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Abstract: The coloring efficiency and physiological function of astaxanthin in fish vary with its
regions. The aim of this study was to compare the retention rates of dietary astaxanthin from different
sources and its effects on growth, pigmentation, and physiological function in Oncorhynchus mykiss.
Fish were fed astaxanthin-supplemented diets (LP: 0.1% Lucantin® Pink CWD; CP: 0.1% Carophyll®

Pink; EP: 0.1% Essention® Pink; PR: 1% Phaffia rhodozyma; HP: 1% Haematococcus pluvialis), or a
diet without astaxanthin supplementation, for 56 days. Dietary astaxanthin enhanced pigmentation
as well as the growth of the fish. The intestinal morphology of fish was improved, and the crude
protein content of dorsal muscle significantly increased in fish fed with astaxanthin. Moreover,
astaxanthin led to a decrease in total cholesterol levels and alanine aminotransferase and aspartate
aminotransferase activity in plasma. Fish fed on the CP diet also produced the highest level of umami
amino acids (aspartic acid and glutamic acid). Regarding antioxidant capacity, astaxanthin increased
Nrf2/HO-1 signaling and antioxidant enzyme activity. Innate immune responses, including lysozyme
and complement systems, were also stimulated by astaxanthin. Lucantin® Pink CWD had the highest
stability in feed and achieved the best pigmentation, Essention® Pink performed best in growth
promotion and Carophyll® Pink resulted in the best flesh quality. H. pluvialis was the astaxanthin
source for achieving the best antioxidant properties and immunity of O. mykiss.

Keywords: trout; astaxanthin; coloring; antioxidant status; immunity; flesh quality

1. Introduction

Oncorhynchus mykiss is the most extensively reared carnivorous cold-water fish world-
wide, with a production volume in 2020 of 959,600 tons [1]. The flesh and skin color of
O. mykiss are vital evaluation criteria that determine consumer acceptance and market
price. It is generally known that carotenoids, especially astaxanthin, account for the natural
body color of salmonids [2]. Similar to other aquatic animals, O. mykiss cannot synthesize
carotenoids de novo. Thus its body color depends on dietary intake. The supplementa-
tion of fish feed with carotenoids is an efficient approach to obtaining pigmentation in
aquaculture [2]. Astaxanthin has been primarily used in feed for salmon, trout, and crus-
taceans to increase pigment deposition in the skin, muscles, or exoskeleton [3]. Moreover,
dietary astaxanthin has positive effects on the growth and various physiological functions
of aquatic animals (e.g., oxidation resistance, immunomodulation, stress resistance, and
disease resistance) [4]. There have been significant developments in the research into, and
application of, astaxanthin in aquaculture over the past few years.
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Commercially available astaxanthin is primarily derived from either chemical syn-
thesis or natural resources (e.g., the red yeast Phaffia rhodozyma, the bacterium Paracoccus
carotinifaciens and the microalga Haematococcus pluvialis) [3,5]. Chemically synthesized
astaxanthin dominates the market due to its lower production cost and better stability at
higher carotenoid concentrations, accounting for 95% of the global astaxanthin market [4,6].
BASF (Badische Anilin & Sodafabrik, Ludwigshafen, Germany), DSM (Dutch State Mines,
Heerlen, The Netherlands) and NHU (New Harmony Union, Shaoxing, China) are rec-
ognized as the leading global manufacturers of synthetic astaxanthin. Astaxanthin from
synthetic and natural sources differs with regard to esterification and stereochemistry, thus
impacting its stability, bioavailability, and physiological properties [3,7]. Furthermore, the
metabolic pathways of carotenoids in fish are species-specific [6].

Previous research has focused on comparing the effects of H. pluvialis and synthetic
astaxanthin on the body color of O. mykiss [8,9]. However, the effects of dietary supplemen-
tation with natural or synthetic astaxanthin on growth, oxidation resistance, innate immune
regulation, and the flesh quality of O. mykiss remain unclear due to a lack of data. Moreover,
the retention rates of synthetic and natural astaxanthin in the diet of O. mykiss are still un-
known. Accordingly, this study was conducted to compare the effects of natural astaxanthin
(e.g., H. pluvialis and P. rhodozyma) and synthetic astaxanthin (e.g., Lucantin® Pink CWD
(BASF, Ludwigshafen, Germany), Carophyll® Pink (DSM, Heerlen, The Netherlands) and
Essention® Pink (NHU, Shaoxing, China)) on pigmentation, growth, oxidation resistance,
innate immune regulation, flesh quality and the intestinal morphology of O. mykiss in
aquaculture. Furthermore, this study is the first to elucidate retention rates of mainstream
astaxanthin products in the diet of O. mykiss. The findings of this study show the effects of
synthetic and natural astaxanthin on pigmentation and physiological function in O. mykiss
and provide a valuable contribution to the development of precision functional feed for
aquatic animals.

2. Materials and Methods
2.1. Astaxanthin Sources and Diet Preparation

Table 1 lists the formulation and proximate composition of the six isonitrogenous (46%
crude protein) and isoenergetic (15% crude lipid) experimental diets (Control: control diet
without astaxanthin supplement; LP: 0.1% Lucantin® Pink CWD; CP: 0.1% Carophyll®

Pink; EP: 0.1% Essention® Pink; PR: 1% P. rhodozyma; HP: 1% H. pluvialis) with different
astaxanthin sources. The H. pluvialis and P. rhodozyma of 1% (w/w) astaxanthin concentrate
came from Aiphy Biotech Co., Ltd. (Yunnan, China) and Lvjia Biotech Co., Ltd. (Nanping,
China), respectively. The Lucantin® Pink CWD, Carophyll® Pink and Essention® Pink of
10% (w/w) astaxanthin concentrate were provided by BASF (Ludwigshafen, Germany),
DSM (Heerlen, The Netherlands) and NHU (Shaoxing, China), respectively. The experi-
mental diet consisted of fish meal, soybean meal, soy protein isolate and Tenebrio molitor
meal as protein sources, fish oil and soybean lecithin as lipid sources, corn starch and
cassava starch as carbohydrate sources, supplemented with methionine and lysine to meet
the nutritional requirements of O. mykiss. The experimental feeds were produced based on
the procedures described previously [10].

