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Abstract: An imbalance between oxidants and antioxidants in the body can lead to oxidative stress,
which is one of the major causes of neurodegenerative diseases. The gut microbiota contains trillions
of beneficial bacteria that play an important role in maintaining redox homeostasis. In the last
decade, the microbiota–gut–brain axis has emerged as a new field that has revolutionized the
study of the pathology, diagnosis, and treatment of neurodegenerative diseases. Indeed, a growing
number of studies have found that communication between the brain and the gut microbiota can be
accomplished through the endocrine, immune, and nervous systems. Importantly, dysregulation of
the gut microbiota has been strongly associated with the development of oxidative stress-mediated
neurodegenerative diseases. Therefore, a deeper understanding of the relationship between the gut
microbiota and redox homeostasis will help explain the pathogenesis of neurodegenerative diseases
from a new perspective and provide a theoretical basis for proposing new therapeutic strategies
for neurodegenerative diseases. In this review, we will describe the role of oxidative stress and the
gut microbiota in neurodegenerative diseases and the underlying mechanisms by which the gut
microbiota affects redox homeostasis in the brain, leading to neurodegenerative diseases. In addition,
we will discuss the potential applications of maintaining redox homeostasis by modulating the gut
microbiota to treat neurodegenerative diseases, which could open the door for new therapeutic
approaches to combat neurodegenerative diseases.

Keywords: neurodegenerative diseases; oxidative stress; redox homeostasis; gut microbiota;
microbiota–gut–brain axis

1. Introduction

Progressive neuronal necrosis and degeneration are hallmarks of neurodegenerative
diseases (NDs), including Alzheimer’s disease (AD), Parkinson’s disease (PD), Hunting-
ton’s disease (HD), and multiple sclerosis (MS), which are caused by neurotoxic etiological
agents in the brain and surrounding organs. Because of the diverse and complex pathologi-
cal symptoms, uncertain pathogenesis, restricted clinical examination, difficulty in making
an early diagnosis, and lack of treatment options, NDs have imposed significant societal
and economic burdens [1–4]. The current treatment of NDs mainly focuses on relieving
symptoms, and no effective cure is currently available. Therefore, the search for novel and
effective strategies to treat NDs remains a priority.
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As a result of normal metabolic processes, reactive oxygen species (ROS) and reactive
nitrogen species (RNS), being free radicals, are neutralized by endogenous antioxidants
in cells and tissues to maintain redox homeostasis [5,6]. This redox homeostasis is dis-
rupted under certain pathophysiological conditions, such as injury, inflammation, genetic
mutations, and ischemia/reperfusion, causing oxidative stress, which is associated with a
variety of progressive NDs [5,7]. The central nervous system (CNS) can form large amounts
of free radicals due to its high oxygen demand and metabolism of neurotransmitters [8,9].
Notably, nerve cells are particularly vulnerable to damage because of the abundance of free
radicals and relatively weak antioxidant defenses compared with other organs [10,11]. In
addition, oxidative stress causes mitochondrial dysfunction, which is unable to meet the
high energy requirements for normal biochemical and physiological functions of neuronal
cells, thus leading to neuronal cell death [12]. Thus, maintenance of redox homeostasis is
essential for neuronal survival and function.

The gut microbiota comprises the microorganisms that exist in different ecological
niches of the gut, including bacteria, fungi, viruses, and protozoa [13]. The gut microbiota
significantly affects multiple aspects of host physiology, including the immune system,
anti-infection, nutritional metabolism, and nervous system [14,15]. Recently, the gut mi-
crobiota has been shown to play an essential role in various biological and physiological
processes in the brain, such as glial cell activation, myelination, and neurogenesis [16].
In addition, dysbiosis of the gut microbiota is strongly associated with gastrointestinal
diseases, anxiety, depression, metabolic disorders, as well as NDs [17–20]. These things
considered, probiotic strains, such as Bifidobacterium and Lactobacillus, can produce potential
antioxidants, vitamins, and bioactive molecules to maintain redox homeostasis, thereby
preventing oxidative stress-related diseases [21,22]. Importantly, the gut microbiota is in-
volved in the communication between the gut and the brain through neurotransmitters and
various metabolites [23,24]. The current evidence strongly suggests that the gut microbiota
can influence the brain aging process and the initiation and progression of NDs, making
the gut–brain crosstalk a promising and exciting research area in neuroscience [16]. It is,
therefore, of interest to find novel therapeutic targets and strategies from the perspective
of the gut microbiota and redox homeostasis. In this review, we will describe the roles of
oxidative stress and the gut microbiota in NDs, as well as the underlying mechanisms by
which the gut microbiota affects redox homeostasis. In addition, the potential applications
of maintaining redox homeostasis by shaping the gut microbiota to treat NDs will also
be discussed.

