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Obesity is defined by the World Health Organization (WHO) as abnormal or excessive
fat accumulation that presents a health risk. Obesity has reached epidemic proportions,
with more than 4 million people dying due to being overweight or obese. Data on the
prevalence of overweight and obesity are alarming, showing that around 40% of adults
are overweight and more than 13% are obese, and over 39 million children under 5 years
old are overweight or obese. Obesity is a major risk factor for different diseases, such
as cardiovascular diseases, cancers, neurological alterations, respiratory problems, and
musculoskeletal disorders. For all of these reasons, it is necessary to understand the
mechanisms involved in obesity under different pathologies and identify new molecular
targets and pharmacological approaches to prevent adverse outcomes.

Oxidative stress is a common pathway that links obesity with related complications.
Oxidative stress is defined as an imbalance between antioxidants defenses and free radical
production. This oxidative environment could be one of the main determinants that trigger
other mechanisms involved in tissue damage, such as inflammation, extracellular matrix
overproduction, endoplasmic reticulum stress activation, and autophagic flux disruption.

This Special Issue highlights the detrimental effects of oxidative stress in different
scenarios in the context of obesity. In this sense, it has been observed that young patients
with metabolic syndrome, with the highest levels of oxidative stress, demonstrate a decrease
in superoxide dismutase activity, thereby showing the relevance of impaired activity of
this antioxidant defense in the participation of the oxidative environment. Moreover,
this study shows that obesity and insulin resistance are the two main components of
metabolic syndrome associated with oxidative stress, suggesting the close relationship
between oxidative stress and excessive fat accumulation [1]. In the same way, another
study showed that a reduction in body weight due to a moderate caloric restriction for
8 weeks in obese patients promoted an increase in antioxidant defense and a decrease in
oxidative stress markers. These changes were also accompanied by an improvement in
glucose tolerance and, therefore, a decrease in insulin resistance [2]. The study performed
by Lejawa M. et al. focused on the association between telomere length, oxidative stress,
and obesity, showing a reduction in telomere length in young metabolically unhealthy
obese patients. The study also shows that total oxidation status, total antioxidant capacity,
and telomere length were significantly related in these patients [3]. Losing body weight
also showed benefits in cardiovascular diseases such as subclinical atherosclerosis. One
year after bariatric surgery, patients showed a decrease in superoxide anion production
and increased antioxidant defense in leukocytes, which were associated with improvement
of different markers of atherosclerosis and metabolic outcomes [4]. Obesity and oxidative
stress link are also related to vasculature abnormalities. The study performed by Gonzalez-
Amor M et al. demonstrated that, in obese patients and an experimental model of obesity,
G protein-coupled receptor kinase 2 (GRK2) emerges as a potential therapeutic target in
the development of endothelial dysfunction observed in this pathological situation. This
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suggestion is based on the fact that GRK2 is associated with inflammatory markers in
obese patients, and its downregulation from myeloid cells in obese animals ameliorates
inflammatory and oxidative stress markers and prevents the impairment of endothelium-
dependent vasodilator responses induced by perivascular adipose tissue in obese mice [5].

Oxidative stress is also related to autophagy dysregulation. The concomitant oxidative
stress and autophagy suppression generate an obesogenic environment [6]. Biopsies of
visceral adipose tissue from obese patients revealed that treatment with metformin in
type 2 diabetic patients decreased inflammation and oxidative stress markers, facts that
were accompanied by an improvement in autophagy flux [7]. At the hepatic level, obesity
promotes lipid peroxidation, oxidative stress, and autophagy flux impairment in mice fed a
high-fat diet combined (or not) with a high-sucrose diet. These alterations in the autophagy
flux could be relevant in liver diseases such as nonalcoholic fatty liver disease [8]. Authors
in the study observed that, in this scenario, the alterations mentioned were in the absence
of mitochondprial alterations, the main source of free radicals [8]. However, mitochondrial
oxidative stress can play a relevant role in the cardiac damage associated with obesity
since treatment with a specific mitochondrial antioxidant (MitoQ) in obese rats was able
to prevent cardiac alterations characterized by cardiac fibrosis. In addition, the treated
obese rats did not develop endoplasmic reticulum stress compared with untreated obese
animals, showing an interaction between mitochondrial oxidative stress and endoplasmic
reticulum stress in the production of extracellular matrix proteins [9]. This mitochondrial
oxidative stress participation was confirmed in another study in which treatment with
another mitochondrial antioxidant (MitoTempo) was able to reverse dysbiosis observed
in obese animals. This effect of the mitochondrial antioxidant in the gut microbiota was
accompanied by an improvement in the cardiac fibrosis and insulin resistance observed in
the obese animals, illustrating the relevance of mitochondria as one of the main sources of
free radicals and a potential therapeutic target for treating the complications of obesity [10].

This Special Issue illustrates the role of oxidative stress in different alterations and
changes associated with obesity and shows the potential beneficial effects of antioxidant
treatment for obesity complications. In the same way, another experimental study reported
the favorable effects of dietary antioxidant compounds on body weight, mitochondrial
alterations, and adipose tissue remodeling in obese mice [11]. However, although numerous
data support the beneficial effects of antioxidants, this Special Issue includes a study that
showed that the administration of pure polyphenols as a food supplement has detrimental
consequences on insulin resistance and kidney and liver fibrosis [12]. These conflict data
support the need for more clinical and experimental studies to improve the understanding
of the role of oxidative stress on obesity and develop new therapeutic strategies against
this complicated pathological scenario.
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