for homing DC to secondary lymphoid organs, thereby limiting their ability to
activate naive T cells. When MSC-EV-conditioned moDC were cocultured with naive T
cells, they reduced T cell proliferation, induced higher expression of regulatory pheno-
type in T cells, and increased its secretion of anti-inflammatory cytokines (IL-10, IL-6, and
TGFβ) [118]. Considering that in addition to its immunosuppressive properties, stem
cell EV exhibit potent anti-inflammatory, antioxidative, and angiogenic effects, stem cell-
derived EV therapy may represent a valuable approach to improving islet cell engraftment
and viability during the early PT period and induce regulatory T cells for graft tolerance.

Similar to stem cell-derived EV, besides demonstrating antioxidative and angiogenic
properties, bilirubin exerts immunosuppressive properties by inducing regulatory T cells.
In vitro, bilirubin treatment of CD-3 mAb-activated murine CD4+ T cells suppressed its
proliferation by 52%. Additionally, cotreatment with bilirubin significantly suppressed
activation-induced up-regulation of MHC Class II in both macrophages and dendritic cells,
suggesting that bilirubin exerts multilevel immunosuppression through inhibiting both
innate and adaptive immune cells [119]. Corroborating these findings, kidney capsule
transplantation of ε-polylysine-bilirubin conjugate encapsulated islets in diabetic mice pro-
moted the accumulation of M2 polarized macrophages in the islet graft [90]. Moreover, the
treatment of C57BL/6 macrophage with bilirubin significantly increased surface expression
of PDL-1, which has been shown to inhibit lymphocyte activation when bound to PD-1
and induce tolerance in islet allograft models [87,120]. Indeed, in vitro, macrophages ex-
posed to bilirubin induced the formation of Foxp3+ T cells over a four-day culture with
naive immune cells [87]. Lastly, mice transplanted with ε-polylysine-bilirubin conjugate
encapsulated islets remained euglycemic for 35 days PT, while the blood glucose of mice
transplanted with untreated islets began to increase at 21 days PT [90]. Few other studies
have demonstrated the ability of bilirubin to induce tolerance in islet cell transplanta-
tion [121,122]. Considering the challenges of drug delivery for the use of bilirubin in vivo,
therapeutic agents that upregulate HO-1 and subsequently bilirubin may be an alternative
approach. DMF is a potent antioxidant that may fulfill this role as it has been shown to
induce HO-1 in human pancreatic tissue [123].

DMF is a potent inducer of the Nrf2 antioxidative system in islet cells. The protective
effect of the Nrf2 pathway on islet cells has been extensively studied. We have previously
demonstrated that islet cells isolated from rats pretreated with DMF exhibited significantly
increased mRNA expression of glutamate-cysteine ligase catalytic subunit (GCLC) and
NADPH oxidoreductase 1(NQO1), transcriptional targets of Nrf2, and decreased oxidative
stress as indicated by the reduction in 8OHDG positive islet cells [44]. Dh404, another Nrf2
activator, has been shown to improve the viability of islet cells when treated with H2O2
through the attenuation of oxidative stress by upregulating antioxidative enzymes such as
NQO1, HO-1 and GCLC [124]. While there are a plethora of Nrf2 activators that protect islet
cells, DMF has been the most evaluated for its immunosuppressive effects. DMF treatment
successfully reduce the onset of spontaneous diabetes in NOD mice, a type 1 DM model,
suggesting its potent immunomodulatory effects [44]. In fact, DMF has been used in a clini-
cal trial for the treatment of multiple sclerosis (MS), in which DMF treatment significantly
decreased both T and B cell counts in MS patients [125]. DMF increased CD4/CD8 and
naive/memory T cells while reducing the frequency of Th1 and Th17 inflammatory cells in
DMF-treated MS patients [126]. In addition to altering the T cell population, DMF has also
been shown to alter M1 (pro-inflammatory)/M2 (anti-inflammatory) macrophage polariza-
tion and absolute number. A study that evaluated the effect of DMF on corneal allograft
rejection in mice demonstrated that DMF treatment significantly reduced the number of
M1 macrophage infiltration into the corneal graft, and DMF inhibited the expression of
inflammatory cytokines in macrophages in vitro [127]. Further studies must be conducted
to elucidate the potential application of DMF as an immunosuppressant in combination
with other agents. In addition to exerting antioxidative and immunosuppressive effects,
DMF may also benefit islet cell transplantation through several other aspects. For example,
DMF has been found to ameliorate liver ischemia/ reperfusion injury, which, considering
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that islet cells cause the blockage of small vessels within the liver, is an important approach
to improve the safety and recovery after islet cell transplantation [128]. Furthermore, DMF
treatment has been shown to suppress proinflammatory cytokine and chemokine produc-
tion in NOD mice, supporting its anti-inflammatory properties [44]. Lastly, DMF has also
been shown to protect against calcineurin inhibitor-induced nephrotoxicity and thus may
provide a layer of protection against renal failure after islet cell transplantation [129].