2.2. Fish and Experimental Conditions

The O. mykiss used in the study originated from a local commercial company (Qing-
hai, China). The feeding trial was performed in the upper reaches of the Yellow River
(101.0′27” E, 36.8′22” N) with 24 floating net cages (2.8 m × 2.7 m × 2 m). The respective
experimental diets were assigned to one of four cages (30 fish per cage). Fish were fed the
control diet for 2 weeks to adapt to the experimental environment. After acclimation, fish
with an initial body weight of 251.04 ± 0.91 g were randomly selected for the feeding trial.
The fish were fed twice a day at 8:30 a.m. and 6:30 p.m., and feeding was stopped when the
fish no longer came to the surface to feed. The feeding trial lasted for 56 days. During the
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trial, the water temperature ranged from 11 to 15 ◦C, and the dissolved oxygen content in
the water was not less than 6.0 mg L−1.

Table 1. Composition and nutrient levels of the experimental diets (% dry matter).

Ingredients Control LP CP EP PR HP

Fish meal 43 43 43 43 43 43
Soybean meal 5 5 5 5 5 5

Soy protein isolate 10 10 10 10 10 10
Corn starch 10.7 10.6 10.6 10.6 9.7 9.7

Tenebrio molitor meal 8 8 8 8 8 8
Cassava starch 5 5 5 5 5 5

Fish oil 12 12 12 12 12 12
Soybean lecithin 2 2 2 2 2 2

Ca (H2PO4)2 1 1 1 1 1 1
Vitamin premix a 1 1 1 1 1 1
Mineral premix b 1 1 1 1 1 1

Choline 0.5 0.5 0.5 0.5 0.5 0.5
Vitamin C 0.5 0.5 0.5 0.5 0.5 0.5

DL-Met 0.2 0.2 0.2 0.2 0.2 0.2
Lys-HCL (99%) 0.1 0.1 0.1 0.1 0.1 0.1

Lucantin Pink CWD (10%) c 0 0.1 0 0 0 0
Carophyll Pink (10%) d 0 0 0.1 0 0 0
Essention Pink (10%) e 0 0 0 0.1 0 0
Phaffia rhodozyma (1%) f 0 0 0 0 1 0

Haematococcus Pluvialis (1%) g 0 0 0 0 0 1
Total 100 100 100 100 100 100

Nutrient levels h

Crude protein 46.47 46.75 46.76 46.02 46.45 46.47
Crude lipid 15.46 16.12 15.66 15.68 15.49 15.37

Moisture 9.33 9.58 9.61 9.77 9.16 9.39
a Multi-vitamin (kg−1 diet): Vitamin B1 30 mg; Vitamin B2 60 mg; Vitamin B6 20 mg; Nicotinic acid 200 mg;
Calcium pantothenate 100 mg; Inositol 100 mg; Biotin 2.5 mg; Folic acid 10 mg; Vitamin B12 0.1 mg; Vitamin
K3 40 mg; Vitamin A 10000IU; Vitamin D3 2000IU; Vitamin E 160IU. b Multi-mineral (kg−1 diet): MgSO4·7H2O
1090 mg; KH2PO4 932 mg; NaH2PO4·2H2O 432 mg; FeC6H5O7·5H2O 181 mg; ZnCl2 80 mg; CuSO4·5H2O
63 mg; AlCl3·6H2O 51 mg; MnSO4·H2O 31 mg; KI 28 mg; CoCl2·6H2O 6 mg; Na2SeO3·H2O 0.8 mg. c Lucantin
Pink CWD containing 10% astaxanthin purchased from BASF (Baden Aniline and Soda Factory), Shanghai,
China. d Carophyll Pink containing 10% astaxanthin purchased from DSM (Dutch State Mines), Shanghai, China.
e Essention Pink containing 10% astaxanthin purchased from NHU (New Harmony Union), Xinchang, Zhejiang
Province, China. f Phaffia rhodozyma containing 1% astaxanthin purchased from Lujia Biotech Co., Ltd., Nanping,
Fujian Province, China. g The Haematococcus Pluvialis powder containing 1% astaxanthin was purchased from
Aiphy Biotech Co., Ltd., Yunnan, China. h Measured values.

2.3. Sample Collection

All fish were starved for 24 h after the feeding trial. Next, all fish were anesthetized
with 150 mg L−1 of MS-222 (Sigma-Aldrich, St. Louis, MO, USA) for counting and weighing.
Three fish per cage were selected at random and then stored at−80 ◦C to investigate whole-
body composition and astaxanthin content. Another three fish were randomly taken from
each cage to collect dorsal muscle (all from the same position), and to measure color
parameters. Subsequently, the dorsal muscle was stored at −80 ◦C to investigate proximate
composition, astaxanthin concentration, amino acid, and fatty acid composition. The
intestines of these three fish were then soaked in 4% paraformaldehyde for morphology
analysis. Afterward, three fish from each cage were used to measure pigmentation in fresh
fillets at the horizontal position of the lateral line. Another six fish per cage were selected
to collect plasma, which was stored at −80 ◦C until the analysis of biochemical parameters.
Lastly, the livers of these six fish were removed and frozen in liquid nitrogen to determine
enzyme activity and to perform Real-Time Quantitative PCR (qPCR) as well as Western
Blotting analysis.
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2.4. Nutritional Composition, Pigmentation, Astaxanthin Content and Morphological Analysis
of Samples

The proximate compositions of the experimental diets, whole body, and dorsal muscle,
including moisture, crude lipid, and crude protein content, were analyzed using a standard
method of AOAC [11]. The amino acid and fatty acid compositions in the dorsal muscles
were quantified using the method presented in an earlier study [12].

A hand-held colorimeter (CR-10 plus, Konica Minolta, Tokyo, Japan) was used to mea-
sure the color parameters of the dorsal muscles. L*, a* and b* represent lightness, redness,
and yellowness, respectively. Spectrophotometry was used to determine the astaxanthin
content in the dorsal muscles and whole body and test diets according to a previously
reported method [13]. Color differences in fresh fillets were quantified using color cards
(BASF Salmon Color Fan, BASF, Ludwigshafen, Germany). The color values of fresh fillets
were examined independently by two researchers. For each experimental diet, the results
from both researchers were used to calculate an average value for coloring ability.

