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Abstract: (1) Background: Size at birth is an important early determinant of health later in life. The
prevalence of small for gestational age (SGA) newborns is high worldwide and may be associated
with maternal nutritional and metabolic factors. Thus, estimation of fetal growth is warranted.
(2) Methods: In this work, we developed an artificial neural network (ANN) model based on
first-trimester maternal body fat composition, biochemical and oxidative stress biomarkers, and
gestational weight gain (GWG) to predict an SGA newborn in pregnancies with or without obesity.
A sensibility analysis to classify maternal features was conducted, and a simulator based on the
ANN algorithm was constructed to predict the SGA outcome. Several predictions were performed
by varying the most critical maternal features attained by the model to obtain different scenarios
leading to SGA. (3) Results: The ANN model showed good performance between the actual and
simulated data (R2 = 0.938) and an AUROC of 0.8 on an independent dataset. The top-five maternal
predictors in the first trimester were protein and lipid oxidation biomarkers (carbonylated proteins
and malondialdehyde), GWG, vitamin D, and total antioxidant capacity. Finally, excessive GWG and
redox imbalance predicted SGA newborns in the implemented simulator. Significantly, vitamin D
deficiency also predicted simulated SGA independently of GWG or redox status. (4) Conclusions:
The study provided a computational model for the early prediction of SGA, in addition to a promising
simulator that facilitates hypothesis-driven constructions, to be further validated as an application.

Keywords: pregnancy; neural network; oxidative damage; neonate; small for gestational age

1. Introduction

Size at birth is an indicator of metabolic and nutrition programming of diseases [1,2].
Small for gestational age (SGA) is a commonly accepted proxy measure of IUGR (Intrauter-
ine growth restriction) and has been defined as a birth weight less than the 10th percentile
for a specific completed gestational age and sex of a reference population [3,4]. Infants born
SGA carry a considerably higher risk of mortality and morbidity in the neonatal period and
beyond, with a higher risk of neonatal infections, jaundice, polycythemia, hypoglycemia,
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poor feeding, and hypothermia [4]; as well as an increased risk of delayed neurodevel-
opment and poor linear growth [5]. In addition, low birth weight and SGA increase the
risk of developing obesity, diabetes, and cardiovascular diseases in adulthood [6]. While
nutritional deficiency is expected to be the most significant contributor to SGA in low and
middle-income countries, other causal mechanisms, such as maternal infections, placen-
tal insufficiency, pregnancy morbidity, and environmental exposures, contribute in these
settings [4].

The prevalence of SGA newborns is high around the world. In 2012, approximately
19.3% of live births (range 17.6 to 31.9%) were born SGA in low and middle-income
countries [4]. In 2010, in the Latin America and Caribbean region, the prevalence was 11%
in term infants and 2% in preterm infants [3].

Fetal growth is a complex phenomenon resulting from multiple intrauterine envi-
ronmental factors, where nutrient and oxygen availability are essential, together with
hormonal, adipokine, oxidative stress (OS), and inflammation status [7,8]. In women with
obesity, an increase in OS and inflammation has been reported [9,10], probably affecting
fetal growth and increasing the risk of having an SGA newborn. Excessive maternal fat
mass or gestational weight gain has been directly involved in metabolic, inflammatory,
and oxidative status alterations and may result in a higher risk of macrosomia or an LGA
newborn [9]. However, in a retrospective cohort study, inadequate early weight gain was
associated with an increased risk for SGA [11].

There may be insufficient protective mechanisms against increased OS in newborns
from obese mothers and women with excessive weight gain. An imbalance between
oxidative stress and total antioxidant capacity may lead to an accumulation of reactive
oxygen species (ROS), which has been shown to decrease fetal growth via mTOR [7,8]. In a
cross-sectional study, elevated malondialdehyde (MDA) levels, a marker for lipid oxidation,
and decreased superoxide dismutase activity were observed in umbilical cord blood of
SGA newborns compared to normal-weight newborns [8].

Other nutritional factors that have been associated with size at birth include vitamin
D status and the use of multiple micronutrient supplementation (MMS). Moreover, in an
individual patient data meta-analysis, MMS showed an overall lower risk of low birth
weight and SGA [12]. Vitamin D deficiency appears to induce fetal intrauterine growth
restriction. Experimental studies have shown that gestational vitamin D deficiency in-
hibits placenta development and function and is associated with increased inflammatory
markers [13]. A recent meta-analysis has shown that maternal vitamin D supplementation
(>600 IU/d) is associated with a lower risk of SGA and low birth weight [13,14]. Early
prediction of SGA newborns brings an opportunity for implementing a more intensive
follow-up with adequate nutrition and clinical strategies. Current efforts have been focused
more on secondary prevention to reduce morbidity and mortality in SGA infants.

