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Abstract: Bone tissue engineering is a complex domain that requires further investigation and benefits
from data obtained over past decades. The models are increasing in complexity as they reveal new
data from co-culturing and microfluidics applications. The in vitro models now focus on the 3D
medium co-culturing of osteoblasts, osteoclasts, and osteocytes utilizing collagen for separation; this
type of research allows for controlled medium and in-depth data analysis. Oxidative stress takes
a toll on the domain, being beneficial as well as destructive. Reactive oxygen species (ROS) are
molecules that influence the differentiation of osteoclasts, but over time their increasing presence
can affect patients and aid the appearance of diseases such as osteoporosis. Oxidative stress can
be limited by using antioxidants such as vitamin K and N-acetyl cysteine (NAC). Scaffolds and
biocompatible coatings such as hydroxyapatite and bioactive glass are required to isolate the implant,
protect the zone from the metallic, ionic exchange, and enhance the bone regeneration by mimicking
the composition and structure of the body, thus enhancing cell proliferation. The materials can be
further functionalized with growth factors that create a better response and higher chances of success
for clinical use. This review highlights the vast majority of newly obtained information regarding
bone tissue engineering, such as new co-culturing models, implant coatings, scaffolds, biomolecules,
and the techniques utilized to obtain them.

Keywords: bone formation; BTE; mesenchymal stem cells; osteoclasts; ROS; oxidative stress

1. Introduction

There are many circumstances in which bone defects can occur, such as trauma,
congenital origins, or disease, impacting millions worldwide [1,2]. The defects present a
great challenge for surgeons in cases of sizable osseous defects [3]. The lacunes existing in
this area determined the necessity of comprehending the process of bone regeneration in
order to generate better solutions [4].

Bone tissue is intensely vascularized, a particularity that influences growth, matura-
tion, shaping, and regeneration [5,6]. Bone tissue can be of two types: cortical bone, which
represents the external part of a bone, and cancellous bone, which is located inside the
bone. The differences between these two layers are rigidity and porosity. The cortical bone
is less porous and presents better mechanical stiffness than cancellous bone, which has
approximately ten percent of the cortical bone stiffness [7–9]. Osteons inside the cortical
bone form units with a Haversian system containing nerves and blood vessels [10]. Can-
cellous bones do not possess osteons with the Haversian system, but this aspect does not
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impact the blood vessel stream, which is a consequence of the high bone porosity. In the
embryonic stage, bone can form in two distinct methods of ossification: intramembranous
and enchondral [11].

Oxidative metabolism produces the reactive oxygen species (ROS) as a byproduct of
energy-generating reactions that are largely generated in the mitochondria. A beneficial
way in which reduced levels of ROS can operate is as signaling molecules that are vital
for balancing cell differentiation, self-renewability, and proliferation. On the other hand,
raised levels of ROS are damaging due to the interaction frequency with molecules such
as proteins, RNA, and DNA, thus resulting in osteogenic lineage suppression [12]. One
crucial factor in bone regeneration is maintaining bone homeostasis. In normal bone
homeostasis, osteoblasts differentiation utilizing signal pathways such as fibroblast growth
factor (FGF), bone morphogenetic protein, and hedgehog is facilitated; at the same time, the
differentiation of osteoclasts is modulated with the aid of macrophage colony-stimulating
factor (M-CSF) and the receptor activator of nuclear factor kappa-B ligand (RANKL) [13].

Therefore, this review aims to present the main tools of bone tissue engineering,
precisely the scaffolds such as hydroxyapatite and bioactive glass, and the enhancing
agents such as growth factors and biomolecules. Furthermore, the models of co-culturing
and other studies concerning oxidative stress and reactive species of oxygen have been
focused on to observe osteoclasts, osteocytes, and osteoblasts’ influence in the domain,
both in single-cell form and together.

2. Bone Regeneration

Several methods address and enhance the regeneration of damaged tissue, which aim
to bypass the limitations encountered by already utilized treatments, such as functionaliza-
tion issues, lack of material compatibility to certain techniques, and translational success
limitation [14,15]. Biomaterials and scaffolds can promote healthy tissue formation and
are sought in fields such as bone regeneration [16]. Successful approaches orient towards
materials that present a good biomimetic property and are bioactive to obtain similar
structural features compared to the original extracellular matrix (ECM) [17–19].

Hydrogels are a great example when it comes to materials that influence the bone
tissue engineering (BTE) field by releasing different types of growth factors (GFs) that
aid neovascularization. There are three types of hydrogels that include various options:
natural [16], semi-synthetic, and synthetic [6,20–22].

