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Abstract: Sarcopenia, which occurs during aging, is characterized by the gradual loss of skeletal
muscle mass and function, resulting in a functional decline in physical abilities. Several factors
contribute to the onset of sarcopenia, including reduced regenerative capacity, chronic low-grade
inflammation, mitochondrial dysfunction, and increased oxidative stress, leading to the activation of
catabolic pathways. Physical activity and adequate protein intake are considered effective strategies
able to reduce the incidence and severity of sarcopenia by exerting beneficial effects in improving
the muscular anabolic response during aging. Taurine is a non-essential amino acid that is highly
expressed in mammalian tissues and, particularly, in skeletal muscle where it is involved in the
regulation of biological processes and where it acts as an antioxidant and anti-inflammatory factor.
Here, we evaluated whether taurine administration in old mice counteracts the physiopathological
effects of aging in skeletal muscle. We showed that, in injured muscle, taurine enhances the regener-
ative process by downregulating the inflammatory response and preserving muscle fiber integrity.
Moreover, taurine attenuates ROS production in aged muscles by maintaining a proper cellular
redox balance, acting as an antioxidant molecule. Although further studies are needed to better
elucidate the molecular mechanisms responsible for the beneficial effect of taurine on skeletal muscle
homeostasis, these data demonstrate that taurine administration ameliorates the microenvironment
allowing an efficient regenerative process and attenuation of the catabolic pathways related to the
onset of sarcopenia.
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1. Introduction

Aging is characterized by the gradual impairment of the principal physiological and
biochemical functions of organs and tissues, and it is often associated with a progres-
sive loss of skeletal muscle mass and strength, a condition known as sarcopenia [1]. The
mechanisms responsible for sarcopenia are not completely understood; nevertheless, it is
likely the result of multifactorial events including a compromised regenerative capability [2,3],
chronic inflammation [4,5], increased levels of oxidative stress [5,6], and mitochondrial
dysfunctions [7].

Muscle regeneration is a coordinated process in which satellite cells, the stem cell
compartment of skeletal muscle, are activated to maintain and preserve tissue structure
and function upon damage [8].
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The first phase of the regenerative process is characterized by myofiber necrosis due
to an influx of extracellular calcium leading to proteolysis of the myofibrils [9,10]. This
event results in the activation of a specific inflammatory response that leads to sequential
invasion of muscle by different inflammatory cell populations [11]. The inflammatory
response is followed by satellite cell activation and by the formation of regenerating fibers,
which are morphologically distinguishable by the characteristic centralized nuclei [12,13].
However, an efficient regenerative program could be severely affected in the case of aging
or pathological conditions, and the formation of extended fibrotic tissue may contribute to
functional impairment [14,15]. Moreover, changes in inflammatory cytokines, growth fac-
tors, and metabolic signals in the aged skeletal muscle environment may affect satellite cell
proliferation and/or activation upon myofiber injury [16]. It is known, indeed, that aging
is associated with a low-grade inflammatory state, a condition known as “inflammaging”,
characterized by slightly increased plasma levels of pro-inflammatory mediators, such as
tumor necrosis factor o (TNF«) and interleukin 6 (IL-6), and the consequent activation of
the NF-«B pathway [13]. Interestingly, NF-«B protein concentrations were found to be four-
fold higher in elderly human muscles compared to those of young people; this increased
concentration is accompanied by anabolic signaling deficits resulting in the wasting of aged
muscle [17].

Increased levels of inflammation are closely related to oxidative damage, and both are
involved in the age-related reduction in muscle mass and strength. Oxidative stress is char-
acterized by high levels of reactive oxygen species (ROS) and/or reactive nitrogen species
(RNS). It can be caused by decreased antioxidant capacity due to impaired antioxidant
enzymes activity and/or by increased ROS production [18]. In addition, elevated levels
of ROS and RNS can also result as a consequence of mitochondrial dysfunction caused by
age-related mitochondrial DNA mutations, deletions, and damage [19-21]. ROS appear
to function as second messengers for TNF-« in skeletal muscle, activating NF-«B either
directly or indirectly [14].

In skeletal muscle, the transcriptional coactivator peroxisome proliferator-activated
receptor-gamma coactivator-1oc (PGC-1) is one the most important molecules involved in
the stimulation of mitochondrial biogenesis, the regulation of cellular oxidant-antioxidant
homeostasis, the suppression of chronic inflammation, and muscle catabolism [22]. PGC-1x
interacts with nuclear receptors and transcription factors to activate transcription of their
target genes, and its activity is responsive to multiple stimuli including calcium ions, ROS,
insulin, thyroid and estrogen hormones, hypoxia, ATP demand, and cytokines [23]. In
particular, PGC-1« regulation of mitochondrial biogenesis involves its interaction with
several nuclear transcription factors, including PPAR family members, nuclear respiratory
factor (NRF)-1 and NRF-2, myocyte enhancer factor-2 (MEF2), and forkhead box protein O
(FOXO) 1 [24,25]. The PGC-1« activation of NRF-1, 2 promotes the expression of numerous
nuclear-encoded mitochondrial proteins, which directly stimulates mitochondrial DNA
replication and transcription [23,26,27]. Moreover, PGC-1«, in cooperation with the MEF2C
transcription factor, may also influence myofiber phenotypic profiles favoring the shift
from fast MHC toward the more resistant slow MHC during aging [28,29].