In conclusion, several antioxidants, namely, stem cell-derived EVs, bilirubin, and DMF,
have been suggested to protect islet cells from the detrimental effects of oxidative stress
while exerting potent immunosuppressive effects through suppression of activation and
proliferation of immune cells, alteration in immune cell subtypes, and the induction of
regulatory T cells. All in all, a plethora of antioxidants have been evaluated to protect
islet cells from oxidative stress throughout the islet cell transplantation process (Table 1).
Further studies to elucidate the safety and efficacy of these therapeutic approaches in
humans will be vital to assess its application in islet cell transplant.

Table 1. Table of antioxidants discussed in this review paper: GSH, reduced glutathione; XOD,
xanthine oxidase; GPx, glutathione peroxidase; MnSOD, manganese superoxide dismutase; HO-1,
heme oxygenase 1; Nrf2, nuclear erthyroid factor 2. (* DMF has not been evaluated for its immuno-
suppressive effects in ICT setting, although it has been suggested to exhibit immunomodulation
in T1DM).

Islet Cell
Transplantation Step Antioxidants Mode of Action Species References

Procurement
and Preservation

University of Wisconsin
(UW) solution

ROS scavenger (GSH),
XOD inhibition Human [18,19]

Histidine-tryptophan-
ketoglutarate
(HTK) solution

ROS scavenger (Tryptophan) Human [26]

Institute Georges
Lopez-1 (IGL-1)

ROS scavenger (GSH), XOD
inhibition Human [27]

Glutamine ROS scavenger (GSH) Rats, Pigs [40,41]
Melatonin ROS scavenger Pigs [43]
Ascorbic Acid ROS scavenger Pigs [43]
Dimethyl Fumarate Nrf2 activator Rats [44]
Bilirubin Inhibition of lipid peroxidation Rats [46]
Dh404 Nrf2 activator Rats [45]

Isolation and Processing

d-Arg-2’,6’-
dimethyltyrosine-Lys-Phe-
NH2
(SS-31)

ROS scavenger, inhibits
mitochondrial permeability
preventing
mitochondrial dysfunction

Mice [47]

Manganese [III]
5,10,15,20-tetrakis
[1,3-diethyl-2imidazoyl]
porphyrin (MnTDE)

ROS scavenger Human [48]

Glutathione
ethyl-ester (GEE) ROS scavenger(GSH) Mice [49]

Cell Culture SS-31

ROS scavenger, inhibits
mitochondrial
permeability(prevents
mitochondrial dysfunction)

Human [47,51]

MnTDE ROS scavenger Human [48]
Curcumin,
tetrahydrocurcumin (THC) ROS Scavenger Rat, Mice [61,65]

Glutathione, GEE ROS scavenger(GSH) Human [66–68]



Antioxidants 2022, 11, 1038 10 of 16

Table 1. Cont.