A class of materials that are commonly used for bone regeneration applications are
bioceramics such as calcium sulfate (CS), hydroxyapatite (HA), and calcium silicate, which
are frequently utilized because of their low cytotoxicity and high bioactivity and biocompat-
ibility [23,24]. Bioceramic materials possess a microstructure that promotes ossification and
vascularization growth, vital characteristics for osteointegration and osteoinduction [25,26].
This wide class of materials can be utilized as scaffolds which are characterized by proper-
ties such as pore shape and size, porosity, crystal distribution, sinter temperature, and phase
composition [27–29]. Figure 1 presents the advantages and disadvantages of a selected
array of vascularization strategies.
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3. Hydroxyapatite for BTE

Among the strategies developed in the domain of regenerative medicine that strive to
duplicate the tissue in order to obtain an efficient result, we can count materials such as
bivalent aptamer-conjugated hydroxyapatite (Apt-HA) [30,31]. Apt-HA’s particularity is
the specifically adsorbed vascular endothelial growth factor (VEGF), and it is utilized in
synergetic regeneration and osteoconduction [32,33]. The functionalization with growth
factors has been discovered recently, and it is realized by immersion; this led to a growth in
research for the bioactivity enhancement of bioceramic scaffolds [34,35]. VEGF is one of
the first proteins that presented links to osteogenesis and angiogenesis, the inactivation
process being an instrument of observation for bone formation and vascularization [36,37].
VEGF and its receptors are expressed by osteoclasts, osteoprogenitors, and osteoblasts, and
signal by promoting differentiation, activity, and recruitment [38]. Figure 2 displays the
regulation that VEGF realizes to stimulate angiogenesis and osteogenesis.

There are multiple variations in which HA can be obtained depending on the source
and quantities of the precursors. A suitable type for BTE can be carbonated hydroxyapatite
(CHA), which serves as a coating on metallic substrates, preventing them from releasing
metallic ions and protecting them from corrosion [39,40]. The material development is
oriented towards mimetism, which guides parameters such as crystallinity, microstructure,
and chemical composition. Mineral carbonate (CO3)2- is a component of natural bone that
is present in a range of 2%–8% [41]. CHA is obtained by enriching the HA with carbonate
minerals such as natural bone [42]. Several sources of bio-waste, such as eggshells, seashells,
and animal bones, are rich in calcium, being suitable candidates for medical-grade sources
of obtaining HA [43–45]. Several technological fluxes are available for obtaining a diversity
of CHA with different properties, including co-precipitation [46] sol-gel, nanoemulsion [47],
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mechanochemical-hydrothermal [48], and mechanical alloying. The most sought method is
co-precipitation due to the reduced costs and large-scale production capacity [49].
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Another beneficial aspect of HA is the buffering mechanism ensured by PO4
3− and

OH−; the ions of calcium and phosphate aid the remineralization, opposing the effect of
calcium carbonate [50–53]. HA can influence the pH of the cariogenic biofilm, increasing it
from 4.3 to 4.8. Apart from their use for mineralization enhancement, HA and CHA can
also be used as buffering agents for organic acids [54,55].

Osteoporosis, which can be considered a discrepancy between osteoclasts-related
bone resorption and osteoblasts-related bone development, can be caused by an estrogen
deficiency [56,57]. The condition results in the mass reduction of cortical and trabecular
bone, causing skeletal weakness and fractures. A suitable material for this application
is nano HA (nHA), generating signals that stimulate the cell desired behavior and bone
biomarker activity [58]. nHA is a great option due to the influence of the particle size on
the strength of the implant coating; the scaffold should sustain bone deposition and the
forces that are exerted [59].

4. Bioactive Glass

Silicate-based bioactive glass (Si-BaG) has become a very popular material for clinical
BTE usage [60,61]. Another type of BaG that gained interest is phosphate BaG (P-BaG),
which enables controlled ion release. Aspects such as specific surfaces can be utilized to
incorporate or graft an array of biomolecules and curative agents [62,63]. The main advan-
tages of Si-BaG and P-BaG are their modulation of the dissolution rate and incorporation
of any desired ions into the composition [64]. The scaffold obtaining technique variations
regarding BaG have been explored intensely, except for electrospinning technologies [65,66].

Several studies concluded that BaG accelerates the degradation of polylactides (PLA)
as well as poly-L, DL-lactide (PLDLA) [67]. Other papers concluded that composites
that included BaG showed enhanced bone generation during longer periods of time and
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celerity in the molecular weight decrease of PLDLA when utilized in composites such as
PLDLA/13-93 BaG [68]. The PLDA/13-93 BaG was also involved in the regulatory process
of endothelial markers [69].

Several classifications have been established for BaG in order to see the proper domain
of application and the technological flux required to achieve the specifications [70,71].
One option is the sol-gel technique, which involves the addition of a surfactant form-
ing the desired structure of the material. The process involves a calcination step with a
temperature of 700 ◦C, which ensures the removal of organic components obtaining the
cavitated material [72].