Histological observation after hematoxylin and eosin staining was performed in
accordance with the procedures presented in an earlier study [14]. Gut samples were fixed
in 4% paraformaldehyde and then dehydrated in a graded ethanol series (75%, 4 h; 85%, 2 h;
90%, 2 h; 95%, 1 h; 100%, 1 h). Then, the gut samples were immersed in a mixed solution of
ethanol (100%) and xylene with a volume ratio of 1:1 for 30 min, followed by immersion in
xylene solution for 30 min. After dehydration, the gut samples were embedded in paraffin.
Sections (5 mm thick) of the midgut and liver were obtained with a rotary microtome and
stained with hematoxylin and eosin. Finally, the sections were observed and photographed
using an optical microscope (Leica DMLB, Leica, Wetzlar, Germany).

2.5. Plasma and Antioxidant Parameters and qPCR Analysis

Alanine aminotransferase (ALT) (C009-2-1) and aspartate aminotransferase (AST)
(C010-2-1) activity levels, as well as total cholesterol (T-CHO) (A111-1-1) and lysozyme
(Lyz) (A050-1-1) levels in plasma, were obtained using commercial assay kits (Jiancheng
Bioengineering Institute, Nanjing, China), in accordance with the instructions.

Superoxide dismutase (SOD) (A001-1-1) activity, malondialdehyde (MDA) (A003-1-2)
content and total antioxidant capacity (T-AOC) (A015-2-1) were examined in liver tissue
using commercial assay kits (Jiancheng Bioengineering Institute), in accordance with
the instructions.

qPCR was performed in accordance with the procedure described in an earlier study [15].
The gene-specific primers are shown in Table 2. β-actin was set as the reference gene. The
relative translation levels of the respective gene were obtained based on the 2−∆∆CT method.

Table 2. Primer information of Real-time fluorescent quantitative PCR.

Gene Primer Sequence (5′ to 3′) Genbank No.

Nrf2-F GCAGAGGTCTGCCCACCTGAAT
HQ916348.1Nrf2-R GCCACAAGGCAGGGTGACACTT

HO-1-F CGCCTACACCCGTTACCTAG
AF099079.2HO-1-R CTCTCCGCTGCTTAACCCAA

Lyz-F
Lyz-R

GAAACAGCCTGCCCAACT
GTCCAACACCACACGCTT AF452171.1

C3-F GGCCAGTCCCTGGTGGTTA
XM_036955530.1C3-R GGTGGACTGTGTGGATCCGTA

β-actin-F TACAACGAGCTGAGGGTGGC
AJ438158.1

β-actin-R GGCAGGGGTGTTGAAGGTCT

2.6. Calculations and Statistical Analysis

Growth parameters were calculated according to the equation described previously [15].
Condition factor (CF) was obtained as follows: CF (g/cm3) = 100× (body weight in g)/(body
length in cm)3.
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The data are expressed as means ± standard error (SE) and were subjected to one-way
ANOVA analysis using SPSS 20.0 software. The normality and homogeneity of data were
analyzed using the Kolmogorov-Smirnov test and Levene’s test, respectively. Subsequently,
differences between the experimental diets were determined with Duncan’s multiple-range
test. The data were considered to have significant differences at p < 0.05.

3. Results
3.1. Pigmentation and Astaxanthin Content

Visual color inspection shows that the diets supplemented with astaxanthin signifi-
cantly improved the pigmentation of abdominal muscle (Figure 1A). The BASF salmon
color fan cards were used to quantify the results of visual color inspections, with higher
color fan values indicating higher redness values. The BASF salmon color fan value in the
control group was significantly lower than that in the LP, CP, EP, PR, and HP diet groups
(p < 0.05) (Figure 1B). The color fan value of synthetic astaxanthin diets (LP and CP) was
also significantly higher than that of natural astaxanthin diets (PR and HP) (p < 0.05), indi-
cating that synthetic astaxanthin (LP and CP) supplementation showed greater efficiency
than natural astaxanthin (PR and HP) in improving the pigmentation of abdominal muscle
in O. mykiss.
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Figure 1. Comparison of pigmentation in the dorsal muscle of Oncorhynchus mykiss fed on an
experimental diet for 56 days ((A) Visual color inspection; (B) Salmon color fan value). The color
value of fresh fillet in Oncorhynchus mykiss fed on experimental diets. Values are presented as
mean ± SE, n = 12. Different letters represent statistical differences (p < 0.05).

Colorimetric analysis shows that the color parameters (L*, a*, and b* values) of ab-
dominal muscle were affected by dietary astaxanthin (p < 0.05) (Table 3). Fish fed with
astaxanthin-supplemented diets (LP, CP, EP, PR, and HP) had a significantly lower light-
ness (L*) value than those fed the control diet (p < 0.05). In contrast, higher redness
(a*) values in abdominal muscle were obtained in fish that were fed diets supplemented
with astaxanthin (LP, CP, EP, PR, and HP) (p < 0.05). Meanwhile, fish fed with synthetic
astaxanthin-supplemented diets (LP, CP, and EP) showed significantly higher a* values
than those fed on diets supplemented with natural astaxanthin (PR and HP) (p < 0.05). Like-
wise, higher yellowness (b*) values were obtained in fish fed on diets supplemented with
synthetic astaxanthin (LP, CP, and EP) (p < 0.05), while there was no significant difference
between natural astaxanthin (PR and HP) and the control diet (p > 0.05).

Fish fed on diets supplemented with astaxanthin (LP, CP, EP, PR, and HP) had higher
astaxanthin content in their abdominal muscle and whole body than those fed the control
diet (p < 0.05) (Table 4). Synthetic astaxanthin (LP, CP, and EP) was superior to natural
astaxanthin (PR and HP) in promoting astaxanthin accumulation in abdominal muscles
and in the whole body (p < 0.05).
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Table 3. The color parameters of dorsal muscle in Oncorhynchus mykiss fed experimental diets.