2. Oxidative Stress and NDs

Oxidative stress, the result of an imbalance in the relative abundance of reactive ROS
and antioxidants, can create a detrimental state that leads to cellular damage and dysfunc-
tion. Increased oxidative stress is able to damage cell membranes, alter protein structure
and function, and cause DNA damage [25,26]. Therefore, maintenance of redox homeosta-
sis is essential for cell biological function. As mentioned earlier, the CNS is particularly
sensitive to oxidative stress due to its high metabolic rate, relative antioxidant scarcity,
and unique structural features [27,28]. In addition, due to the presence of high levels of
metal ions and polyunsaturated fatty acids, neuronal cells are more prone to oxidative
stress, leading to cell damage and a series of NDs-related events through mitochondrial
dysfunction, inflammation, and neuronal death [28–30]. In fact, an oxidative stress-induced
imbalance in redox homeostasis is still a central component of the pathogenesis of several
NDs, such as AD, PD, and MS. The common features among these NDs are ineffective
antioxidant defense systems, imbalances of redox homeostasis, mitochondrial dysfunction,
neuroinflammation, neuronal loss and degeneration (Figure 1).

Oxidative stress and disruption of cerebral redox homeostasis frequently occur in hu-
man NDs. For instance, in the pathology of AD, amyloid β (Aβ) and tau protein aggregates
can interact with metal ions and maintain normal cellular signaling [31,32]. Furthermore,
previous studies have shown that the high levels of zinc in the neocortical and hippocampal



Antioxidants 2022, 11, 2287 3 of 23

regions of AD patients suggest the vital role of zinc in the maintenance of redox home-
ostasis in the affected brain regions [33,34]. Notably, accumulated Aβ-induced oxidative
stress can inhibit the activity of complex IV, leading to ATP depletion and mitochondrial
dysfunction [35,36]. It has been demonstrated that the abnormal aggregation of α-synuclein
(α-syn), mitochondrial dysfunction, and excessive oxidative stress are closely related to
dopaminergic neuron death during PD progression [37–39]. As the main pathogenic factor
of HD, soluble and aggregated mutant Htt (mHtt) protein with cytotoxicity induces apop-
tosis through oxidative stress, resulting in continuous degeneration of neurons [40–42].
Interestingly, in patients with NDs, oxidative stress biomarkers such as malondialdehyde
and 8-hydroxyguanosine are elevated, and the gene superoxide dismutase 1 (SOD1), which
plays an important role in oxidative stress defense mechanisms, is also frequently mu-
tated [43,44].

Figure 1. The effect of oxidative stress in neurodegenerative diseases. An oxidant/antioxidant
imbalance leads to oxidative stress, which causes DNA and protein damage, lipid peroxidation, and
apoptosis. Dysfunctional mitochondria and activated neurons secrete inflammatory cytokines that
cross the blood–brain barrier, leading to inflammation, α-synuclein, β-aggregation, and neuronal
plaque accumulation in neurons, leading to neuron loss and degeneration.

Despite the advanced understanding of the mechanisms described above, a wide gap
remains between this knowledge and the availability of effective therapies. Given that
the imbalance of redox homeostasis is one of the key factors in the pathogenesis of NDs,
numerous studies have been conducted on the treatment of NDs using various types of
antioxidants (Table 1). Overall, most of the clinical trial results of NDs have shown favorable
therapeutic effects, especially the alterations of pathological markers and improvements in
neurological function, suggesting that antioxidants have great therapeutic potential for NDs.
However, more efforts are required to explore novel therapeutic strategies and approaches
to achieve broad therapeutic applicability and functional recovery of the nervous system.
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Table 1. Antioxidants with therapeutic effects on neurodegenerative diseases.

Antioxidants Therapeutic
Target Mechanism Reference

Luteolin PD Increased dopamine absorption [45]
Selenium AD Degradation of Aβ plaques [46,47]
Curcumin PD NRF2 activation [48]

α-Tocopherol AD Aβ plaque degradation [49]
Quercetin AD, PD Hydroxyl radical scavenging [50]

Ginsenosides AD Inhibition of Aβ aggregation [51]
PLGA NPs AD, PD, MS Protection against oxidative stress [52]

Macrophage-derived
exosomes PD Protection against oxidative stress and inflammation [53]

Coenzyme Q10 AD Reduction of oxidative stress and senile plaques [54]
Ferulic acid AD Inhibition of neuronal oxidative stress [55]

3. Gut Microbiota, Oxidative Stress, and Neurodegeneration

The human gastrointestinal tract is the largest immune organ and harbors complex
and dynamic microbiota [56,57]. Gut microbiota stability can be impacted by several
variables, including genetics, lifestyle, nutrition, medications, illness, and age, which in
turn have a significant impact on the regulation of metabolism, homeostasis, immunological
response, and other processes [58,59]. Therefore, an imbalance in the representation of the
gut microbiota may contribute to various diseases, from inflammatory bowel disease to
obesity and diabetes, as well as several common NDs, such as AD, PD, and MS (Table 2).
In addition, growing numbers of studies have demonstrated that the gut microbiota alters
the oxidative/antioxidant balance in the CNS and causes neurodegeneration [60–63].

Table 2. Alterations in the gut microbiota composition in various neurodegenerative diseases.