In some applications, micrometric pore size can present a great advantage when
the functionalization of the BaG needs to be realized with larger molecular weight sub-
stances [73]. The porosity of the material has been proven to be influential in processes
such as remineralization [74].

5. Mesenchymal Stem Cells Influence in BTE

Heterogenous cells do not survive at the center of grafts that exceed thickness due to
the restriction of passive transport, which has a limited distance and ensures the flux of
metabolites, gases, and nutrients, thus influencing the cell capability [75,76]. Mesenchymal
stem cells (MSCs) generate osteoclastogenic cytokines, the receptor activator for nuclear
factor kappa B ligand (RANKL), and macrophage colony-stimulating factor (M-CSF) in
physiological circumstances. MSCs co-culturing also lowered the tumorigenicity for ovar-
ian cancer cells, but cancer-associated MSCs (CA-MSCs) determine angiogenesis and tumor
development when in direct contact with tumor cells or discharging growth factors, cy-
tokines, and exosomes [77]. The discrepancies between MSCs and CA—MSCs provoked
interest and proved the CA-MSCs’ distinct properties [78]. The proliferation and diversity
of cells are modulated by elements such as pH, dissolved gas, and shear stress [79,80].

Bioreactors can be used to control physicochemical factors such as pH, pressure,
humidity, temperature, dissolved oxygen, carbon dioxide, and shear stress [81]. Aspects
such as cellular waste removal and the nutrients flux can be controlled by the fabricated
medium. Consequently, bioreactors became a desirable option for BTE applications [82,83].
The microenvironment is responsible for the stemness and lineage diversity capacities of the
stem cells [84]. Another factor that drastically impacts characteristics, such as morphology
and cell viability, is the shear stress-induced alignment [85]. Cell activity can be modulated
by the microstructure of the utilized material [86].

Some tested parameters such as runt-related protein 2 (Runx2) and collagen type I
(Col1) observed with distinct shear stress indicate that differentiation happens with celerity
due to the stress increase. Runx2 represents a vital marker of osteogenesis, and Col1
represents a factor of transcription that underlies the existence of bone cells [87,88]. MSCs
are required to be lead to an osteogenic phenotype that can be realized by adding growth
factors; another option is their direct cultivation on bone-derived ECM, which presents
osteogenic features [89,90].

MSCs therapeutic potential has been observed in several clinical uses between phases I,
II, and III, many studies focusing on the engraftment obstacles and diseases regarding
hematopoietic stem cells. However, some MSCs such as bone marrow (BM-MSC)-derived
ones can express cytokines and thus can be utilized in cancer treatments and therapeu-
tic payloads [77].

There are several types of MSCs sources besides BM: adipose tissue (AT) and umbilical
cord (UC) are suited for cell replacement therapy. In comparison to the BM harvested
MSCs, MSCs from UC and AT can be collected utilizing less invasive methods. UCs present
the advantage of high proliferation and can be cultivated for a long period. AT presents
similarities with processed lipoaspirate cells, resulting in a large quantity of cells generated
as a by-product of cosmetic liposuction, and can grow in standard culture conditions [77].
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6. MicroRNAs in MSCs Differentiation

Since the first isolation of MSCs, their ability of differentiation has been studied and
evaluated as being able to act as adipocytes, chondrocytes, and osteocytes, as is displayed
in Figure 3 [91,92].
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Several studies have been realized on establishing what factors and signaling pathways
are involved in the MSC differentiation for the purpose of BTE [93,94]. Cell differentiation
has some indispensable regulators such as signals from the ECM, cytokines, and endoge-
nous GFs [95]. Osteogenesis can also be influenced by external aspects such as mechanical
forces and electromagnetic fields [96,97]. MSC osteogenic differentiation is supported by
the utilized biomaterials [98,99], but the supplementation with ions enhances the osteogenic
scaffold potential [100]. Cell differentiation can also be enhanced with the aid of microR-
NAs (miRNAs) [101], GFs [102], and biophysical stimuli [103]. Some epigenetic factors and
processes that modulate the differentiation of MSCs include acetylation and methylation,
non-coding RNA (ncRNAs) molecules such as miRNAs [104] and long non-coding RNAs
(lncRNA) [105], and DNA methylation [106].

miRNAs are single-stranded ncRNAs that are responsible for regulating 30–60%
of protein-coding genes. The mRNA completes the complementary stage and suffers
degradation, but in the case of partial mRNA, the protein levels decrease [107–112]. One of
the main tasks realized by miRNA is to bind to mRNA; apart from this gene, regulation is
realized due to molecular mechanisms. The regulation can positively or negatively impact
osteogenic differentiation and general transcription factors [113,114]. New approaches find
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a point of interest in the options that miRNAs offer in BTE [115]. They can be utilized as
bioactive factors [116] and scaffolds [117] in order to generate the desired response.