In the last decade, several strategies such as physical activity and nutrition have
been proposed to potentially attenuate skeletal muscle deterioration during aging. Indeed,
physical exercise has been reported to attenuate sarcopenia and prevent body fat accumu-
lation and inflammation [30-32]. In addition, dietary interventions targeting protein or
antioxidant intake may have a positive effect on increasing muscle mass and strength [33].
It is known that the loss of muscle mass and function that occurs in the elderly involves
a decreased food intake, which results in the attenuation of muscle protein synthesis as
compared to younger people [34]. Consequently, nutrition, in particular amino acid supple-
mentation, may represent an important approach to improving the anabolic response of
the muscle during aging [35-39].

Taurine is a cysteine-derived semi-essential amino acid highly expressed in mam-
malian tissues. In skeletal muscle, where its levels decrease during aging, it plays an
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important role as an antioxidant and anti-inflammatory molecule [40,41]. Since taurine-
depleted skeletal muscle exhibits several abnormalities in its morphology and function,
resembling those that occur during aging [42], taurine supplementation may represent a
promising strategy to counteract the negative effects of aging in skeletal muscle.

Here, we demonstrate that intraperitoneal taurine administration counteracts aging-
associated impingement of skeletal muscle regeneration by reducing inflammation. In
addition, our results support the role of taurine as an anti-oxidant molecule able to ame-
liorate the muscle microenvironment, counteracting degenerative processes and favoring
tissue homeostasis during aging.

2. Materials and Methods
2.1. Animals and Treatments

Young (8-10 weeks) and aged (18-20 months) male C57BL6] mice were housed in
a facility with a light/dark cycle of 12h at constant temperature and humidity. The
mice were allowed to feed and drink ad libitum. The mice were treated according to
the guidelines of the Ethics Committee of the Catholic University of the Sacred Heart—
Rome (Authorization No. 150/2017-PR Italian Ministry of Health) in compliance with
national regulations on the protection of animals used for scientific purposes (Italian decree
no. 26 dated 4 March 2014, acknowledging European Directive 2010/63/EU). Taurine was
prepared in a saline solution and administered via intraperitoneal injections at doses of
100 mg/kg/day for five consecutive weeks [43—45] (Scheme 1). This dose was chosen
based on published data showing antioxidant effects in in vivo mouse models [46,47]. The
control mice received saline only. Before the induction of TA damage with cardiotoxin
(CTX) injections, the animals were anesthetized through an intraperitoneal injection of a
mix of ketamine 70 mg/kg and medetomidine 1 mg/kg, diluted in a physiological solution.
An injury on the left-side tibialis anterior (TA) muscles of the control and taurine-treated
mice was performed along the entire length of the muscle with four CTX injections (5 uL
of 10 uM CTX per site) [48,49]. The right-side TA was used as a control counterpart. The
animals were sacrificed through cervical dislocation after anesthesia as described above.
For the histological analyses, the TA muscles were embedded in the OCT compound (Miles,
Elkhart, IN, USA) and frozen immediately in isopentane at —80 °C.

Taurine CTX sacrifice
4 1 1
0 1 2 3 4 5

weeks

Scheme 1. Graphic representation of the experimental design.

2.2. Histological and Histochemical Analysis

The TA muscles of the old mice were sectioned at a thickness of 10 um by a Leica
cryostat. For the histological analysis, sections were stained with hematoxylin and eosin
(H&E) using standard methods [50]. Esterase staining was performed using a nonspecific
esterase stain kit (Bio-Optica, Milan, Italy) following the manufacturer’s instructions.

2.3. Morphometric Analysis

Hematoxylin and eosin and esterase staining were performed on sections of the TA
samples. For the morphometric evaluation of fiber size, the analysis was performed on
4 randomly chosen fields of high-magnification images of whole muscle cross-sections
for each condition. The number of examined animals was 3—4 for each treatment. The
photomicrographs of the fibers were analyzed using Image]J, Scion Image software (version
beta 4.0.2; Scion Corporation, Frederick, MD, USA, http:/ /rsb.info.nih.gov/ij, accessed
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on 2 May 2022) to evaluate the fibers’ cross-sectional area. The regenerating fibers were
highlighted by the presence of central nuclei.