Artificial Neural Network models (ANN) have opened new perspectives in medicine
forecasting since they do not hypothesize on data distribution (normality) and multi-
collinearity. They can predict complex combinations of categorical, scalar, and ordinal
variables. ANN learns from the data (independent and dependent features called input
and output variables) to simulate an outcome. Several studies predict fetal birth weight
and growth by Machine learning models based on ultrasonographic data, maternal clinical
characteristics, or serum biomarkers [15–17]. However, most of these predictive models
have not considered the combination of maternal features, including obesity and early
gestational weight gain or redox markers for predicting growth. This study aimed to
develop an ANN model to simulate SGA newborns at birth based on early (first-trimester)
maternal nutritional, metabolic, and oxidative status in pregnancy. The second outcome
was to obtain the relative importance of each maternal factor. Then, several simulations
were performed where the outcome was immediately displayed after varying the most
critical maternal features attained by the ANN model to obtain different scenarios leading
to SGA.
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2. Materials and Methods
2.1. Ethical Approval Statement

This study was approved by the Institutional Review Boards of the Instituto Na-
cional de Perinatología (INPer) (Protocol number: 2017-2-65), according to the Helsinki
Declaration. Data were obtained from the OBESO (Epigenetic and Biochemical Origin of
Overweight and Obesity) perinatal cohort (Approved protocol number: 3300-11402-01-
575-17) and performed at the INPer in Mexico City. Participation was voluntary, and all
women who agreed to participate signed the informed consent form. The patient names
and personal information were eliminated to have an anonymized dataset.

2.2. Study Design

We first developed an early Artificial Neural Network (ANN) predictive model for
SGA (Small for gestational age) or AGA (Adequate for gestational) neonates based on
clinical, nutritional, biochemical data, and oxidative stress markers from the first trimester
of pregnancy. The most critical maternal variables for estimating SGA or AGA will be
obtained from this model. The secondary aim was to propose several predictive hypotheses
for SGA based on manipulating the values of the most critical forecasting features obtained
from the ANN model. The outcome is immediately displayed for each maternal feature
value change to simulate several scenarios leading to SGA neonates.

OBESO is an institutional cohort of pregnant women and their children up to 2 years of
age, which is aimed at studying the biochemical, clinical, lifestyle, and epigenetic determi-
nants of obesity. Women were recruited at the Department of Maternal-Fetal Medicine in the
first trimester of pregnancy. The sample was selected by convenience (January 2017–January
2019), according to inclusion criteria: healthy adult women, single pregnancy, without
comorbidities (diabetes mellitus, renal or hepatic diseases, congenital malformations, au-
toimmune diseases, or uncontrolled thyroid disease), and not taking any medication that
may affect endocrine metabolism (insulin, metformin, and/or corticosteroids). Women
were eliminated from the analysis if they developed gestational diabetes, hypertension,
preeclampsia during pregnancy, or incomplete data. Only 2 large for gestational age new-
borns were observed, so they were also eliminated from the analysis. All women received
routine prenatal care at INPer.

For this analysis, maternal data was obtained at the Nutrition Clinic in the first
trimester of pregnancy (11–13.6 weeks of gestation). Gestational age at enrollment was
calculated according to the fetal ultrasound performed during the first trimester. Women in
the first visit reported pregestational weight. Current weight was measured to the nearest
±0.1 kg, with women wearing light clothing and no shoes, using a calibrated digital scale
(BMB-800, TANITA, Tokyo, Japan). Height was measured to the nearest 0.1 cm using a
digital stadiometer (model 264, SECA, Hamburg, Germany), with the head placed in the
proper position, according to the Frankfort plane. The pregestational body mass index
(pBMI) (weight (kg)/height (m2)) was computed, and the women were classified according
to the WHO criteria [18] as follows: adequate weight (pBMI = 18.5 to 24.9), overweight
(pBMI ≥ 25), or obese (pBMI ≥ 30). Gestational weight gain (GWG) during the first
trimester was considered excessive if >2.0 kg, adequate if it was between 0.5 and 2.0 kg,
and insufficient if <0.5 kg, according to the Institute of Medicine [19,20]. Body composition
was measured by bioelectrical impedance (BIA) (Inbody 370, Inbody Co., Seoul, Korea)
with women wearing light clothes, according to manufacturer’s instructions. Body fat data
were computed from the equipment. Multivitamin supplementation (MVI) was prescribed
by obstetricians or other health professionals involved in prenatal care; women were asked
about supplement use. Infant anthropometric measurements were carried out at birth
(first 24–48 h) by a trained nutritionist following the technique described by Lohman [21].
Infants were measured and weighed unclothed. Weight at birth was recorded using a
pediatric scale (1582 Baby/Mommy Scale, Tanita, Tokyo, Japan). Recumbent length was
measured by duplicate using an infantometer (SECA 207, SECA, Hamburg, Germany),
and the average was computed. Weight-for-age was assessed using the WHO reference
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data for term infants (Anthro software v. 3.2.2, WHO, Geneva, Switzerland) [22] and the
Intergrowth newborn data set for preterm infants [22,23]. SGA infants were classified when
weight-for-age was <10 percentile.

2.3. Samples, Biochemical Analysis, and Oxidative Stress Markers

A fasting maternal blood sample was collected in Vacutainer tubes (Becton-Dickinson,
Franklin Lakes, NJ, USA) and centrifuged for 15 min at 1000× g. Serum samples were
stored at −70 ◦C until the assays were performed.