There are several miRNAs involved in the generation of ROS, and thus in the oxidative
stress process. Radiosensitivity can be achieved by miR-328-3p when overexpressed due
to suppression of H2AX (a subtype of histone) in vitro and in vivo. NAD-dependent
deacetylase sirtuin-1 (SIRT1) is capable of cell functional regulation for processes such as
oxidative stress, aging, and apoptosis utilizing the deacetylation of a variety of substrates.
The upregulation of SIRT1 is realized by miRNA, precisely the miR-199a, which targets
the gene [118].

7. Osteoclast Bone Models

Osteoclasts can be defined as large, multinucleated cells which differ from mono-
cytes and macrophages by presenting M-CSF and RANKL [119]. The co-culture tech-
niques became popular tests for investigating bone cells such as osteoclasts, osteocytes,
and osteoblasts for purposes such as bone metabolism and disease behavior [120–122].
Many articles have approached the co-culturing systems with osteoclasts and osteoblasts
in vitro [123,124]. The main reason for the co-culture tests is to establish the interactions
between cells and test different approaches in a controlled environment to generate in-
formation that can further be applied in the BTE domain [125]. The predominance of
osteoblast/osteoclast co-culture studies frequency is due to the restricted availability of
osteocytes. The lack of osteocytes availability resides in the difficult process of isolation for
these post-mitotic cells [126,127]. There is a lack of primary osteocyte co-cultured studies
with osteoclasts, with only two models reported at present, but some studies have treated
the subject using murine sources for osteocytes [128]. In most cases, there are only two
bone-related cell species in co-culturing techniques. The main reason is the difficulties in
terms of requirements needed because of the different medium condition preparation, this
being a very important step for a successful study [129]. Some results show the presence of
osteoclasts, osteocytes, and osteoblasts after 21 days, even if at the beginning of the research
the precursors utilized were for primary human osteoclasts and osteoblasts [125]. The
setback of this study was the inability to generate data for single-cell species to investigate
the matter further. Because vascularization is necessary for BTE, there has been co-culturing
research involving the use of osteoclasts, osteoblasts, and endothelial cells. It has been
stated in several studies that cell cultures behave in different ways in comparison with
similar cells but are co-cultured, and the co-culturing technique became accepted as a com-
mon practice in biomaterial research [130]. There have been new models established that
operate with triple cultures in order to obtain data on bone cellular infrastructures [131].

In the established triple cultures, all cell species showed their typical morphology and
there were no obvious morphological differences between single and triple cultures. A
good balance between the three cell species is a prerequisite to use those triple cultures
in the future to investigate the influence of bioactive molecules, drugs, and biomaterial
extracts. As expected, due to the signaling between the cells, there were detected differences
between single and triple cultures on the mRNA level. Table 1 presents details regarding
the techniques that are frequently used [123,128,132].

The latest model was based on generating a three-dimensional environment permitting
cell–cell interactions of osteoclasts, osteoblasts, and osteocytes where the analysis can occur
for all cell types as well as for single-cell species. This kind of model aims to generate a
perspective on complex systems that include all the major species of bone cells. Collagen
can be utilized in order to separate osteocytes from the other cells, allowing a gradually
obtained result [125].

Bone cells are responsible for the development and metabolism of the bone, but
there is a whole system influencing the result, which involves cytokines, GFs, receptors,
transcription factors, ligands, and cell-specific enzymes [133]. The in vitro studies have
a controlled medium and various options available, which also imply many variable
factors that need to be addressed. Thus, the studies have many challenges to overcome.
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Existent models have studied vasculogenesis, bone marrow, and tumor models [134].
The models also went in a direction similar to microfluidics; approaches such as bone-
on-a-chip and organ-on-a-chip lead towards a system that facilitates the investigation of
osteoclasts or osteoblasts responding to osteocyte-prepared medium [135,136]. However,
since microfluidics work with a limited number of samples, the popular choice remains a
simpler co-culturing model strongly impacted by the collagen gel, which allows obtaining
a 3D environment [137,138].

Table 1. Advantages and limitations of the culturing techniques. Created based on information
from [123,128].

Culturing Type Particularities Observations Advantages Limitations

Triple culture of
osteoblasts, osteoclasts,

and osteocytes

• There are two
techniques for seeding:
one done individually

called patterned
seeding and the other

being called mixed
seeding

• Patterned seeding
resulted in a better
individual analysis
• Mixed seeding

generated better direct
cell-cell contact

• Realistic model
• Allows the study of

the interactions of
the cells

• No major
morphological

differences
• The ratio of cells to
substance increases

• The models are not
cultivated on

resorbable membranes
• Different serum
concentrations are

required for
differentiation
• Requires more

substances and space

Co-cultured
approaches with two
different species of

bone cells

• The test was realized
with a porous

membrane situated
between the two

cultures promoting the
single cell type analysis

• The osteoclast gels
present poor strength

in comparison with the
single culture

underlining the
degrading osteoblastic

enzyme outcome

• Analytical aim of
crosstalking cultures

• Cost-effective

• The resorption
capacities of the

cultures are yet to
be determined

• Fewer variation
opportunities resulting

in isolated outcomes

Materials such as copper are used due to the great properties they possess, such as an-
giogenesis and osteogenesis enhancement, as well as antimicrobial effects [139,140]. This ma-
terial is used to generate enhanced BaG, titanium implants, cement, and ceramics [141,142].
The osteoclasts are influenced by the material due to the potential oxidative stress exerted
at different concentrations [138].