2.4. Immunofluorescence Analysis

Frozen sections were fixed in 4% paraformaldehyde for 10 min at room tempera-
ture, washed with PBS, permeabilized by a solution containing 1% bovine serum albumin
(BSA) (Sigma-Aldrich, St. Louis, MO, USA, #A9418), 0.2% Triton-X in phosphate-buffered
saline (PBS) for 30 min at room temperature, and blocked with 10% donkey serum (Sigma-
Aldrich, St. Louis, MO, USA, #D9663) for 1 h at room temperature. The sections were
incubated overnight at 4 °C with primary antibodies at the appropriate dilution. The
following antibodies were used: slow MHC (Sigma-Aldrich, St. Louis, MO, USA, #M8421,
1:500) and 4-HNE (Alpha Diagnostics International, San Antonio, TX, #HNE11-S, 1:500).
After being washed three times in PBS, the sections were then incubated for 60 min at
room temperature with specific secondary antibodies. In particular, the following were
used: AlexaFluor594-conjugated anti-mouse 1:1000 (Molecular Probes, Eugene, OR, USA,
#A21203) and AlexaFluor488-conjugated anti-rabbit 1:1000 (Molecular Probes, Eugene,
OR, USA, #A21206) in PBS containing 1.5% donkey serum. The sections were mounted
with ProLong™ Gold Antifade Mountant with DAPI (Thermo Fisher Scientific, Waltham,
MA, USA, #P36935) and examined with a Leica SP5 Laser confocal. Quantification of the
changes in the 4-HNE signal in the experimental groups was performed by densitometric
analyses. After background subtraction, the 4-HNE fiber-associated signals were quantified
by manually outlining individual fibers and measuring fiber-associated fluorescence inten-
sity with the Image] software. The F/ A ratio defines the mean fluorescence of individual
fibers (F) normalized to total fiber cross-sectional area (A). Quantification was performed
on 50 fibers per group (1 = 3 mice per group).

2.5. Protein Extraction and Western Blot Analysis

The TA muscles obtained from the mice were dissected, minced, and homogenized
with lysis buffer (Cell Signaling Technology, Danvers, MA, USA, #9803) containing phenyl-
methylsulfonyl fluoride (PMSF) (Cell Signaling Technology, Danvers, MA, USA, #8553)
and a complete protease inhibitor cocktail (Cell Signaling Technology, Danvers, MA, USA,
#5872). The Bradford Protein Assay (Bio-Rad Laboratories Inc., Hercules, CA, USA) and Var-
ioskan™ LUX controlled by Thermo Scientific™ SkanlIt™, for Microplate Readers (Thermo
Fisher Scientific, Waltham, MA, USA, Software version 4.1) were used to determine an equal
amount of proteins according to the manufacturer’s instructions. The proteins were sepa-
rated by SDS/PAGE (Mini—PROTEAN® TGX™ Precast Protein Gels or Mini-PROTEAN
TGX stain-free precast PAGE gels; Bio-Rad Laboratories Inc., Hercules, CA, USA) and
transferred to a nitrocellulose membrane (Trans-Blot® Turbo™ Mini Nitrocellulose Trans-
fer Packs #1704158; Bio-Rad Laboratories Inc., Hercules, CA, USA). Nonspecific binding
was blocked in Tris-buffered saline (TBS) (Bio-Rad Laboratories Inc., Hercules, CA, USA)
supplemented with 0.1% Tween-20 and containing 5% nonfat dry milk (Bio-Rad Labo-
ratories Inc., Hercules, CA, USA #1706404) for 1 h at room temperature. The primary
antibodies used were: mouse monoclonal anti-SOD-1 (1:500, Santa Cruz Biotechnology
Dallas, Texas 75220 U.S.A., sc-17767); rabbit monoclonal anti-phospho-mTOR (1:1000, #2971,
Cell Signaling Technology, Danvers, MA, USA); rabbit monoclonal anti-mTOR (1:1000,
#2972, Cell Signaling Technology, Danvers, MA, USA); mouse monoclonal anti-slow-MHC
(1:500, Sigma-Aldrich, #M8421); mouse monoclonal anti-myosin (Skeletal, Fast) (1:500,
Sigma-Aldrich, St. Louis, MO, USA, #M4276); rabbit monoclonal anti-phospho-NF-«B p65
(Ser468) (1:1000, #3039, Cell Signaling Technology, Danvers, MA, USA); rabbit monoclonal
anti-NF-«B p65 (1:250, #3034, Cell Signaling Technology, Danvers, MA, USA); mouse mon-
oclonal anti-G6PD (1:300, Santa Cruz Biotechnology Dallas, Texas 75220 U.S.A., sc-373887),
and mouse monoclonal anti-GP91[phox] (1:300, BD Transduction Laboratories, United
States http:/ /www.bdbiosciences.com (accessed on 2 May 2022) #611414). The blots were
then incubated with the following secondary antibodies from Bio-Rad Laboratories: Goat
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anti-Rabbit IgG (1:3000, HRP Conjugate, Bio-Rad Laboratories Inc., Hercules, CA, USA,
#1706515) and Goat anti-Mouse IgG (1:3000, HRP Conjugate, Bio-Rad Laboratories Inc.,
Hercules, CA, USA, #1706516) for 1 h at room temperature. Signals were captured by Chemi-
Doc™ Imaging System (Bio-Rad Laboratories, Hercules, CA, USA) using an enhanced
chemiluminescence system (SuperSignal Chemoluminescent Substrate, Thermo Fisher
Scientific Inc. Waltham, MA, USA). Densitometric analyses were performed using Image
Lab™ Touch, Software version 5.2.1 (Bio-Rad Laboratories Inc., Hercules, CA, USA ).