Lightness (L*) Redness (a*) Yellowness (b*)

Control 39.51 ± 1.11 b 7.21 ± 0.74 a 7.98 ± 0.39 a

LP 31.76 ± 0.99 a 12.79 ± 0.58 c 9.74 ± 0.62 bc

CP 33.59 ± 0.75 a 12.17 ± 0.56 c 10.43 ± 0.56 c

EP 33.57 ± 0.78 a 12.37 ± 0.61 c 10.18 ± 0.42 c

PR 34.43 ± 1.17 a 9.22 ± 0.59 b 7.74 ± 0.35 a

HP 34.02 ± 0.85 a 9.78 ± 0.72 b 8.40 ± 0.45 ab

Values are presented as mean ± SE, n = 12. Superscript letters in the same column indicate a significant difference
at p < 0.05.

Table 4. Astaxanthin content (mg/kg) in the whole body and dorsal muscle of Oncorhynchus mykiss
fed with the experimental diets.

Control LP CP EP PR HP

Whole body
Astaxanthin content 2.76 ± 0.28 a 6.32 ± 0.42 c 5.91 ± 0.49 c 5.79 ± 0.55 c 4.01 ± 0.54 b 4.42 ± 0.66 b

Dorsal muscle
Astaxanthin content 1.59 ± 0.08 a 5.65 ± 0.44 c 5.22 ± 0.46 c 4.93 ± 0.22 c 2.93 ± 0.24 b 3.23 ± 0.43 b

Values are presented as mean ± SE, n = 12. Superscript letters in the same row indicate a significant difference at
p < 0.05.

3.2. Retention Rates of Astaxanthin in Feeds

As shown in Table 5, the astaxanthin retention rate of the LP diet was the highest after
being extruded into pellets, followed by HP, PR, CP, and EP. When all experimental diets
were stored for one month, the astaxanthin retention rate was the highest in the LP diet,
followed by EP, HP, PR, and CP. Similarly, when the experimental diets were stored for two
months, the astaxanthin retention rate was the highest in the LP diet, followed by EP, CP,
HP, and PR. The results indicated that the retention rates of synthetic astaxanthin (LP, CP,
and EP) in feeds were better than that of natural astaxanthin (PR and HP) after two months
of storage, and Lucantin® Pink CWD showed the lowest extrusion losses and the highest
stability during storage.

Table 5. Retention rates of astaxanthin in feeds.

Item Control LP CP EP PR HP

Astaxanthin content in feeds before extrusion (mg/kg)
5.02 94.35 104.02 96.13 96.32 97.03

Astaxanthin content in feeds after extrusion (mg/kg)
4.93 92.34 100.02 91.12 93.31 94.21

Astaxanthin retention in feeds after extrusion (%)
98.21 97.87 96.15 94.79 96.88 97.09

Astaxanthin content in feeds after 1-month (mg/kg)
4.62 86.32 90.02 85.12 84.28 86.57

Astaxanthin retention in feed after 1-month (%)
93.71 93.48 90.00 93.41 90.32 91.89

Astaxanthin content in feeds after 2-month (mg/kg)
4.14 76.00 76.52 72.96 67.06 72.36

Astaxanthin retention in feed after 2-month (%)
89.66 88.04 85.00 85.71 79.57 83.59

3.3. Biological Parameters

There were no significant differences in survival rate (SR) and CF between the ex-
perimental diets (p > 0.05). Higher final body weight (FBW), weight gain rate (WGR)
and specific growth ratio (SGR) were obtained in fish fed on diets supplemented with
astaxanthin (LP, CP, EP, PR, and HP) (p < 0.05). Meanwhile, fish fed on the EP and HP
diets showed better FBW and WGR than the other astaxanthin groups (p < 0.05). The feed
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conversion ratio (FCR) of fish fed on the LP and EP diets was significantly lower than that
of fish fed with the control diet (p < 0.05), but there was no significant difference between
the astaxanthin groups (p > 0.05) (Table 6).

Table 6. The growth performance of Oncorhynchus mykiss fed with the experimental diets.

Control LP CP EP PR HP

IBW (g) 251.35 ± 1.27 249.92 ± 0.63 251.22 ± 1.12 251.43 ± 0.98 250.46 ± 0.87 251.86 ± 0.58
FBW (g) 618.01 ± 5.20 a 649.80 ± 6.18 b 652.32 ± 4.44 b 670.39 ± 3.86 c 651.98 ± 6.21 b 672.71 ± 7.10 c

WGR (%) 145.92 ± 3.05 a 160.04 ± 2.44 b 159.67 ± 1.61 b 166.66 ± 2.53 c 160.33 ± 2.75 b 165.22 ± 5.89 bc

SGR (%/d) 1.00 ± 0.01 a 1.06 ± 0.01 b 1.06 ± 0.01 b 1.09 ± 0.01 b 1.06 ± 0.01 b 1.08 ± 0.01 b

SR (%) 100 ± 0 100 ± 0 97.5 ± 1.60 100 ± 0 98.34 ± 0.96 99.17 ± 0.83
FCR 1.66 ± 0.06 b 1.42 ± 0.04 a 1.52 ± 0.08 ab 1.40 ± 0.04 a 1.56 ± 0.06 ab 1.52 ± 0.07 ab

CF (g/cm3) 1.21 ± 0.02 1.22 ± 0.02 1.16 ± 0.03 1.18 ± 0.04 1.17 ± 0.03 1.17 ± 0.02

Values are presented as mean ± SE, n = 4. Superscript letters in the same row indicate a significant difference at
p < 0.05.

3.4. Whole Body and Muscle Composition Analysis

As shown in Table 7, the moisture content in the whole body and dorsal muscle was
not affected by the experimental diets (p > 0.05). Astaxanthin groups (LP, CP, EP, PR, and
HP) showed a significant decrease in whole-body crude lipid content and an increase in
dorsal muscle crude protein content (p < 0.05), whereas there was no significant effect of the
experimental diets on the crude lipid content of dorsal muscle (p > 0.05). Except for PR, fish
that were fed diets supplemented with astaxanthin (LP, CP, EP and HP) had an obviously
higher level of crude protein in the whole body compared to those fed the control diet
(p < 0.05).

Table 7. The whole-body and muscle composition of Oncorhynchus mykiss fed with the
experimental diets.