There are four main categories of 3D co-culturing models: hydrogels, cell aggregation,
scaffolds, and dynamic models. Some of them can be divided once more into subcategories,
thus ensuring diversity and options for several new applications. For hydrogels we have
the source, which can be natural or synthetic, the first being a network composed out
of naturally originated monomers and the latter being synthetic. Both present different
advantages and disadvantages according to the source and profile, even though diffusion
plays a large role in the success of both. The cell aggregation can be classified with the
technological flux, one being obtained with hanging drop plates and the other being
generated with 3D Petri dishes. The first one generates 3D spheroid aggregates and the
second technique molds agarose in order to obtain defined shapes by cell agglomeration.
The scaffolds can also be differentiated with the source of the material dividing it into
synthetic and natural 3D structures [123].

There are several new theories that will increase the complexity of the existing 3D
models. Three-dimensional models may replicate the in vivo conditions while using human
cells in order to obtain valid information regarding the hypothesis obtained with the animal
trials which require further analysis. Furthermore, techniques such as perfusion and
biomechanical mimetism have created room for studies that generate similar conditions
to the in vivo environment, thus becoming a preferred model for researchers. Also, they
ensure a high compatibility rate and diversity, alongside good chemical properties [123].

For instance, Zhang and colleagues [143] proposed a complex 3D structure-based co-
culture platform that mimics the Haversian bone, with osteogenic cells angiogenic/neurogenic
cells distributed at a specific location for active bone tissue engineering. The authors have
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used digital laser processing-based 3D printing technology to ensure the precision of
their scaffolds, allowing the creation of custom-designed structures. The as-described
system displayed significantly improved osteogenic and angiogenic effects as compared
with the unicellular delivery system both in vitro and in vivo, holding great promise for
tissue regeneration.

Moreover, recent progress has been reported in moving from preclinical 3D models
to clinical models [144]. For example, Pauli et al. [145] have described the development
of a precision cancer care platform integrating whole-exosome sequencing with a living
biobank that enables high-throughput drug screens on patient-derived tumor organoids.
The scientists investigated 56 tumor-derived organoid cultures and 19 patient-derived
xenograft models, including bone models, from 769 patients enrolled in an Institutional
Review Board-approved clinical trial. Their tremendous effort may serve as a basis for
discovering novel personalized therapeutic options, especially for patients where standard
clinical options have been exhausted.

Several other perspectives in the field of 3D bone culturing models include automating
cell seeding procedures towards attaining a safe and standardized production of engineered
tissue constructs, using nondestructive live-monitoring techniques to obtain unique insights
into cellular interactions, and moving from single culture to multiorgan models in order
to understand the molecular communications between the bone tissue model and other
tissues/organs [146].

8. Oxidative Stress Influence in BTE

Osteoblasts and osteoclasts are vital in bone remodeling; thus, they have been in-
vestigated to better comprehend the bone regeneration mechanism [147,148]. After the
discovery of osteoprotegerin (OPG), RANKL, and RANK, a pathway was formed which
supplies data for the osteoblast regulation of osteoclasts utilizing bone matrix interaction,
paracrine factors, and cell–cell contact [123,149]. Osteoclasts differentiation (Figure 4)
starts with the attachment of RANKL to the RANK receptor with the aid of a receptor-
associated factor (TRAF6) which activates a wide range of mitogen-activated protein
kinases (MAPKs) that trigger the nuclear factor of activated T cells 1 (NFATc1), leading to
osteoclasts differentiation [148].
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Reactive oxygen species (ROS) are molecules and free radicals (e.g., superoxide anion,
hydrogen peroxide, hydroxyl radical) mainly resulting as byproducts of leaked electrons
from the mitochondrial electron transport chain during aerobic respiration [118]. ROS are
necessary for regulating cellular processes, including proliferation, survival, metabolism,
apoptosis, and differentiation. ROS are moieties of interest in bone regeneration as they
can be used for dual purposes. Their beneficial aspect resides in the ability to act as an
intracellular marking agent, being essential for the transmission of cell signals [148].

However, ROS can produce cellular imbalance in reduction–oxidation reactions when
their level increases due to age or inflammatory states, leading to oxidative stress. Oxidative
stress modulates fundamental cellular physiological responses via signal transduction,
transcription factors, and ncRNAs, promoting nuclear and mitochondrial DNA damage and
initiating DNA repair pathways [118,148]. Continued oxidative stress was demonstrated to
generate diseases, leading to bone destruction and cellular death [149].