2.6. Real-Time PCR Analysis

The TA muscles obtained from the mice were dissected, and total RNA extraction was
performed with a tissue lyser (QIAGEN) in TriReagent (Invitrogen, Carlsbad, CA, USA) ac-
cording to the manufacturer’s protocol. Double-stranded cDNA was synthesized with the
QuantiTect Reverse Transcription kit (QIAGEN S.r.1., Milan, Italy,). Messenger-RNA analy-
ses were performed on an ABI PRISM 7500 SDS (Applied Biosystems, Waltham, MA, USA)
using specific TagMan assays (Applied Biosystems, Waltham, MA, USA). Specifically, the
following assays were used: GPX1: mm_00656767_g1; MEF2C: mm_00600423_m1; PGC1-
o: mm_01280835_m1; SOD1: mm_01344233_m1; and CAT: mm_00437992_m1. Relative
quantification was performed using the endogenous control Hprtl (Applied Biosystems,
Waltham, MA, USA). Real-time PCR was performed using RNA preparations from three to
five different animals for each group as specified in the Figures. The relative expression
was calculated using the 2—AACt method.

2.7. Statistical Analysis

Multiple statistical comparisons between groups were performed by one-way ANOVA.
Where indicated in the legends, the Mann-Whitney rank-sum test or unpaired Student’s
t-test were used. Each bar represents the mean 4= SEM (standard error of the mean).

3. Results
3.1. Taurine Administration Counteracts Aging-Associated Impingement of Skeletal
Muscle Regeneration

To investigate the effect of taurine administration on skeletal muscle regeneration, we
induced damage by means of CTX injections in the TA muscles of the control (vehicle) and
taurine-treated old mice. The morphological and morphometric analyses revealed that,
in the absence of injury (Figure 1A,B: panels a, b and Figure 1C), the muscle fibers of the
taurine-treated mice displayed a slightly increased cross-sectional area compared to the con-
trols. Since protein homeostasis in skeletal muscle rests on an equilibrium between protein
synthesis and protein degradation, we then analyzed the levels of both phospho-mTOR,
as the main regulator of protein synthesis, and Atrogin-1, as one of the major regulators
involved in protein catabolism through the ubiquitin—proteasome system [40]. Our results
showed that the levels of phospho-mTOR were significantly increased in the muscle ex-
tracts of the taurine-treated mice, while no significant modulation of Atrogin-1 (FBXO32)
was revealed in this condition (Figure 1D-F). These data demonstrate the involvement of
the mTOR-dependent pathway in the effect of taurine on the observed increase in skeletal
muscle fiber CSA. In addition, after 1 week of muscle damage, the cross-section of the
fibers in the vehicle-treated mice (CTX) revealed degeneration with concomitant acute
inflammation and necrosis, as well as the presence of small regenerating fibers, identified
by central nuclei (Figure 1G,H: panel c). On the other hand, larger regenerating myofibers
and fewer necrotic fibers (Figure 1G,H: panel d) appeared in the injured muscles of the
taurine-treated old mice, along with fewer infiltrates. The analysis of these results, shown
in the diagrams in Figure 11, revealed that the taurine administration affected the fiber size
distribution by favoring the accumulation of larger regenerating fibers compared to the
control injured muscle. In conclusion, these results suggest that taurine is able to stimulate
the regenerative process by exerting a protective role in the maintenance of the skeletal
muscle fibers’ integrity and by favoring the acceleration of the formation of new myofibers.
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Figure 1. Taurine administration counteracts aging impingement of skeletal muscle regeneration.
(A,B,G,H) Morphological analysis was performed by H&E staining of TA cross-sections derived from
uninjured mice (panels a and b) and after CTX injections (panels ¢ and d) in the presence or absence
of taurine administration (original magnification x20). (C) Morphometric analysis of the fiber cross-
section area (CSA) of the TA muscles of control and taurine-treated mice after 5 weeks of treatment.
(I) Histogram showing the percentage of distribution of the regenerating fiber cross-sectional areas in
the injured TA muscles of control and taurine-treated mice after 1 week of regeneration. Regenerating
fibers are highlighted by an arrow; necrotic fibers are highlighted by an asterisk. (D) Western blotting
analyses of total lysates were achieved to evaluate the expression levels of phospho-mTOR and
mTOR. A representative blot is shown. (E) The graph shows the densitometric analysis of the ratio
between phospho-mTOR/mTOR levels performed by using a stain-free blot to verify the sample
loading. (F) Real-time PCR analysis of FBXO32 levels in the TA muscles of the control and taurine-
treated mice. All the values referring to the morphometric analysis were obtained using the Image]
analysis software. (C,I) Statistical analysis was performed with the Mann-Whitney rank-sum test,
*** p < 0.001. (EF) Statistical analysis was performed using Student’s t-test. * p < 0.05. n > 3 mice
per group. Data are represented as mean + SEM. (E) e and B represent samples from Control and
Taurine-treated groups, respectively; (F) B and A represent samples from Control and Taurine-treated
groups, respectively.