Item Control LP CP EP PR HP

Whole-body, % dry weight
Moisture 69.24 ± 0.45 68.74 ± 0.71 69.99 ± 1.02 70.64 ± 0.42 69.31 ± 0.34 69.93 ± 0.40

Crude protein 55.17 ± 0.65 a 59.71 ± 0.38 b 59.03 ± 1.03 b 59.07 ± 1.13 b 56.64 ± 0.17 ab 58.71 ± 0.99 b

Crude lipid 33.48 ± 0.48 c 29.39 ± 0.15 b 28.12 ± 0.21 a 28.19 ± 0.20 a 30.41 ± 0.63 b 26.98 ± 0.22 a

Dorsal muscle, % dry weight
Moisture 78.30 ± 0.36 76.84 ± 0.35 78.62 ± 0.30 76.62 ± 0.77 75.96 ± 0.63 75.96 ± 0.63

Crude protein 75.97 ± 0.68 a 80.44 ± 0.31 c 81.54 ± 0.44 c 79.97 ± 0.68 bc 77.96 ± 0.34 b 77.96 ± 0.34 b

Crude lipid 9.49 ± 0.58 8.74 ± 0.60 8.98 ± 0.63 8.58 ± 0.37 8.61 ± 0.89 8.61 ± 0.89

Values are presented as mean ± SE, n = 12. Superscript letters in the same row indicate a significant difference at
p < 0.05.

3.5. Amino Acid and Fatty Acid Composition Analysis

Higher levels of non-essential amino acids (NEAA) and total amino acids (TAA) in
the dorsal muscle were obtained in fish fed on the CP, PR, and HP diets, but there were no
obvious differences between all treatments (p > 0.05). Fish fed on the CP diet had higher
essential amino acid (EAA) levels than those fed the EP diet (p < 0.05), but there was no
significant difference with the other diet groups (p > 0.05). Moreover, the CP diet produced
the highest level of umami amino acids (including aspartic acid (Asp) and glutamic acid
(Glu)) of all experimental diets (Table 8).

The long-chain fatty acid content of abdominal muscle was significantly affected by
dietary astaxanthin (p < 0.05) (Figure 2). The oleic acid level in the control, LP, and CP
diet groups was remarkably lower compared to the EP, PR, and HP diet groups (p < 0.05),
whereas the linoleic acid (LA) level was contrary to that of oleic acid. The γ-linolenic
acid (γ-LNA) level was not affected by the experimental diets (p > 0.05). The levels of
α-linolenic acid (α-LNA) and docosahexaenoic acid (DHA) in the PR and HP diet groups



Antioxidants 2022, 11, 2473 8 of 18

were significantly lower compared to the control, LP and CP diet groups (p < 0.05), but
there was no significant difference from the EP diet group (p > 0.05). It is noteworthy that
the astaxanthin-supplemented diets reduced the level of eicosapentaenoic acid (EPA) in
abdominal muscle (p < 0.05).

Table 8. Amino acid composition in the dorsal muscle of Oncorhynchus mykiss fed on the experimental
diets (% dry matter).

Control LP CP EP PR HP

Methionine (Met) * 2.32 ± 0.03 a 2.31 ± 0.06 a 2.42 ± 0.04 ab 2.36 ± 0.02 ab 2.48 ± 0.05 b 2.44 ± 0.06 ab

Lysine (Lys) * 6.50 ± 0.07 a 6.52 ± 0.12 a 6.87 ± 0.13 ab 6.57 ± 0.09 ab 6.96 ± 0.12 b 6.83 ± 0.19 ab

Threonine (Thr) * 3.16 ± 0.04 a 3.16 ± 0.06 a 3.31 ± 0.04 ab 3.29 ± 0.05 ab 3.47 ± 0.07 b 3.45 ± 0.07 b

Phenylalanine (Phe) * 3.07 ± 0.03 ab 3.08 ± 0.07 ab 3.32 ± 0.02 c 3.00 ± 0.04 a 3.20 ± 0.06 bc 3.14 ± 0.06 ab

Isoleucine (Ile) * 3.25 ± 0.03 a 3.26 ± 0.06 a 3.40 ± 0.04 ab 3.30 ± 0.03 a 3.48 ± 0.05 b 3.43 ± 0.09 ab

Leucine (Leu) * 5.73 ± 0.05 ab 5.77 ± 0.12 ab 6.05 ± 0.07 b 5.57 ± 0.07 a 5.94±0.12b 5.86 ± 0.15 ab

Valine (Val) * 3.89 ± 0.04 a 3.89 ± 0.06 a 4.12 ± 0.06 b 3.83 ± 0.03 a 4.01 ± 0.06 ab 3.99 ± 0.10 ab

Histidine (His) * 2.88 ± 0.05 b 2.92 ± 0.02 b 3.09 ± 0.06 c 1.91 ± 0.05 a 2.01 ± 0.02 a 1.98 ± 0.03 a

Arginine (Arg) * 4.24 ± 0.07 ab 4.14 ± 0.06 a 4.40 ± 0.08 ab 4.14 ± 0.07 a 4.44 ± 0.09 b 4.40 ± 0.12 ab

Glycine (Gly) ** 3.69 ± 0.10 bc 3.39 ± 0.06 a 3.78 ± 0.09 c 3.49 ± 0.03 ab 3.63 ± 0.05 bc 3.71 ± 0.09 bc

Serine (Ser) ** 2.76 ± 0.04 a 2.74 ± 0.05 a 2.91 ± 0.03 ab 2.82 ± 0.03 a 3.01 ± 0.08 b 3.01 ± 0.06 b

Proline (Pro) ** 2.35 ± 0.12 ab 2.23 ± 0.02 a 2.47 ± 0.06 b 2.29 ± 0.02 ab 2.35 ± 0.05 ab 2.36 ± 0.01 ab

Alanine (Ala) ** 4.35 ± 0.05 ab 4.32 ± 0.08 ab 4.57 ± 0.07 b 4.27 ± 0.06 a 4.49 ± 0.07 ab 4.42 ± 0.11 ab