ROS are also vital components in osteoclasts’ regulation of differentiation [150]. It had
been assumed that the extreme production of osteoclasts induced by local inflammation
could be prevented by limiting the excessive production of intracellular ROS. The impact
of ROS in the relationship of osteoclasts and osteoblasts was studied with the help of co-
cultured models [151]. In particular, maintaining bone homeostasis is critical in preserving
an optimum balance between formation and resorption, influencing bone mass and strength.
Specifically, these properties begin to reduce with aging, with an enhanced osteoclast
activity and a decreased osteoblast activity [148].

Cellular senescence results in a response to persistent stress; it is characterized by
a stable cell-cycle arrest, the expression of senescence-associated β-galactosidase (SA-β-
gal), the increased expression of the cell cycle inhibitor p16Ink4a, the overexpression of
the cyclin-dependent kinase (CDK) inhibitor, senescence-associated secretory phenotype
(SASP), telomere shortening, and a persistent DNA damage response (DDR) [118,149]. This
is relevant in the context of oxidative stress as ROS provoke cell senescence by stimulating
the DDR pathway to stabilize p53 and promote CDK inhibitor gene expression. Particularly,
p53 represents a major regulator of cellular response to oxidative stress. On the one hand,
it can decrease ROS levels and repair DNA damage in cells; on the other hand, p53 can
increase ROS production and promote the apoptosis or senescence of the cells [118].

Moreover, several conditions can occur due to the patient’s age, such as postmenopausal
osteoporosis, diabetes, cirrhosis, cancer, and neurogenerative disease, which can be de-
layed with antioxidants related to chemo-preventive and curative therapies such as glu-
tathione [152–155]. The redox indicators that are usually analyzed are reduced glutathione
(GSH) and oxidized glutathione (GSSG) and their balance. In addition, some studies noted
the increase of osteoclasts differentiation in the presence of GSH [156].

One of the popular antioxidants used for clinical studies and cell cultures is N-acetyl
cysteine (NAC) [157,158]. Studies that involve NAC treatments concluded a reduction in
cellular processes, and ROS have some involvement in the matter. NAC and ascorbate
have beneficial effects in reducing stimulus for the loss of bone mass, osteoblast apoptosis,
oxidative stress, and osteoclastogenesis after gonadectomy [159,160]. NAC has also been
utilized in the analysis of mitochondrial ROS and physiological involvement [161]. Impor-
tant results have been also obtained by the oral administration of Ewha-18278 (a pyrazole
derivative). It was reported that Ewha-18278 protected ovariectomy-induced osteoporosis
in mice by NADPH oxidase (NOX) inhibition and ROS suppression. This anti-osteoporotic
agent aided in the recovery of bone parameters, leading to improved bone strength and
an increased number of osteoblasts [148]. Another beneficial effect was registered from
vitamin K managing to reduce oxidative stress and ROS production. Specifically, vitamin K
was observed to protect cells from H2O2-induced changes in protein expression, being able
to support bone tissue formation, remodeling, and mineralization [162,163].

Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) represents a signaling path-
way that regulates cells’ proliferation, survival, and death and the osteoblastic and osteo-
clastic functions altering the formation, differentiation, and apoptosis. The deficiency of
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AKT2 translates into a decrease in RUNX2 expression. Thus, the AKT pathway promotes
RUNX2 gene expression [164]. Osteogenic differentiation is promoted by the regulation of
PI3K/AKT and RUNX2, modulating the RUNX2 activity [165].

Table 2 comprises several clinical studies that are being realized, researched, or revis-
ited. The trials reflect the focus growth that the domain is gaining due to the continuous
discoveries in the field. In time, the data and the enhancement of cell isolation will allow
more clinical trials to take place. However, the stages in which some studies reside are
incipient and still focus on side effects and dosage for emerging solutions.

Table 2. Examples of clinical studies in the domain of BTE.

Clinical Trials
• gov• Identifier Official Title Purpose of the Study Data Availability

NCT03652753

Pilon Fracture With
Intra-articular Injection of

N-Acetylcysteine
(Pilon NAC)

Analyzation of the outcomes
obtained from the amino acid
NAC on cartilage cells in cases

of intra-articular fracture of
the ankle joint.

Estimated primary
completion date: January 2023

Estimated study completion
date: January 2024

NCT03024008

Enhancement of Bone
Regeneration and Healing in
the Extremities by the Use of

Autologous BonoFill-II

Evaluation of the safety of an
autologous bone-regenerating
graft for the reconstruction of

deficient bone.