Islet Cell
Transplantation Step Antioxidants Mode of Action Species References

Islet Infusion

Resveratrol, nobiletin ROS scavenger, inhibition of
lipid peroxidation Human, Mice [84–86]

Bilirubin Nrf2 activator, activation of
GPx Mice, Rats [83,87,88,90]

Epigallocatechin gallate
(ECG) Nrf2 activator Rats [93]

Exendin-4 Increase GSH and GPx Mice [95]
Antiaging glycoprotein Unknown Human [94]
Stem cell derived
extracellular vesicles Inreasing GSH and GPx Pigs, Human [96,97]

Recipient treatment:
Immunosuppressive
medication toxicity;
Immunosuppression

Antiaging glycopeptides Unknown Human [94]
Ginseng ROS scavenger Mice, Rats [104,109]

CoQ10 Protect from mitochondrial
dysfunction Rats [105]

DDP4 inhibitors Increasing MnSODand
HO-1/HO-2 expression Rats [106]

Exendin-4 Increase GSH and GPx Rats [95,107]
GABA Unknown Human [108]

Bilirubin Nrf2 activator, activation of
GPx Mice [90,121,122]

Stem cell-derived
extracellular vesicles Increasing GSH and GPx Human [110]

DMF Nrf2 activator *

8. Conclusions

Oxidative stress has been identified as one of the major stressors present throughout
the ICT process. Compounding this issue, it has been established that islet cells exhibit
significantly reduced expression of antioxidative enzymes, making them exceptionally
susceptible to oxidative stress. Thus, there has been an extensive focus on incorporating
antioxidants during the preservation, isolation, and culture period in order to improve islet
cell viability and function. Furthermore, in more recent years, several of these potent an-
tioxidants have been shown to improve islet cell engraftment, increase vascularization, and
even exhibit immunosuppressive properties. Further evaluation of the safety and efficacy
of these antioxidants is a crucial step in continuing to improve the overall ICT outcomes.
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SOD Superoxide dismutase
GPx Glutathione peroxidase
CAT Catalase
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NADPH Reduced nicotinamide adenine dinucleotide phosphate
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NO Nitric Oxide
Nrf2 Nuclear factor erythroid factor-related factor 2
HO-1 Heme oxygenase 1
GSIS Glucose-stimulated insulin secretion
UW University of Wisconsin
ROS Reactive oxygen species
RNS Reactive nitrogen species
HTK Histidine-tryptophan-ketoglutarate
IGL-1 Institut Georges Lopez-1
NF-κB Nuclear factor-κB
PARP Poly (ADP-ribose) polymerase
MnTDE Manganese [III] 5,10,15,20-tetrakis [1,3-diethyl-2imidazoyl] porphyrin
GEE Glutathione ethyl-ester
MnSOD Manganese superoxide dismutase
MCP-1 Monocyte chemoattractant proteins
DMSO Dimethyl sulfoxide
THC Tetrahydrocurcumin
IL-6 Interleukin-6
IBMIR Immediate blood-mediated immune response
DAMP Damage associated molecular patterns
VEGF Vascular endothelial growth factors
STZ Streptozotocin
IL-1β Interleukin 1β
TNF- α Tumor necrosis factor-α
PLL-BR ε-polylysine-bilirubin conjugate
PEG Polyethylene glycol
ECG Epigallocatechin gallate
EPC-MV Endothelial progenitor cell microvesicles
EV Extracellular vesicle
MSC Mesenchymal stem cell
PI3K/AKT Phosphatidylinositol-3-kinase
eNOS Endothelial nitric oxide synthase
mTOR Mammalian target of rapamycin
GABA Gamma-aminobutyric acid
DDP4 Dipeptidyl peptidase-4
PBMC Peripheral blood mononuclear cells
moDC Monocyte-derived dendritic cells
TGF-β Transforming growth factor beta
EGF Epithelial growth factor
GCLC Glutamate-cysteine ligase catalytic subunit
NQO1 NADPH oxidoreductase 1
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