Aspartic acid (Asp) ** 7.48 ± 0.09 ab 7.47±0.14 ab 7.85 ± 0.06 b 7.28 ± 0.08 a 7.71 ± 0.13 ab 7.59 ± 0.06 ab

Glutamic acid (Glu) ** 10.00 ± 0.14 a 10.02 ± 0.19 ab 10.66 ± 0.18 b 10.12 ± 0.14 a 10.62 ± 0.20 b 10.54 ± 0.29 ab

Essential amino acids 35.04 ± 0.40 ab 35.04 ± 0.62 ab 36.99 ± 0.45 b 33.96 ± 0.45 a 36.01 ± 0.63 ab 35.52 ± 0.87 ab

Non-essential amino
acids 30.77 ± 0.47 30.17 ± 0.52 32.23 ± 0.47 30.28 ± 0.30 31.81 ± 0.58 31.63 ± 0.75

Total amino acids 65.81 ± 0.85 65.21 ± 1.14 69.22 ± 0.92 64.24 ± 0.74 67.81 ± 1.21 67.15 ± 1.62

* essential amino acid; ** non-essential amino acids. Values are presented as mean ± SE, n = 4. Superscript letters
in the same row indicate a significant difference at p < 0.05.
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3.6. Morphological Analysis

No remarkable histological changes were observed in the middle intestine under any
dietary regimen (Figure 3).
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Figure 3. The intestinal histology of Oncorhynchus mykiss was fed with experimental diets for 56 days.
Magnification 200×.

Examination of the intestinal morphology showed that villus height in the EP, PR
and HP diet groups was remarkably higher than in the control, LP and CP diet groups
(p < 0.05). The highest value of villus thickness was obtained in the HP diet group and was
significantly higher than in the other diet groups (p < 0.05). Fish fed the LP, CP, EP and
PR diets had higher mucosal thickness than those fed the control and HP diets (p < 0.05)
(Figure 4).
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3.7. Plasma Biochemical Parameters

ALT activity and T-CHO levels in the astaxanthin-supplemented groups (LP, CP, EP,
PR, and HP) were remarkably lower than in the control group (p < 0.05). Fish fed on the LP,
EP, PR, and HP diets had lower AST activity than those fed on the control diet (p < 0.05).
Compared with the control group, Lyz content was significantly enhanced by the HP diet
and decreased by the PR diet (p < 0.05) (Figure 5).
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3.8. Antioxidant Parameters in the Liver

Antioxidant parameters were significantly affected by dietary astaxanthin (p < 0.05)
(Figure 6). MDA levels in the livers of the astaxanthin-supplemented groups (LP, CP, EP,
PR, and HP) were significantly lower than in the control group (p < 0.05). Fish fed on the CP,
EP and HP diets had higher SOD activity than those fed on the control diet (p < 0.05), but
there was no obvious difference from the control, LP and PR diets (p > 0.05). Except for PR,
fish fed on the diets supplemented with astaxanthin (LP, CP, EP and HP) had significantly
higher T-AOC values than those fed on the control diet (p < 0.05).
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Fish fed with natural astaxanthin (PR and HP) showed significantly higher mRNA
levels of NF-E2-related nuclear factor 2 (Nrf2) than those fed the control diet or synthetic
astaxanthin (LP, CP, and EP) (p < 0.05). The transcription level of heme oxygenase-1 (HO-1)
was significantly up-regulated by diets supplemented with astaxanthin (p < 0.05) (Figure 7).
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3.9. Expression Analysis of Immune-Related Genes in Liver

As depicted in Figure 8, mRNA levels of complement 3 (C3) in the astaxanthin-
supplemented groups (LP, CP, EP, PR, and HP) were remarkably higher than in the control
group (p < 0.05). Except for PR, mRNA levels of Lyz in the LP, CP, EP and HP diets were
significantly higher than in the control group (p < 0.05).
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4. Discussion
4.1. Pigmentation and Astaxanthin Accumulation

A well-established function of astaxanthin in aquatic animals is the enhancement of
skin and flesh coloration. For O. mykiss, attractive flesh color is critical to commercial value
since it is an important criterion by which consumers judge product quality (e.g., freshness,
nutritional value, and flavor), which ultimately affects market price. In this study, the sup-
plementation of astaxanthin in the diet significantly enhanced the pigmentation of dorsal
muscle in O. mykiss as assessed by visual inspection and the photometric measurement
of color variables. Astaxanthin supplementation decreased lightness (L*) and increased
redness (a*) values, as well as the BASF Salmon Color Fan score for fresh fillets, which is
consistent with previous findings [16]. Likewise, the existing research has demonstrated
that adding astaxanthin to the diet obviously enhanced the color of skin and flesh in fish,
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including Pagrus pagrus [17], Larimichthys croceus [18] and Salmo salar [19]. Furthermore, this
study suggests that synthetic astaxanthin, particularly Lucantin® Pink CWD, is superior to
natural astaxanthin in pigmenting muscle in O. mykiss, based on the comparison of a* and
b* values. The above results are fully consistent with previous findings in O. mykiss [8,9],
where natural astaxanthin was less efficient in muscle pigmentation than synthetic as-
taxanthin. Consistent with color parameters, astaxanthin supplementation significantly
increased concentrations of this carotenoid in the dorsal muscle and in the whole body. It
is noteworthy that natural astaxanthin exists primarily in esterified form, while synthetic
astaxanthin exists in its free form [3]. Esterified astaxanthin needs to be hydrolyzed dur-
ing digestion before it becomes bioavailable, which may be one reason for the impaired
deposition of natural astaxanthin in the tissue of O. mykiss and in S. salar [20]. Furthermore,
the cell walls of microalgae and yeast result in poor digestibility, which may also decrease
the bioavailability of natural astaxanthin. The findings of this study reveal that synthetic
astaxanthin produces more effective coloration than natural astaxanthin in O. mykiss.