Estimated primary
completion date: June 2022

Estimated study completion
date: September 2022

NCT04498715

Trochanteric Femur Fracture
Operated With Dynamic Hip

Screw System (DHS)
Augmented With a Biphasic
Apatite Sulphate Combined

With Systemic or
Local Bisphosphonate

Investigating the bone
regeneration processes for a
metal device utilizing bone

substitute cement and
bisphosphonate.

Estimated primary
completion date: February

2021

Estimated study completion
date: August 2021

NCT02171104
MT2013-31: Allo HCT for
Metabolic Disorders and

Severe Osteopetrosis

The assessment of the capacity
to generate donor

hematopoietic engraftment
without growth in

transplant-related mortality
for patients with severe

osteopetrosis and inherited
metabolic disorders.

Estimated primary
completion date:
September 2021

Estimated study completion
date: December 2021

NCT04875767

Cartilage Repair Using a
Hyaluronic Acid-Based

Scaffold With Bone Marrow
Aspirate Compared With

Microfracture for Focal
Articular Cartilage Damage of

the Hip (CHASE)

Investigating the results of the
procedure for a 24-month
timespan post-surgery in
order to determine if any
complications will occur.

First posted: 6 May 2021

Estimated study completion
date: 31 December 2026

9. Discussion

Bone regeneration requires the top performance of several components such as efficient
analysis, materials that possess special properties, suitable GFs, and molecules to ensure a
successful overall process.

Oxidative stress plays a vital part in bone regeneration as it is known to alter the
process of bone remodeling. Through the unbalance it creates between osteoblasts and
osteoclasts activity, persistent exposure to high levels of oxidative stress may further
result in cellular senescence, bone diseases, and skeletal system disorders. Thus, special
consideration must be given to maintaining oxidative stress at optimum levels. Particularly,
the destructive potential of ROS can be reduced by the administration of antioxidant
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agents that can restore bone parameters, supporting bone tissue formation, remodeling,
and mineralization.

Nonetheless, ROS production can also be considered relevant as a therapeutic target
under certain conditions, thus being a beneficial aspect if tackled properly. More exactly,
ROS can act as an intracellular marking agent, being involved in the transmission of cell
signals. Hence, its detection and targeting can contribute to a better understanding of
cellular interactions and approaching pathophysiological conditions in a more specific
manner. Therefore, oxidative stress needs to be further regulated and researched in order
to benefit from good results in the field.

Bone regeneration can be enhanced by use of specifically engineered scaffolds. Ma-
terials such as BaG and hydroxyapatite remain good performers among others which
possess advantageous properties, such as a low cytotoxicity and good biocompatibility.
This provides a strong basis for the functionalization and regeneration of the tissue.

Culturing systems are also important tools in analyzing the mechanisms of bone
regeneration, bone homeostasis, and ROS generation and effectively evaluating the various
cells’ response to emerging BTE strategies. In particular, the 3D techniques generate
new data and legitimization to animal studies that were never performed on humans
before. Also, the mimetism of the in vivo domain makes it a good perspective to take into
consideration when it is time to start clinical studies.

Growth factors such as VEGF modulate the process of angiogenesis and osteogenesis.
Hence, they represent valuable assets to any strategy when used properly. Figure 5 displays
the main fields that take part in BTE.
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To summarize the discussion on bone regeneration and oxidative stress, Table 3
synthesizes the roles and effects of the various described cells, growth factors, biomolecules,
signal pathways, and bone engineering scaffolds.



Antioxidants 2022, 11, 318 13 of 22

Table 3. Overview of relevant elements for bone regeneration and oxidative stress.

Key Elements Roles/Effects in Bone Regeneration
and Oxidative Stress Refs.

Category Representatives

Cells

Osteoblasts

Can promote calcium salts deposition in the
bone matrix, leading to bone reconstruction

Their increased production is associated with
improved fracture healing time

Secrete OPG

[105,166]

Osteoclasts

Responsible for bone resorption
Involved in bone remodeling, which is an

essential process for regeneration of bone defects
Express M-CSF and RANKL

Their increased cellular activity has been
associated with bone diseases, such as

osteoporosis, rheumatoid arthritis,
and osteoarthritis

[119,148,166]

Osteocytes

Regulate osteoclast and osteoblast activity
Optimally used and stimulated osteocytes lead

to improved bone regeneration
Can enhance osteogenesis of stem cells

Feedback from osteocytes limits the size of the
bone-forming unit by the secretion of sclerostin

[150,167]

MSCs

May differentiate into osteocytes
Generate osteoclastogenic cytokines, RANKL,

and M-CSF
Inducing MSC osteogenesis promotes bone

formation and bone regeneration

[77,91,105]

Growth factors, biomolecules,
and signal pathways

VEGF

Regulates osteoclast activity
Modulates angiogenesis and osteogenesis

Facilitates MSCs homing and differentiation
Elevates intracellular ROS level

[36,37,166,168,169]