Fasting serum triglycerides (Tgl), total cholesterol (Chol), Low-density lipoproteins
(LDL-Chol), and high-density lipoproteins (HDL-Chol) concentrations were measured
by enzymatic colorimetric methods using an automated analyzer (ISE Echo Lory 2000)
and commercial kits (DiaSys Diagnostic Systems GmbH, Holzheim, Germany). The 25-
hydroxyvitamin D (Vit D) concentration was performed by ELISA (chemiluminescence;
Architect Abbott Diagnostics, Lake Forest, IL, USA). Malondialdehyde (MDA) is the end-
product of lipoperoxidation and the most representative marker of oxidative lipid damage.
MDA was quantified using 1-methyl-2-phenylindole, and absorbances at 586 nm were mea-
sured for each reaction [24]. Carbonylated proteins (CP) quantification in plasma, treatment
with 2,4-dinitrophenyl hydrazine was used, which reacts with carbonyl groups to form
stable hydrazones. These were then measured spectrophotometrically at 370 nm, according
to the method described by Dalle and cols. [25] and expressed as pmol CP/mg protein.
Total antioxidant capacity (TAC) as indicative of an antioxidant (AOX) defense system
in plasma was evaluated according to a method based on cupric-reducing antioxidant
capacity (CUPRAC), using copper (II) and neocuproine reagents; absorbance for each reac-
tion was measured at 450 nm. The results were expressed as pmol Trolox equivalent/mg
protein. Trolox is a water-soluble analog of vitamin E [26]. All markers evaluated in this
study have high sensitivity and reproducibility and use validated methods that allow the
assessment of oxidative stress. Vit D was considered adequate if >30 ng/mL and deficient
if <20 ng/mL [27].

2.4. Artificial Neural Network Model Development and Validation

Data were obtained from the OBESO perinatal cohort and preprocessed with the
participation of clinicians and researchers to select the most important variables. The
database contained pregnant women in the first trimester of pregnancy, classified into two
groups according to the neonatal weight for gestational age at birth: SGA or AGA (Table 1).
The 14 features consisted of maternal clinical and biochemical variables and oxidative stress
markers involved in overweight and obesity pregnancies. The maternal input variables
were age (years), pBMI (kg/m2), first trimester variables: gestational weight gain (kg), fat
mass (%), multivitamins (MVI; no/yes), triglycerides (Tgl; mg/dL), total cholesterol (Chol;
mg/dL), HDL-Chol (mg/dL), LDL-Chol (mg/dL), Vit D (ng/mL), MDA (pmol MDA/mg
dry weight), CP (nmol CP/mg protein), TAC (pmol of Trolox equivalent/mg of protein),
and gestational age at birth (weeks). The outcome was SGA or AGA (codified as a binary
category 0.5 or 1.0).

The dataset was randomly divided into training (75%) and validation/test (15%) for the
ANN model development. A 15% of the dataset (distinct from the training and validation
datasets) was used to test the final model using performance measures described below
as an independent dataset (Section 2.5). The artificial neural network (ANN) architecture
comprises an input layer with the 14 maternal features (normalized), a hidden layer with
activation functions, and an output layer: SGA or AGA prediction. Each input node is
connected to the hidden layer nodes and the latter to the output node through Weights and
biases (Wi, Wo, b1 and b2) coefficients. The model was developed as previously described
by our group [28].

A feed-forward back-propagation neural network was used to train and validate/test
the model. In the training stage, the back-propagation network training function (trainlm
function) was used to change the Weights (Wi and Wo) and biases (b1 and b2) according to
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the Levenberg-Marquardt optimization algorithm (which was chosen because it is one of
the fastest and first-choice algorithms as it does not need more memory). Training (learning)
was performed according to training parameters in order to achieve a small Root Mean
Square Error (RMSE) calculated from the real (experimental) and the network predicted
values. RMSE was applied as the error function describing the performance of the network
and was set to 10−12 (performance goal parameter).

The experimental dataset (75% of the entire database, defined as the training dataset)
was used to train the ANN model. Only input variables in the database were normalized
between the range of 0.1–0.9. Therefore, the entire dataset was scaled to a new value (xi) in
that range, with the following equation:

xi = 0.8
(

xi − xmin
xmax − xmin

)
+ 0.1

For the 10-fold cross-validation, the training database was split into 10 equal-sized
parts, 9 parts were used for training and one part for validation. The training was evaluated
by comparing the accuracy of the model with the validation set (15% of the entire database)
and this was repeated 10 times, each time using a different part to estimate the performance,
and each part was used as the validation set only one time. The validation set was used to
adjust the architecture of the model and to minimize overfitting by comparing the accuracy
of the model in each training using three different accuracy metrics, including the RMSE.
This method allows the model to be trained on all available data (except for the test data).
Each mother/neonate was contained in only one of the splits. Equations are shown in
Appendix A.

Previous training and validation datasets from another database (distinct to the one
used in this study) were used. The training dataset was used to train a network model in
order to fix the trained learning rate and the number of iterations’ super-parameters. Then,
the data of the validation dataset, was fed to this network with these super-parameters, and
the deviation was obtained. According to the deviation, the learning rate and iterations’
super-parameters were compared, adjusted and the network was trained again until the
best super-parameters were found. These super-parameters were then selected for this
study. 1000 training epochs and a learning rate of 0.001 were found to result in a good
model performance on the training and test sets.

For activation transfer functions, we did not select this super-parameter but ap-
plied several functions (hyperbolic tangent, (TANSIG), linear (PURELIN), or Log-Sigmoid
(LOGSIG) in the hidden and output layers and compared the performance between the ob-
tained models. The best performant model obtained used TANSIG and LOGSIG functions.
As well, the number of nodes in the hidden layer was also fit starting with one, until the
best performant model was obtained.

Three metrics measured the performance strength for both the cross-validation and
validation/test: the Root Mean Square Error (RMSE, set to 10−12), the coefficients of the
linear regression (R and R2) between the experimental and the simulated data, as well as
the statistical slope and intercept test [29]. The latter compares the simulated and actual
values (from the dataset) from the linear regression through a Student t-test analysis. The
slope and intercept range must be close to 1 and zero, respectively, with a 99.8% confidence
level. The program was run 30,000 times with 100 iterations by each neuron, beginning
with one in the hidden layer. Matlab software (R2021a, Natick, MS, USA) and the Deep
Learning Toolbox were used (we do not use the Matlab interface GUI-Matlab nnstart).