3.2. Taurine Supplementation Modulates the Inflammatory Response in Aged Muscle

Aging is accompanied by a chronic low-grade systemic inflammatory state [51] that
may be responsible for the impaired regenerative capacity of skeletal muscle [52]. To
verify whether the enhanced regenerative response observed in the injured muscles of the
taurine-treated mice was associated with a modulation of the inflammatory process, we
examined the presence of macrophages by esterase staining. Figure 2A,B show that, as
a result of the CTX injections, all the muscle sections displayed an increased number of
mononucleated inflammatory cells compared to the uninjured counterparts; however, the
high number of esterase-positive macrophages present in old injured muscle (Figure 2A:
panel c and Figure 2B) was significantly attenuated in the presence of taurine supplementa-
tion (Figure 2A: panel d and Figure 2B). The effect of taurine on decreasing the extent of
inflammation during the regenerative process was also evaluated by analyzing the levels
of the phosphorylated isoform of the transcription factor NF-kB since it is known that its
activation in skeletal muscle leads to the degradation of specific muscle proteins, induces



Antioxidants 2022, 11,1016

7 of 15

inflammation and fibrosis, and blocks the regeneration of myofibers after injury [53-55]. As
shown in Figure 2C,D, phospho-NF-kB was detectable at very low levels in both the control
and taurine-treated uninjured muscles, while the high levels of phospho-NF-kB detected
in CTX injured muscles were dramatically decreased in the muscles of taurine-treated
old mice. The total NF-kB levels and the ratio between phospho-NF-kB and NF-kB were
analyzed and proved to have increased, albeit not significantly, with CTX-induced damage,
while taurine prevented this effect (Figure 2C,E F). These results demonstrate that taurine
attenuates the inflammatory status in injured muscle by decreasing the levels of both total
NF-kB and phospho-NF-kB.
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Figure 2. Taurine attenuates inflammatory processes in damaged skeletal muscles of aged mice.
(A) Nonspecific esterase staining was performed on transverse cryosections of TA muscles of aged
mice (original magnification x20). Panel a, Control; panel b, Taurine; panel ¢, CTX; panel d, Tau-
rine+CTX. Inflammatory mononucleated cells are highlighted by an arrow; necrotic fibers are high-
lighted by an asterisk. (B) Graph values represent the mean + SEM of the number of inflammatory
cells per unit area in muscle cross-sections. (C) Western blotting analyses of total lysates were carried
out to evaluate the levels of phospho-NF-kB and NF-kB. A representative blot is shown. (D-F) The
graphs show the densitometric analysis of the phospho-NF-kB and NF-kB levels and the phospho-NF-
kB/NF-kB ratio, performed by using a stain-free blot to verify the sample loading. Statistical analysis
was performed by one-way ANOVA multiple comparisons, * p < 0.05, *** p < 0.001, n = 4 mice per
group. Data are represented as mean = SEM. o, B, A and ¥ represent samples from control, taurine-,
CTX-, taurine+CTX-treated groups.

3.3. Taurine Modulates PGC1-a and MEF2C Expression in the TA Muscles of Aged Mice

To better investigate the molecular mechanisms involved in the positive effect of tau-
rine on skeletal muscle homeostasis, we evaluated the role of the transcriptional co-activator
PGC-1a. PGC-1oc is an important factor promoting an anti-inflammatory environment in
muscle. In addition, it has been reported that PGC-1& may improve not only muscle func-
tion but also myofiber morphology and integrity, implying a potential role for PGC-1c in
fiber repair and regeneration. In cooperation with the MEF2C transcription factor, PGC-1o
has been shown to regulate skeletal muscle fiber-type determination, promoting the switch
from glycolytic fibers to the more resistant oxidative ones [56,57].