4.2. Retention Rate of Astaxanthin in Feed

Astaxanthin, in its esterified form, is commonly considered more stable than free
astaxanthin. However, esterified astaxanthin is susceptible to chemical degradation and
oxidation due to its highly unsaturated structure, which results in the loss of nutritional
and biological activity [21,22]. An interesting result of this study is that the retention rate
of synthetic astaxanthin in feed was better than that of natural astaxanthin after diet prepa-
ration and storage. This may be due to the fact that commercially synthesized astaxanthin
is usually microencapsulated and stabilized with antioxidants. The microencapsulation
of astaxanthin also significantly improves its bioavailability [22]. In this study, synthetic
astaxanthin was superior to natural astaxanthin in terms of growth promotion and color-
ing efficiency: this may be closely linked to its production process, which improves the
bioavailability of astaxanthin. We conclude that Lucantin® Pink CWD has the best retention
rate of astaxanthin in feed.

4.3. Growth Parameters and Intestinal Morphology

Carotenoids account for the pigmentation of fish skin and flesh, but there is an increas-
ing interest in other biological functions, such as promoting growth, antioxidant activity,
and immune regulation in aquatic animals. Early on, astaxanthin was shown to enhance
nutrient utilization by mediating the intermediary metabolism, which ultimately resulted in
increased growth performance [23]. In this study, the addition of astaxanthin to the diet pro-
duced beneficial effects on growth and feed utilization in commercial-size O. mykiss. This is
in accordance with previous findings in O. mykiss fed on diets that had been supplemented
with different sources and concentrations of astaxanthin [24,25]. Moreover, previous re-
search demonstrated that supplementation with astaxanthin significantly improved the
growth performance of Pseudosciaena crocea [26], Gadus morhua [27] and Trachinotus ova-
tus [28]. In contrast, some studies have suggested that dietary astaxanthin does not facilitate
fish growth, including Paralichthys olivaceus [29], Larimichthys croceus [25], Sparus aurata [30],
as well as O. mykiss [31,32]. The effect of dietary astaxanthin on the growth performance
of aquatic animals is closely related to the development stage, culturing environment,
differences between species, astaxanthin source and feeding duration [4]. Thus far, the
effect of astaxanthin on fish growth remains controversial, and the mechanisms by which
astaxanthin may affect growth warrant further study.

Examination of intestinal morphology is a useful way of evaluating health and the
functional status of the fish’s gut system, which is mainly assessed by measuring villi
length, villi thickness and muscular thickness [33]. In fish, the intestine is the principal
organ responsible for digesting and absorbing nutrients from the diet. Thus, digestive
function is closely correlated with intestinal development [34]. Earlier studies reported
that an increase in villi length and villi thickness implies an enlargement of the surface
area and, consequently, improved absorption of nutrients [14,35]. Muscular thickness is
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closely correlated with the peristaltic capacity of the intestine. In general, an increase in
muscular thickness may facilitate intestinal peristalsis, which is beneficial to the transport
and absorption of nutrients in the intestine [36]. In this study, astaxanthin had positive
effects on the intestinal morphology of O. mykiss (e.g., increasing villi length, villi thickness
or muscular thickness). Similar observations were found in the intestine of T. ovatus, where
dietary H. pluvialis enhanced villi length in the midgut [37]. The observed positive effects
of astaxanthin on villi length, villi thickness and muscular thickness may help to improve
the absorption and utilization of nutrients, which may lead to better growth performance
in O. mykiss.

4.4. Flesh Quality

In this study, astaxanthin-supplemented diets significantly changed the nutritional
composition of dorsal muscle and the whole body of O. mykiss. Likewise, in a study with
P. pagrus, it was shown that synthetic astaxanthin reduced the crude lipid content of the
whole body [38]. The findings of both studies suggest that the perivisceral lipid content
is reduced as a result of astaxanthin intake. Besides, lipids are the main energy source of
fish. In this study, astaxanthin-supplemented diets decreased the crude lipid content of the
whole body. A possible reason for this result is that astaxanthin stimulates lipid utilization,
making it available as an energy source and ultimately improving growth performance [38].
Moreover, higher lipid utilization may save protein for energy metabolism and store excess
protein in muscles and the whole body. However, in contrast to our results, higher lipid
levels in the whole body and flesh were reported when fish were fed with an astaxanthin-
supplemented diet, including S. salar [39], P. crocea [26] and P. pagrus [6]. Accordingly, the
effects of astaxanthin from different sources and administered at different dosage levels on
the composition of the whole body, flesh and liver remain controversial and contradictory,
and further research is needed to clarify the mechanism of dietary astaxanthin on lipids
in fish.

The impact on fatty acid composition indicates that fish fed on the EP, PR and HP
diets had a decrease in long-chain unsaturated fatty acids (LA, LNA and DHA) in their
abdominal muscles. EPA levels also decreased in all astaxanthin groups. This suggests that
astaxanthin supplementation may inhibit the biosynthesis of n-3 and n-6 unsaturated fatty
acids in the muscle tissue of O. mykiss, thus revealing a possible decrease in elongation
and desaturation activity. In contrast, feeding synthetic astaxanthin to P. pagrus increased
EPA and DHA levels in the liver [38]. Earlier studies also suggested that astaxanthin
supplementation had no effect on the composition of fatty acids in the liver or in fillets of
P. olivaceus [29], P. pagrus [6] or O. mykiss [40]. The above contradictory results are difficult
to explain. The regulatory mechanism of astaxanthin on the fatty acid composition of fish
remains to be clarified. In general, Carophyll® Pink yielded moderately higher levels of
long-chain unsaturated fatty acids in dorsal muscle than the other astaxanthin sources.

The amino acid compositions of the dorsal muscles were slightly affected by the
different astaxanthin sources. The amino acid composition of muscle shows a minor
response to dietary composition compared with the fatty acid profile, probably due to the
lower protein synthesis rate in fish muscle [12]. In this study, dietary astaxanthin did not
positively affect the total levels of EAA, NEAA and amino acids in dorsal muscle. Amino
acids provide primary taste properties: ASP and Glu are responsible for the umami and
savory flavors in the meat, whereas Ala and Gly have sweet tastes [41,42]. Thus, ASP, Glu,
Ala and Gly are considered the primary indicators of flavor quality [43]. The findings of
this study suggested that fish-fed CP and PR diets increased the ASP and Glu content in
the dorsal muscle. The addition of CP and PR to the diet increases the umami flavor of fish
flesh, thus making the product more popular with consumers.