2.5. Predictive Performance of the Model

To further determine the predictive power of the trained/validated ANN model,
the ability of the algorithm to discriminate between SGA (true positive) and AGA (true
negative) newborns was evaluated on an independent test set (a different dataset, no part of
which was used for learning and validation/test). The performance metrics were accuracy,
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F-1 score, positive and negative predictive values (PPV and NPV, respectively), and the
Area Under the Receiver Operating Characteristics (AUROC).

2.6. The Relative Importance of the Maternal Variables in the Prediction

Maternal feature importance for predicting SGA or AGA was carried out with a
sensitivity analysis calculated with the Garson Equation [30] and depicted as a percentage.
This analysis allows maternal features to be ranked.

2.7. The Simulator of SGA

The simulator was created on an Excel spreadsheet. The equations of the learning
ANN algorithm (Appendix A) were embedded together with the weights and biases of
the final model. The 14 input maternal features were entered in the spreadsheet, and the
effect on the SGA or AGA (output) was immediately calculated and displayed to show a
simulation of distinct scenarios. The Excel spreadsheet is available upon request to the
authors, but we plan to make this tool generally accessible for research purposes.

2.8. Statistical Analysis

Quantitative variables in the first trimester were expressed as mean ± standard
deviations (SD), while qualitative data were reported as percentages and numbers. De-
scriptive measures and frequencies were used to characterize the data. The Kolmogorov–
Smirnov test was performed to compare numerical data distributions. Mean differences
were analyzed with Student’s t-test (parametric data) and Mann-Whitney U test (non-
parametric data). A Chi-square test was performed for categorical variables between
groups. p-value < 0.05 was considered statistically significant. Statistical analyses were
performed using SPSS v.25 (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Clinical Characteristics of the Population

From January 2017 to September 2019, 192 women from the OBESO cohort met the
inclusion criteria for this study. Fifty women were eliminated because of developing
gestational diabetes, preeclampsia, or gestational hypertension, and two newborns were
classified as LGA. Of the remaining 140 women, 55% had complete first-trimester fat mass,
oxidative stress, and lipid measurements. A final sample of 77 women and their newborns
were studied: 18.2% (n = 14) of neonates were classified as SGA, while 81.8% (n = 63)
were considered AGA. The mean maternal age of all women was 28 ± 5 years old. Before
pregnancy, 57.1% (n = 44) of women were overweight or had obesity, the mean of GWG in
the first trimester was 1.54 ± 3.19 kg, and the mean fat mass was 38.8 ± 7.12%. At some
point during pregnancy, 1 woman reported using metformin and 5 women of steroids. No
differences were observed in the SGA frequency between women using metformin/steroids
and women who did not. Preterm birth (<37 weeks of gestation) was observed in 11.7%
(n = 9) of women. When stratified by SGA or AGA outcome, no significant differences were
observed in maternal anthropometric and biochemical characteristics (Table 1).

Table 1. First trimester maternal clinical and biochemical data and gestational age according to
newborn weight for age.

Variables

All Women
(n = 77)

Mean ± SD
n (%)

SGA
(n = 14)

Mean ± SD
n (%)

AGA
(n = 63)

Mean ± SD
n (%)

Age (years) 28 ± 5 29 ± 4 28 ± 5

Parity:
Nulliparous 35 (45.5) 7 (50) 28 (44.4)
Multiparous 42 (54.5) 7 (50) 35 (55.6)
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Table 1. Cont.

Variables

All Women
(n = 77)

Mean ± SD
n (%)

SGA
(n = 14)

Mean ± SD
n (%)

AGA
(n = 63)

Mean ± SD
n (%)

Socioeconomic Status:
Low/lower-middle-income 49 (63.9) 11 (78.6) 28 (60.3)

Upper middle-/high-income 28 (36.4) 3 (21.4) 25 (39.7)

p-BMI (kg/m2) 26.9 ± 5.5 28.2 ± 8.0 26.6 ± 4.9

p-BMI group:
Normal 33 (42.9) 5 (35.7) 28 (44.4)

Overweight/obesity 44 (57.1) 9 (64.3) 35 (55.6)

GWG (kg) 1.5 ± 3.2 2 ± 3.1 1.4 ± 3.2

Fat mass (%) 38.8 ± 7.1 39.7 ± 8.9 38.6 ± 6.8

MVI supplementation:
Yes 28 (36.4) 4 (28.6) 24 (38.1)
No 49 (63.6) 10 (71.4) 39 (61.9)

Medication:
Yes 5 (6.5) 1 (7.1) 4 (6.3)
No 72 (93.5) 13 (92.9) 59 (93.7)