Thus, using an RT-PCR analysis, we evaluated the mRNA expression levels of PGC-1x
and MEF2C in the TA extracts of young, old, and old taurine-treated mice to determine
whether taurine administration induced transcriptional changes of the abovementioned
factors as compared to what was observed in its absence. Young mice in a healthy condition
were used to assess the expression levels of these factors. As shown in Figure 3A,B, in
the absence of taurine, no changes in PGC-1 levels and only a slight decrease in MEF2C
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levels were observed in the extracts of old mice compared to the young ones, while the
mRNA levels of both molecules were significantly upregulated in the old mice subjected
to intraperitoneal taurine injections. It has been demonstrated that the type I slow-twitch
oxidative fibers (expressing the slow isoform of the myosin heavy chain, slow MHC) are
more resistant to damage and a variety of atrophic conditions than type IIb fast-twitch
glycolytic fibers [29]. In several muscle pathologies, including sarcopenia, the fastest muscle
phenotype is more severely compromised when compared with slow-twitch muscles, and
the greater sensitivity of the type IIb fibers may be due to their lower content of PGC-1x
compared to that of the oxidative fibers [58,59]. Here, we showed by Western blot analysis
that the TA muscles of the old mice expressed very low levels of the slow-MHC isoform
compared to the young-derived muscle extracts; however, slow-MHC expression increased
in the muscle extracts of the taurine-treated mice (Figure 3C,D). In addition, the Western
blot analysis of the fast-MHC isoform revealed that, in the presence of taurine, its expression
was significantly upregulated compared to what was observed in the TA extracts derived
from old mice that did not receive taurine administration (Figure 3F). Consistently, the
reduced levels of MHC (MF20) detected in the muscle extracts of old mice, as compared
to those in the young mice, were increased with taurine administration. These results
suggest that the positive effect of taurine on skeletal muscle homeostasis of aged mice
may be mediated by the stimulation of the PGC1-a/MEF2C pathway, favoring a possible
metabolic shift of the myofibers towards the oxidative phenotype and preserving the more
susceptible glycolytic fibers.
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Figure 3. Taurine modulation of PGC1-&, MEF2C, slow-MHC, and fast-MHC expression. (A,B) Real-
time PCR analysis of PGC1-« and MEF2C expression in the TA muscles of young and old mice treated
with or without taurine. (C,E,G) Western blot analyses of total lysates obtained from TA muscles
were carried out to evaluate the expression levels of slow MHC, fast MHC, and MF20. Representative
blots are shown. (D,F,H) Densitometric analysis was performed by using a stain-free blot to verify
the sample loading. Statistical analysis was performed by one way ANOVA multiple comparison
*p <0.05,*** p <0.001, *** p < 0.0001, n > 3 mice per group. Data are represented as mean + SEM.
o, M and A represent samples from Young, Old, and Old+ taurine groups.
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3.4. Taurine Attenuates Oxidative Stress in TA Muscles of Aged Mice

Age-related sarcopenia is often associated with enhanced ROS production [5]. Taurine
has been found at particularly high concentrations in tissues exposed to elevated levels
of oxidants, suggesting a role in the attenuation of oxidative stress [40,60,61]. Thus, we
evaluated whether the effect of taurine in skeletal muscle homeostasis of aged mice was
correlated to the modulation of oxidative stress. To this purpose, we analyzed the levels of
the Gp91phox protein, the catalytic subunit of the enzymatic complex nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase 2 (NOX2), responsible for the conversion of
molecular oxygen to superoxide (O;7) [62,63]. A significant increase in the Gp91phox
protein level was observed in the muscles of the old mice compared to that present in
the young mice (Figure 4A,B), highlighting an age-related generation of superoxide in
older muscles. However, in the old mice treated with taurine, the expression of the
Gp91phox protein returned to levels comparable to those of the young group. Another
molecule involved in the maintenance of cellular levels of NADPH with both pro- and
antioxidant activity is glucose-6-phosphate dehydrogenase (G6PD), whose altered level
has been described as a consequence of NO signaling dysregulation [64,65]. We observed
a significant increase in the G6PD protein in TA muscles of the old mice compared to
the young group, while the presence of high levels of taurine reduced G6PD to levels
comparable to those of the young group (Figure 4A,C). These data suggest that taurine
can counteract the deregulation of redox-related circuits, and consequently decreases
NOX2-dependent ROS production.