4.5. Plasma Biochemical Indices

Hematological parameters serve as vital indicators in evaluating physiological and
pathological changes in fish and are often used in disease diagnosis and the evaluation
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of nutritional status [44,45]. ALT and AST activity in plasma is used to diagnose liver
integrity and function [46,47]. This study reveals that dietary astaxanthin down-regulates
the activity of ALT and AST in plasma, which is consistent with previous observations in
other fish species fed on diets supplemented with different sources and concentrations of
astaxanthin [46,48]. It is noteworthy that fish in aquaculture are sensitive to environmental
stressors and infections [14]. Accordingly, supplementing fish feed with astaxanthin is
considered helpful in relieving environmental stress and protecting the liver, in turn
improving fish health in cage culture [14].

Changes in plasma cholesterol levels have been commonly used to evaluate whether
liver function or lipid metabolism is abnormal [49]. In this study, dietary astaxanthin
supplementation led to a decrease in plasma T-CHO, revealing the anti-hyperlipidemic
potential of astaxanthin. Our findings are consistent with those of Lim et al. [46] and
Sheikhzadeh et al. [47], in which dietary astaxanthin or H. pluvialis clearly down-regulated
serum T-CHO levels in fish. Astaxanthin is capable of enhancing the clearance of endoge-
nous cholesterol to alleviate hyperlipidemia and thus relieve stress in fish, which may
be attributed to its antioxidant properties [46]. Previous research hypothesized that the
functional mechanism of astaxanthin against hyperlipidemia is primarily regulated by the
peroxisome proliferator-activated receptor (PPARs) [50].

4.6. Antioxidation Property

Nrf2, a cytoprotective transcription factor, is capable of mediating the transcription
level of genes involved in cellular antioxidant and anti-inflammatory defense in response
to oxidative stress by binding to antioxidant response elements [51]. HO-1, a crucial target
gene of Nrf2, can be rapidly activated by oxidative stress and exerts a cytoprotective role
against oxidative stress-induced cytotoxicity [52,53]. Earlier studies revealed that astaxan-
thin protects cells by inducing antioxidant activity through the activation of Nrf2/HO-1
signaling [54,55]. Likewise, this study finds that supplementation with natural astaxanthin
up-regulated the mRNA level of Nrf2. Moreover, dietary synthetic astaxanthin up-regulated
the mRNA levels of HO-1 but did not induce Nrf2 transcription. This result may indicate
that HO-1 is regulated by other activators besides Nrf2. Supporting our findings, astaxan-
thin can induce the transcription of Nrf2 and HO-1 to strengthen cellular defense against
oxidative stress [54]. Consistent with the above findings, it has been shown that synthetic
astaxanthin and H. pluvialis may relieve oxidative stress and enhance oxidation resistance
in T. ovatus by activating the Nrf2/HO-1 signal pathway [28,37].

SOD, the first line of antioxidant defense against free radical toxicity in cells, is capable
of converting superoxide (•O2

−) to hydrogen peroxide (H2O2) through disproportionation,
which helps to eliminate free radicals and maintain the redox balance in cells [10]. As
a product of lipid peroxidation, the MDA level indirectly reflects the degree of the cell
damage caused by free radicals. T-AOC is a key bioindicator for evaluating the activity of
all antioxidants (enzymatic and non-enzymatic) in the body [10]. This study demonstrates
that dietary astaxanthin may have beneficial effects on SOD activity and T-AOC (except for
the PR diet). Moreover, dietary astaxanthin led to considerably lower MDA levels. Similar
findings have been observed in O. mykiss [47], P. croceaas [26], Symphysodon spp. [56] and
T. ovatus [37] as a direct result of astaxanthin or H. pluvialis supplementation. The results
of this study demonstrate that adding astaxanthin to the diet has beneficial effects on the
antioxidant system of fish, whereas the effect of P. rhodozyma was weaker than that of H.
pluvialis and synthetic astaxanthin. The primary optical isomer of astaxanthin in H. pluvialis
was (3S,3′S), and in P. rhodozyma, it was (3R,3′R). The synthetic astaxanthin was composed
of three optical isomers, including (3S,3′S), (3R,3′S), and (3R,3′R) at 1:2:1. Astaxanthin
in the form of (3S,3′S) exhibited optimal antioxidant and anti-aging activities in vivo
and in vitro, followed by (3R,3′S) and (3R,3′R) [57]. This may explain why P. rhodozyma
improved antioxidant properties less than H. pluvialis and synthetic astaxanthin, and this
may correlate to the differences in astaxanthin structure.
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4.7. Immunological Characteristics

Lysozyme is a key antimicrobial protein in the innate immune system of teleost fish,
which exerts bacteriolytic activity through synergistic interaction with the complement
system and phagocytes [58]. Complements bind pathogenic microorganisms and are then
recognized by phagocytes with complement receptors [59]. Accordingly, lysozyme and
complements have been widely used as biomarkers to evaluate the innate immune status
of fish [60]. Supporting the findings of this study, earlier studies revealed that dietary
astaxanthin had a positive effect on lysozyme activity and the complement system in
T. ovatus [37], P. crocea [26] and Channa argus [61]. Consistent with the results on antioxidant
properties, the improvement in innate immune function in fish due to P. rhodozyma was
also less than that due to H. pluvialis and synthetic astaxanthin. The improvement of the
immune system due to astaxanthin is closely correlated with its antioxidant properties [46].
Thus, the weaker antioxidant properties of P. rhodozyma also attenuate its stimulation of the
innate immune system, compared with H. pluvialis and synthetic astaxanthin.

5. Conclusions

Astaxanthin, both natural and synthetic, increased growth performance, muscle col-
oration, antioxidant capacity and innate immune response, and improved intestinal mor-
phology in O. mykiss. Synthetic Lucantin® Pink CWD had the best stability and achieved the
best pigmentation, Essention® Pink performed best in growth promotion, and Carophyll®

Pink resulted in the best flesh quality (omega-3 content). The natural astaxanthin derived
from H. pluvialis was the best astaxanthin for achieving antioxidant properties and innate
immune response. Therefore, the precision functional feed can be produced based on the
coloring ability and physiological functions of different astaxanthin sources.
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