Glucose (mg/dL) 80.8 ± 9.6 80 ± 11.4 81 ± 9.3

Triglycerides (mg/dL) 136 ± 46.4 157 ± 63.4 132 ± 41.1

Total Cholesterol (mg/dL) 187 ± 38.5 201 ± 32.6 184 ± 39.3

HDL-Cholesterol (mg/dL) 60.5 ± 12.4 59.7 ± 11.1 60.7 ± 12.8

LDL-Cholesterol (mg/dL) 92.1 ± 25.6 89.9 ± 27.9 92.7 ± 25.3

HbA1c (%) 5.3 ± 0.4 5.2 ± 0.5 5.3 ± 0.4

25-OH-D (ng/mL) 21.6 ± 6.8 19.9 ± 3.4 22 ± 7.2

MDA (pmol MDA/mg dry weight) 170 ± 174 153 ± 180 173 ± 173

CP (pmol CP/mg protein) 5397 ± 2617 5710 ± 2388 5327 ± 2679

TAC (pmol of Trolox
equivalent/mg protein) 81.1 ± 28.4 78 ± 30.7 81.8 ± 28

Term birth:
Yes 68 (88.3) 12 (85.7) 56 (88.9)
No 9 (11.7) 2 (14.3) 7 (11.1)

Newborn sex:
Female 39 (50.6) 5 (35.7) 34 (54)
Male 38 (49.4) 9 (64.3) 29 (46)

p-BMI: Pregestational Body Mass Index; GWG: Gestational weight gain; MVI: Multivitamin; HDL: High-density
lipoprotein cholesterol; LDL: Low-density lipoprotein cholesterol; HbA1C; Hemoglobin A1c; 25-OH-D: 25-
hydroxyvitamin D; MDA: Malondialdehyde; CP: Carbonylated proteins. TAC. Values represent mean ± SD.

3.2. Development and Validation of SGA Predictive Model

The best performing model for predicting SGA or AGA from 14 first trimester ma-
ternal nutritional, metabolic, and oxidative variables consisted of 2 neurons in the hidden
layer (with Tansig and Logsig activation functions in the hidden and output layers, respec-
tively; equations in Appendix A). The algorithm performance was verified based on the
determination and correlation coefficients (R2 and R, respectively) between experimental
(actual) and simulated data, analyzed through a linear regression (Figure 1). The overall
model performance (all R, training, validation, and testing) was 0.969, and R2 was 0.938,
indicating an accurate match between the observed (actual) and predicted data, with a
99.8% confidence in the slope and intercept Student’s t-test.



Antioxidants 2022, 11, 574 8 of 16

Antioxidants 2022, 11, x FOR PEER REVIEW 8 of 17 
 

the determination and correlation coefficients (R2 and R, respectively) between experi-
mental (actual) and simulated data, analyzed through a linear regression (Figure 1). The 
overall model performance (all R, training, validation, and testing) was 0.969, and R2 was 
0.938, indicating an accurate match between the observed (actual) and predicted data, 
with a 99.8% confidence in the slope and intercept Student’s t-test. 

 
Figure 1. Scatter plot of experimental (actual) and simulated (predicted) data for SGA or AGA. The 
outcome (output of the model) is SGA or AGA (codified as 0.5 or 1.0). The red line indicates the 
linear regression model on scatter points, and the output is the best linear fit obtained by the ANN 
model. The range between 0.4 and 0.79 corresponds to SGA and between 0.8 and 1.0 to AGA pre-
diction. 

The outcome (output of the model) is SGA or AGA (codified as 0.5 or 1.0). The red 
line indicates the linear regression model on scatter points, and the output is the best linear 
fit obtained by the ANN model. The range between 0.4 and 0.79 corresponds to SGA and 
between 0.8 and 1.0 to AGA prediction. 

3.3. Performance-Based on Confusion Matrix 
Next, the model performance was evaluated on an independent dataset from training 

and testing (external validation). Overall, the model achieved an accuracy above 86%, F-
1 score of 80%, PPV of 100%, NPV 80%, and an AUROC of 0.8. 

3.4. The Relative Importance of Maternal Variables 
Based on the weights associated with each maternal input variable, the sensitivity 

analysis of the ANN model allowed the classification of maternal nutritional, biochemical, 
and oxidative features (Figure 2). The top-five predictive maternal characteristics were 
protein oxidation (CP, 12.7%), gestational weight gain (GWG, 10.8%), vitamin D (Vit D, 
10.6%), total antioxidant capacity (TAC, 9.9%), and lipid oxidation (MDA, 8.7%). In con-
trast, the least essential variables were pBMI (2.5%), total cholesterol (3.2%), and HDL-
Cholesterol (3.5%).  

Figure 1. Scatter plot of experimental (actual) and simulated (predicted) data for SGA or AGA. The
outcome (output of the model) is SGA or AGA (codified as 0.5 or 1.0). The red line indicates the linear
regression model on scatter points, and the output is the best linear fit obtained by the ANN model.
The range between 0.4 and 0.79 corresponds to SGA and between 0.8 and 1.0 to AGA prediction.

The outcome (output of the model) is SGA or AGA (codified as 0.5 or 1.0). The red
line indicates the linear regression model on scatter points, and the output is the best linear
fit obtained by the ANN model. The range between 0.4 and 0.79 corresponds to SGA and
between 0.8 and 1.0 to AGA prediction.

3.3. Performance-Based on Confusion Matrix

Next, the model performance was evaluated on an independent dataset from training
and testing (external validation). Overall, the model achieved an accuracy above 86%, F-1
score of 80%, PPV of 100%, NPV 80%, and an AUROC of 0.8.