To confirm the role of taurine as an anti-oxidant molecule, using a real-time PCR
analysis, we further analyzed the expression levels of several antioxidant genes such as
S0D1, CAT, and GPX1, known to undergo upregulation as a consequence of increased
ROS production during aging [66]. As shown in Figure 4D-F, all the molecule expression
levels were upregulated in the muscles of the old mice compared to those of the young
group, but when the mice were treated with taurine, SOD1, CAT, and GPX1 expression
was reduced, reaching a level comparable to what was found in the young mice-derived
muscle extracts. Moreover, using Western blot analysis, we analyzed the levels of SOD in
the different experimental groups (as indicated in the Figure), showing that the increased
levels of SOD observed in the muscle extracts of the old mice were significantly reduced in
the presence of taurine, confirming the results of the RT-PCR analysis (Figure 4G, H). These
results demonstrate an important role played by taurine in the attenuation of the elevated
level of oxidative stress that characterizes aged muscle. Consistently, taurine reduced ROS
accumulation detected in the TA muscles of old mice (Supplemental Material) [67]. To
investigate whether the abundance of ROS detected can induce oxidative modification
of proteins, we performed an immunofluorescence analysis using 4-hydroxy-2-nonenal
(4-HNE) adducts as markers of damage or alteration of muscle proteins due to oxidative
stress [68]. Our results, shown in Figure 4L ], demonstrated that 4-HNE expression was
higher in the TA muscles of old mice, where slow MHC was also strongly downregulated; in
the presence of taurine, 4-HNE expression was significantly decreased with a concomitant
slow-MHC upregulation. These results are in agreement with our previous data (see
Figure 3C,D) and strongly suggest taurine’s important role in the attenuation of ROS
accumulation, preserving the slow-fiber phenotype during aging.
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Figure 4. Taurine treatment attenuates oxidative stress in old mice. (A) Western blot analyses of total
lysates obtained from TA muscles were carried out to evaluate the levels of G6PD and Gp91phox.
A representative blot is shown. (B,C) Densitometric analysis was performed using a stain-free
blot to verify the loading of the samples. (D-F) Real-time PCR analysis of SOD1, GPX1, and CAT
expression in TA muscles treated as indicated above. (G) Western blot analyses of total lysates
obtained from TA muscles were carried out to evaluate the levels of SOD1. A representative blot is
shown. (H) Densitometric analysis was performed using a stain-free blot to verify the loading of
the samples. (I) Immunofluorescence analysis of 4-HNE used as a marker of oxidative stress and
slow-MHC expression. (J) Quantification of 4-HNE fluorescence intensity. Statistical analysis was
performed using one way ANOVA multiple comparison * p < 0.05, *** p < 0.001, **** p < 0.0001,
n > 3 mice per group. Data are represented as mean + SEM. o, M and A represent samples from
Young, Old, and Old+ taurine groups.