FGF

Active role in bone repair process
Modulates osteoblasts differentiation

Enhances bone regeneration in bone defects and
clinical fractures

[13,170]

BMP
Regulator of cartilage and bone formation

Modulates osteoblasts differentiation
Facilitates MSCs homing and differentiation

[13,105,168]

Shh

Upregulates BMPs
Modulates osteoblasts differentiation

Stimulates a cascade of downstream genes
involved in bone development

Enhances regeneration in bone defects

[13,171]

M-CSF
Modulates osteoclasts differentiation

Role in recruiting stem cells to the fracture site
Impacts hard callus formation

[13,172]

RANKL

Modulates osteoclasts differentiation
Can enhance osteoclastogenesis and improve
bone remodeling when added to biomaterials

Can induce ROS formation

[13,150,166]

OPG
Antagonist receptor for RANKL

Decreases osteoclast formation and bone
resorption activity

[166,173]
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Table 3. Cont.

Key Elements Roles/Effects in Bone Regeneration
and Oxidative Stress Refs.

Category Representatives

NOX

One of the main sources of ROS
NOX2-derived O2

− enhances RANKL-induced
NFATc1 expression in osteoclast signalling;

NOX2 inhibition exerts protective effects and
may prevent bone loss

NOX4 contribues to osteoclastogenesis and bone
homeostasis; NOX4 is involved in bone loss,

representing a potential therapeutic target for
osteoporosis treatment

[148]

P53

Regulates cell cycle, apoptosis, growth, and
metabolism of target genes

Master regulator in the cellular response to
oxidative stress

Reduces intracellular ROS levels by promoting
antioxidant reactions

[118]

miRNA

Modulates osteogenic differentiation and general
transcription factors

Can regulate processes such as oxidative stress,
aging, and apoptosis

Involved in the generation of ROS
Several miRNAs are involved in

cellular senescence

[101,118]

Scaffolds

Hydrogels

Delivery and controlled release of growth factors
that aid neovascularization

Enhance proliferation of HUVEC when
incorporated with these cells

Support co-culturing of bone cells

[21,34,123]

Bioceramics

Their microstructure promotes ossification and
vascularization growth

Well-defined pore architecture improves cell
seeding efficiency, cell viability, migration,

proliferation, and differentiation, enhancing
bone regeneration

Can be functionalized with growth factors that
aid in osteogenesis and angiogenesis

[25,34,35,49]

Bioactive glass

Enhances bone regeneration during longer
periods of time

Involved in the regulatory process of
endothelial markers

Material porosity influences remineralization

[68,69,74]

Abbreviations: MSCs—mesenchymal stem cells; VEGF—vascular endothelial growth factor; FGF—fibroblast
growth factor; BMP—bone morphogenic protein; Shh—sonic hedgehog; M-CSF—macrophage colony-stimulating
factor; RANKL—receptor activator of nuclear factor kappa-B ligand; OPG—osteoprotegerin; NOX—NADPH
oxidase; NFATc1—nuclear factor of activated T cells 1; HUVEC—human umbilical vein endothelial cells.

10. Conclusions and Future Perspectives

Bone regeneration depends on several other domains to generate the best results,
with many discoveries and breakthroughs owed to interdisciplinary research studies.
Bioactive materials have been researched independently and used under the form of
composites to obtain synergistic results monitored through in vitro and in vivo tests. The
materials response leads to the discussion of functionalization with biomolecules and
growth factors to accelerate the healing process with the full potential of cell growth.
Aspects and particularities such as tensile strength, pore dimension, and composition
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are frequently modulated to obtain a data flux that can help decide the desired path to
be followed.

As bone cells are scarce, not much research is available in clinical settings. Thus,
studies mostly concern the employment of culture models for investigating bone cell
interactions, bone metabolism, and disease behavior. In this respect, particular attention
has been drawn to coculturing osteoclasts, osteocytes, and osteoblasts into biomimetic
platforms. The co-cultured models have also sparked the idea of microfluidic attempts to
generate bone-on-a-chip and ensure reliable data, but lack the ability to obtain a wide array
of samples to date. Interesting results are also expected from the future development of
multiorgan models that would help comprehend the importance of bone homeostasis in
relation to other tissues and organs.

Considering every aspect that the domain provides, the existing solutions are con-
tinuously enhanced with the availability of new data streams. Oxidative stress and its
associated diseases are being analyzed, and new antioxidants emerge as promising solu-
tions. The beneficial aspects of ROS and the damaging concentrations of the molecules are
being tested to have the greatest benefits from the data obtained.

To conclude, multiple bone scaffolding materials and functionalization molecules are
emerging from recent studies and might soon start being utilized for obtaining a better
clinical experience. Thus, we can presume that developing interdisciplinary studies lead
to the emergence of new technologies for tissue engineering, oxidative stress control,
osteogenesis promotion, and bone disease prevention.
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