3.4. The Relative Importance of Maternal Variables

Based on the weights associated with each maternal input variable, the sensitivity anal-
ysis of the ANN model allowed the classification of maternal nutritional, biochemical, and
oxidative features (Figure 2). The top-five predictive maternal characteristics were protein
oxidation (CP, 12.7%), gestational weight gain (GWG, 10.8%), vitamin D (Vit D, 10.6%), total
antioxidant capacity (TAC, 9.9%), and lipid oxidation (MDA, 8.7%). In contrast, the least
essential variables were pBMI (2.5%), total cholesterol (3.2%), and HDL-Cholesterol (3.5%).
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importance for predicting SGA or AGA newborns were: CP, GWG, Vit D, TAC, and MDA. pBMI,
pre-gestational BMI; GWG, gestational weight gain; MVI, multivitamins; Tgl, triglycerides; Chol,
total cholesterol; HDL-Chol, HDL cholesterol; LDL-Chol, LDL cholesterol; Vitamin D, Vit D; MDA,
malondialdehyde; CP, carbonylated proteins; TAC, total antioxidant capacity; GA, gestational age
at birth.

3.5. Simulator for SGA

The equations of the ANN algorithm (Appendix A) and maternal inputs were em-
bedded in an Excel spreadsheet to simulate distinct scenarios predicting SGA or AGA
newborns. The most critical maternal features obtained by the model, i.e., first trimester
oxidative stress biomarkers (CP, MDA, and TAC concentrations), GWG and Vit D status,
were manipulated in normal weight pregnancies, and the effect on the outcome was imme-
diately calculated (SGA result fell within the range of 0.45 and 0.79 while AGA between 0.8
and 1.0, from Figure 1) (Figure 3). Excessive GWG with adequate Vit D status in the first
trimester predicts SGA even with a redox equilibrium balance. More importantly, Vit D
deficiency independently of GWG and redox equilibrium balance or imbalance predicts an
SGA newborn. We also obtained the simulations for obese pregnancies, but the predictions
were the same as normal weight pregnancies (data not shown). This result is consistent
with p-BMI as the less critical feature in the model.
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Figure 3. First-trimester SGA and AGA simulations in normal weight pregnancies. The prediction of
neonatal outcome was calculated by manipulating the most important maternal predictors: oxidative
stress biomarkers (OS markers CP and TAC), gestational weight gain (GWG), and vitamin D (Vit D)
in normal weight pregnancies (the pBMI value was set at 24 kg/m2 and kept constant). The range
for an SGA outcome is a numeric result between 0.4–0.79 and for AGA within 0.8–1.0 (based on the
ANN algorithm Equation (A3) (Appendix A) and the scatter plot from Figure 1). Depicted are the
values of maternal factors leading to an SGA or AGA result. GWG, gestational weight gain; TAC:
Total antioxidant capacity; AGA: Appropriate for gestational age; SGA: Small for gestational age.

4. Discussion

This study presents an integrative Artificial Neural Network (ANN) model for small
for gestational age (SGA) prediction based on first trimester maternal nutritional, bio-
chemical, and oxidative stress variables. The model obtained an excellent performance
in the training/validation dataset using RMSE and regression coefficients criteria (>0.93),
achieved an accuracy of 86%, and an area under the curve (AUROC) of 0.8 on an indepen-
dent dataset.

Early estimation of abnormal fetal growth may allow the implementation of timely
clinical and nutritional strategies with intensive follow-up during pregnancy to improve
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perinatal outcomes. Most published SGA or LGA (large for gestational age) forecasting
models have been based on ultrasonographic, maternal characteristics, and placental
biochemical data, using logistic regression and machine learning algorithms at different
gestational weeks. Logistic regression models have reached AUROC values near 0.7 for
SGA prediction with first trimester ultrasound data or the combination with placental
biomarkers (including placental growth factor or soluble fms-like tyrosine kinase-1) [31,32].
Other studies showed that machine learning algorithms obtain more accurate predictions
than logistic regression with higher AUROC values using only ultrasound and clinical
characteristics from early pregnancy [15–17,33]. Fetal growth has also been estimated
between 20–30 weeks of gestation by a machine learning algorithm based on ultrasound
and fetal biometric data from INTERGROWTH-21st with promising results [34]. The
work by Kuhle and cols. compared logistic regression and machine learning models for
predicting SGA or LGA based only on maternal clinical characteristics at 26 weeks of
gestation, reaching an AUROC ranging between 0.8–0.91 but did not find differences
between algorithms [35]. The methods used in this study included logistic regression,
Classification trees, Gradient boosting, and Elastic Net (EN). Recently, a study by Yamauchi
and cols. constructed a model based on urinary metabolomics data using EN regression [36].
This is a hybrid model using multicollinearity and regularization as the optimization
function and has been shown to work well for large datasets and highly correlated variables.
Extreme gradient boosting (XGBoost) is an implementation of gradient boosted trees. It also
performs well for large data and particularly for binary imbalanced classification, using
trees as the weak learners. The method developed in this work does not take into account
multicollinearity and performs very well for non-linear data as well as possible interactions
between variables. A systematic review presented a summary of several machine learning
models for the identification of adverse pregnancies [37].

The current study used an integrative approach to forecast SGA relying on pBMI
and first-trimester fat mass, weight gain, vitamin D, and redox status (lipid and protein
oxidation together with antioxidant capacity) as inputs for the algorithm. No models in
the literature have used such a combination of maternal predictors that include nutritional,
metabolic, and dysregulation of redox balance, with intersecting roles in pregnancy. We
believe that the approach presented in this work, although with its limitations, could
improve clinical follow-up by early estimation of a frequent and relevant adverse perinatal
outcome, having an SGA newborn. One study has integrated anthropometric variables
such as gestational weight gain (GWG), pBMI, and age to predict SGA or LGA combined
with neonatal lean and fat to measure infant adiposity [38]. The use of ANN models in
this study allowed us to evaluate the effect of many variables together with a high level
of precision.