4. Discussion

In our previous studies, we demonstrated that taurine exerts a positive effect on
myogenic differentiation and homeostasis in cell cultures [33]. Here, we investigated
its effects in an in vivo experimental model. For this purpose, we used aged mice in
which taurine was intraperitoneally injected every day for 5 weeks in order to assess the
impact of taurine in the modulation of processes, such as regeneration, inflammation, and
oxidative stress, which are known to be dysregulated during aging. We demonstrated
that taurine accelerated the regenerative process of CTX-damaged TA muscles, preserving
the architecture of skeletal muscle tissue. Indeed, 7 days after damage induction, in
the presence of high levels of taurine, we observed a lower amount of inflammatory
infiltration and fibrosis, and the regenerating fibers appeared larger compared to those of
the vehicle-treated control muscles. This effect seems to be mediated by taurine-dependent
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stimulation of anabolic pathways, as demonstrated by the increased levels of phospho-
mTOR, rather than an effect on the modulation of catabolic processes; indeed, although
the activation of other catabolic pathways cannot be excluded, ubiquitin ligase atrogin-1
is not significantly modulated by taurine. In general, skeletal muscle regeneration is
guaranteed by the presence of satellite cells, whose number and activity significantly
decrease during aging [69]. It has been demonstrated that the alteration of the immune
response with aging, known as immunosenescence, is one of the main causes related to
the hampered regenerative capability of skeletal muscle [70]. Indeed, immunosenescence
promotes the development of a chronic low-grade inflammatory state, which may alter
satellite cell proliferation and/or activity, thereby contributing to the impairment of the
repairing capacity [69]. Thus, we verified whether the positive effect of taurine on skeletal
muscle regeneration was mediated by the modulation of the inflammatory state. Here,
we showed that the high number of macrophages present in old injured muscle was
significantly decreased in the presence of taurine. This effect appeared to be mediated by
NF-kB signaling since we showed that its elevated levels in CTX-injured muscles were
decreased in the taurine-treated aged mice. These data are in agreement with what we have
previously demonstrated in an in vitro experimental model [33] and are consistent with the
role of taurine as an anti-inflammatory molecule exerting its effect, at least in part, through
the inhibition of NF-kB activation [71]. In particular, it has been demonstrated that taurine
may protect tissue damage from inflammation because its amino group can neutralize
hypochlorous acid generated by inflammatory cells, downregulating the production of
cytokines, and, finally, decreasing the immune response [72,73]. The chronic low-grade
inflammatory state characterizing aged muscles may have a significant impact on the
stimulation of catabolic pathways and mitochondrial dysfunctions, all contributing to the
onset of sarcopenia [74]. In this context, the transcriptional co-activator PGC-1c appears to
play a crucial role against skeletal muscle deterioration during aging. Indeed, it has been
reported that PGC-1« plays a protective role in the inflammatory response, reducing pro-
inflammatory cytokine production and exerting a regulatory mechanism for the expression
of endogenous antioxidant proteins; moreover, it may improve muscle function, myofiber
morphology, and integrity, suggesting its potential role in fiber repair and regeneration.
Additionally, in cooperation with the MEF2C transcription factor, PGC-1« has been shown
to regulate skeletal muscle fiber-type differentiation, promoting the switch from glycolytic
fibers to the more resistant oxidative ones [56,57]. Here, we showed that, in the absence
of damage, no changes in PGC-1a levels and only a slight decrease in MEF2C levels were
detected in TA muscle extracts of old mice compared to what was observed in young
animals; however, their expression was significantly increased in the presence of taurine,
reaching levels comparable to those found in the TA muscles of the young group. In
addition, our results showed that taurine increases the levels of total MHC (MF20) and the
slow-MHC and fast-MHC isoforms, suggesting its potential role in the metabolic shift of
aged skeletal muscle fibers towards the oxidative, more resistant, phenotype [29]. These
data reveal that the positive effect of taurine on skeletal muscle homeostasis of aged mice
may be mediated by the stimulation of the PGC1-a/MEF2C pathway, favoring a possible
metabolic shift of the myofibers towards the oxidative phenotype and preserving the more
susceptible glycolytic fibers.

Taurine has been found at particularly high concentrations in tissues exposed to ele-
vated levels of oxidants [40,75,76], and this prompted us to evaluate whether the observed
positive effect of taurine on aged skeletal muscle homeostasis was related to the modulation
of oxidative stress. A crucial mediator of ROS production in skeletal muscle tissue is the
Gp91phox protein, which represents the catalytic subunit of the NOX2 complex and is
also known to be overexpressed in dystrophic conditions [62,63,77-79]. Thus, we analyzed
the Gp91phox protein in our experimental models, revealing that its level, while strongly
upregulated in old mice compared to young ones, is significantly reduced in the presence
of taurine. NOX2-dependent O, ~ production is closely correlated with the availability of
NADPH, although this substrate is also part of the antioxidant system contributing to the
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neutralization of ROS. In this context, one of the crucial enzymes involved in the mainte-
nance of the cellular levels of NADPH is G6PD, which has pro- or antioxidant activity in
skeletal muscle [65]. Here, we reported that the enhanced level of G6PD observed in old
mice is significantly reduced in the presence of taurine, supporting the role of taurine as
a potent modulator of NOX2-dependent ROS production in aged skeletal muscle. As a
confirmation of this hypothesis, we showed that the accumulation of ROS in old muscle (see
Supplemental Material) was strongly decreased by treatment with high doses of taurine.
This effect was accompanied by the diminished formation of 4-HNE protein adducts, which
are considered markers of lipid peroxidation and altered cellular redox homeostasis. We
also showed that the endogenous antioxidant response in aged skeletal muscle is modu-
lated in presence of taurine, as revealed by the analysis of important anti-oxidant effectors
such as SOD1, GPX1, and CAT. Indeed, the high levels of these molecules found in the TA
muscle extracts of old mice were reduced upon taurine administration.

5. Conclusions

Collectively, our results show that, in aged muscle, taurine administration counteracts
aging impingement of skeletal muscle regeneration, attenuates low levels of chronic inflam-
mation, and decreases high levels of oxidative stress. Although the molecular mechanisms
underlying these effects have not been completely elucidated, our data demonstrate that
taurine administration ameliorates the microenvironment that allows the maintenance of
skeletal muscle homeostasis and counteracts the aging process.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/10.3
390/antiox11051016/s1, Figure S1: (A) Representative micrographs of TA cross-sections showing ROS
levels assessed using CM-H2DCFDA and (B) quantification of fluorescence intensity. Statistical analysis
was performed using one way ANOVA multiple comparison, *** p < 0.001, n = 3 mice per group.
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