Excessive gestational weight gain has been mainly associated with having an LGA
newborn [39]. However, gestational weight gain (with smoking and a previous low birth
weight infant) were predictors of SGA at 26 weeks gestational age by machine learning
and logistic regression methods [35]. At present, there is controversy about whether pre-
gestational BMI or GWG have more impact on fetal growth [40]. Our results showed
that first-trimester GWG, maternal protein and lipid oxidation markers, and vitamin D
concentrations were stronger predictors of SGA when compared to p-BMI, which was the
less important feature. This evidence is interesting because most studies of obesity and fetal
growth have been carried out with p-BMI, without considering other important factors,
including fat mass. Even though BMI is a valid adiposity index, it is not a measure of fat
mass. In our study, first-trimester maternal fat mass was not a strong predictor of SGA, but
it was more relevant than p-BMI.

Using our models, excessive GWG was a strong predictor of SGA deliveries, indepen-
dently from the balance or imbalance of reactive oxygen species/antioxidant (ROS/AOX).
In the context of oxidative stress, early excessive adiposity (weight/fat mass gain) may
be affecting the nutrient transfer and sensing pathways in early pregnancy, resulting in
impaired fetal growth. The pathogenesis of obesity is complex and includes metabolic
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and hormonal dysregulation, low-grade chronic inflammation, and endoplasmic reticulum
stress, among other closely interconnected processes [13,14,41]. More studies considering
pBMI in addition to fat mass and early weight gain are needed to understand the possible
effect of rapid weight gain on fetal growth and size at birth.

Vitamin D deficiency was a strong determinant of SGA, independently from GWG.
Vitamin D is known to play a vasoprotective effect by reducing oxidative stress-induced
endothelial dysfunction and regulating the bioavailability of nitric oxide [42]. Experimen-
tal evidence has demonstrated placental development inhibition and impaired function
when vitamin D deficiency is induced [14,41]. Even though the precise mechanism by
which vitamin D deficiency-induced placental insufficiency and fetal IUGR is not known,
increased inflammation appears to be a relevant factor [42,43]. In human studies, there is
controversy about the association between vitamin D deficiency and size at birth [44]. A
recent meta-analysis of observational studies has shown a higher risk of SGA with vitamin
D concentrations < 20 ng/mL and lower birth weight, length, and head circumference in
newborns of women with lower vitamin D concentrations (<12 ng/mL) [45]. Consistent
with our study, other meta-analyses have documented the association between vitamin D
deficiency and a higher risk of SGA [46–48]. In addition, vitamin D supplementation during
pregnancy (600 IU/d vs. placebo or not receiving vitamin D) reduces the risk of low birth
weight and SGA [14]. This is very relevant considering the high prevalence of maternal
vitamin D deficiency worldwide. In a recent cohort study in Mexico City, we reported 37%
of vitamin D deficiency in the first trimester of pregnancy, and 20% in the third trimester,
even though 76% of mothers were receiving some type of vitamin D supplementation [27].

In addition to GWG and vitamin D, early oxidative stress markers were strong predic-
tors of SGA. In intrauterine growth restriction (IUGR) complicated pregnancies, an increase
in oxidative markers (MDA, isoprostanes, protein carbonyls) in the placenta, maternal, and
cord plasma has been observed [38,49–51]. In our study, the stronger oxidative stress predic-
tors of SGA were CP, MDA, and TAC. Some of the mechanisms that have been studied and
that may associate oxidative stress with fetal growth impairment (IUGR or SGA) include
defective arterial modeling, reduced nutrient and oxygen supply, increased ROS, MDA,
and isoprostanes, as well as upregulation of antioxidant enzymes (superoxide dismutase
and glutathione peroxidase) and antioxidant depletion (vitamin E and glutathione) [52].
Many of these factors may be associated with excessive fat mass.

We assessed important nutrition and metabolic factors that may predict alterations
in fetal growth. However, there are many other lifestyle, clinical and sociodemographic
variables that have been associated with low birthweight or SGA. Macronutrient imbal-
ances, dietary patterns, physical activity, stress, sleep patterns, inflammation, insulin and
adipokine levels, placental status, and oxygen flow, among others, may modify hormonal
and metabolic processes that regulate and affect nutrient transfer and fetal growth [7].

Primary prevention of SGA newborns is a challenge and represents a global goal.
Very few interventions have proven successful in reducing SGA and/or IUGR: multiple
micronutrient supplementation [12], balanced energy, and protein supplementation [53] in
undernourished mothers, vitamin D supplementation at specific doses [14], among few
others. Most current interventions are aimed to reduce morbidity and mortality in infants
already born SGA.

The implementation of timely intervention strategies may reduce the prevalence of
SGA. It has been estimated that a reduction of the prevalence of SGA from 19.3% to 10.0%
in low to middle-income countries could reduce neonatal deaths by 9.2% [4]. It is important
to note that the prevalence of SGA may differ according to the method used to ascertain
gestational age (ultrasound, last menstrual date), the time when the measurement was
performed (at birth, 24–48 h post-birth), and the reference growth curved selected for
evaluating weight/age.

Achieving an optimal nutrition status by offering intensive counseling about healthy
eating and prescribing individualized nutrient supplementation schemes is critical to
prevent multiple perinatal complications. Good nutrition is essential to promote and



Antioxidants 2022, 11, 574 12 of 16

maintain an adequate gestational weight gain, optimal antioxidant capacity, and good
vitamin D status, three factors that, according to our results, were strong predictors of SGA.

4.1. Strengths and Limitations of the Study

This study has some limitations that need to be addressed. First, weighing women
before pregnancy was impossible, so self-reported p-BMI was used; this may introduce
bias in their weight classification and GWG estimation. Second, the dyad mother-newborn
sample size is relatively small; however, the model accurately estimated AGA or SGA
with an R > 0.93. Although the external validation was carried out with an independent
dataset, never used for the model’s training and validation/test, it will be necessary to
have additional external datasets from other health care centers for further training and
validation of this model. Third, since this study was conducted in a tertiary health center,
the prediction may not apply to all pregnant women, making it difficult to generalize
the results and not entirely represent the general obstetric population. Despite this, we
considered an advantage of this study to include a population of pregnant women with
different weight statuses.

Strengths of this study include that the dataset is derived from a longitudinal cohort
that allowed us to include first trimester data and the use of redox biomarkers as fetal
growth predictors. It is important to mention that the latter may also be a possible weakness
because that some of these measurements cannot be performed in low-resource settings.
However, the study design was not intended to be used in such environments but rather as
a more personalized prediction tool for an SGA outcome considering the complex metabolic
alterations and dysregulation of redox balance.

4.2. Challenge and Future Perspectives

Lipid and protein oxidation markers (MDA and PC, respectively) and TAC are
biomarkers that provide evidence of oxidative damage. However, this evaluation could be
supplemented by other redox markers, such as quantifying isoprostanes and glutathione-
dependent enzyme activity. To further complete the prediction and monitoring of fetal
growth, second and third-trimester maternal features will be incorporated into a new
model with the first-trimester features from this study to personalize the outcome of an
SGA newborn further. In this sense, the pre-processing of signals in time-series data would
be highly enriched using filters, such as the Savitzky-Golay algorithm and the 1-D wavelet
decomposition, that eliminate the possible outliers and smooth the signal, which leads to
more accurate predictions. Such filters have been shown to reduce noise in data [54] and
will be addressed in future work to remove noise in metabolomic data and ultrasound
images; maternal features that could be incorporated into predictive models.

5. Conclusions

Compared to models based on ultrasound and anthropometric measurements, the
novel combination of maternal predictors, including p-BMI, fat mass, weight gain, bio-
chemical, and redox status (balance or imbalance of reactive oxygen species/antioxidants)
in first-trimester, provided accurate and personalized forecasts of SGA neonates.

Strengths of the model:
The database was collected from a population that included pregnancies with or

without obesity, which has been associated with an increased risk of adverse fetal growth.
The ANN model used three different performance metrics compared to other ma-

chine learning models in the training/validation datasets and additional predictive power
measurement (AUROC) on an independent dataset.

The implementation of a simulator on an Excel spreadsheet allows forecasts by
the model.

Ranking of the maternal predictive features showed that protein and lipid oxidative
stress markers, total antioxidant capacity, gestational weight gain, and vitamin D were key
for SGA prediction.
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Appendix A

In the hidden and output layer, each neuron (n) has weights (Wi and Wo) and biases
(b1 and b2), in the hidden and outputs layers, respectively, (see Equations (A1) and (A2)):

n1 = WiIn1 + WiIn2 + . . . . . . . + WiInk + b1 (A1)

where In are the Input variables.
The value of each neuron is the argument of the transfer functions (f and g):

SGA or AGA (Output) = g(Wo × f (Wi × In + b1) + b2) (A2)

where f is a hyperbolic tangent (TANSIG) activation function in the hidden layer and g is a
Log-sigmoid (LOGSIG) transfer function in the output layer. These two transfer functions
obtained the best performant model. As a result of Equation (A2) with these functions:

Equation (A3) gives SGA or AGA with TANSIG-LOGSIG with weights and biases:

SGA or AGA (Output) =
1(

1 + EXP
(
−noutput layer

)) (A3)

where output layer is:

output layer = ∑s

{
Wo(l,s) ·

[
2

1 + e−2·(∑k Wi(s,k) ·Ink+b1(s,1))
− 1

]}
+ b2(l,1)

where:
∑
k

Wi(s,k) · Ink + b1(s,1) = X1 + X2

and X1 and X2 are defined as:

X1 =

(
Wi(1,1) I1 + Wi(1,2) I2 + Wi(1,3) I3 + Wi(1,4) I4 + Wi(1,5) I5 + Wi(1,6) I6 + Wi(1,7) I7 . . .
+Wi(1,8) I8 + Wi(1,9) I9 + Wi(1,10) I10 + Wi(1,11) I11 + Wi(1,12) I12 ++Wi(1,13) I13 + Wi(1,14) I14 + b1(1)

)
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X2 =

(
Wi(1,1) I1 + Wi(1,2) I2 + Wi(1,3) I3 + Wi(1,4) I4 + Wi(1,5) I5 + Wi(1,6) I6 + Wi(1,7) I7 . . .
+Wi(1,8) I8 + Wi(1,9) I9 + Wi(1,10) I10 + Wi(1,11) I11 + Wi(1,12) I12 ++Wi(1,13) I13 + Wi(1,14) I14 + b1(1)

)
and input variables (I) were:

I1 = age; I2 = pBMI; I3 = GWG; I4 = fat mass; I5 = MVI; I6 = triglycerides; I7 = Chol;

I8 = HDL-Chol; I9 = LDL-Chol; I10 = Vit D; I11 = MDA; I12 = CP; I13 = TAC; I14 = GA
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