Neurodegenerative
Disease

Experimental
Subject Gut Microbiota Reference

AD Fecal samples from AD Firmicutes, Bifidobacterium ↓
Bacteroidetes ↑ [64]

Symptomatic
Tg2576 mice Firmicutes, Bacteroidetes, Lactobacillus ↑ [65]

Fecal samples from
AD patients Ruminococcacea ↑ Lachnospirace ↓ [66]

Male patients with AD
Bacteroidetes,

Blautia ↑
Firmicutes, Bifidobacterium ↓

[67]

Amyloid-positive
patients

Escherichia,
Shigella ↑

Eubacterium
rectale ↓

[68]

PD Patients with PD Enterobacteriaceae, Serratia ↑
Blautia, Coprococcus, Lachnospiraceae ↓ [69]

16S microbiome
datasets

Akkermansia,
Lactobacillus, Bifidobacterium ↑ Faecalibacterium,

Lachnospiraceae ↓
[70]

Patients with PD Butyricicoccus,
Clostridium ↑ Shigella, Lactobacillus ↓ [71]

MS Patients with MS Caproic acid, producers ↑
Butyric acid, producers ↓ [72]

Patients with MS Patescibacteria ↑ Lachnospiraceae, Ruminococcaceae ↓ [73]

3.1. Gut–Brain Axis under Physiological Conditions

The brain and the gut microbiota are strictly intertwined and communicate in a va-
riety of ways, including the production of bacterial metabolites, neurotransmitters, and
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cytokines [74] (Figure 2). Notably, the term “microbiota–gut–brain axis” refers to an in-
teraction between the brain and the gut microbiota that involves four major routes of
communication [75,76]. The first route of communication involves the vagus nerve, which
connects the enteric nerve system and the brain stem. Recent research indicates that the
gut microbiota influences host behaviors such as anxiety, feeding, and depression by acti-
vating vagal neurons and altering neurotransmitters such as γ-aminobutyric acid (GABA)
and oxytocin in the brain [77,78]. The second important mode that directly or indirectly
affects brain activity involves serotonin, which is mainly produced by gut enterochromaffin
cells and modulates a variety of physiological processes. Interestingly, increased levels
of serotonin and serotonin precursors alleviated depression in a mouse model of depres-
sion after treatment with the probiotic Bifidobacterium [79]. Thirdly, the gut microbiota
plays an essential role in microglial activation and neuroinflammation. For instance, Luck
and colleagues demonstrated that germ-free mice carry more immature microglia than
conventional mice, and Bifidobacterium spp. can activate microglia through transcriptional
activation [80]. In addition, alterations in microglial function were also observed in NDs
and other behaviors, suggesting that the gut microbiota mediates effects on NDs through
microglia [81]. Notably, the gut microbiota plays a vital role in energy harvest and neu-
roinflammation, and alterations in the gut–brain vagal pathway may promote obesity. It
has been demonstrated that a diet-induced shift in the gut microbiome may disrupt vagal
gut–brain communication resulting in microglia activation, increased gut inflammation,
and body fat accumulation [82,83]. Finally, the gut microbiota communicates by transfer-
ring chemical signals directly to the brain. A previous study indicated that short-chain
fatty acids (SCFAs) derived from the fermentation of the gut microbiota had been shown to
modulate neuroplasticity in the CNS and improve depressive behavior in mice [62].

Figure 2. Microbiota–gut–brain axis. The brain and gut communicate through neural, metabolic,
endocrine, and immunological pathways. The brain influences gut health through the vagus nerve,
the hypothalamic–pituitary–adrenal (HPA) axis, and systemic circulation. Signals from the gut,
including short-chain fatty acids (SCFAs), neurotransmitters, and amino acids, modulate brain
function via neuronal cells, the immune system, and endocrine mechanisms.
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3.2. Gut Microbiota-Mediated Oxidative Stress and Neurodegeneration

There are four main symbiotic bacteria that are parasitic in the human gut, namely Acti-
nobacteria, Bacteroidetes, Proteobacteria, and Firmicutes. Among them, Firmicutes accounts
for the largest proportion, including Streptococcus, Lactobacillus, and Mycoplasma [81].
Recent studies have found that, in the presence of the microbiota, the intestinal epithelium
cells produce physiological levels of oxidative stress that affect the composition and func-
tion of the gut microbiota. Such alterations in gut microbiota increase the alterations of
biomacromolecules reaching the systemic circulation and CNS by directly affecting the per-
meability of the intestine [84]. Indeed, the gut microbiota can alter cellular oxidative stress
status by regulating mitochondrial activity [85]. In addition, gut Lactobacilli, Bifidobacterium,
and Streptococcus can produce nitric oxide (NO) in various ways in the gut [86,87]. It is
now generally accepted that NO in nanomolar concentrations is neuroprotective, whereas
higher concentrations of NO may result in oxidative stress, which is closely related to
axonal degeneration, neuroinflammation, and NDs [81]. In addition, certain pathogenic
bacteria such as Salmonella and Escherichia coli are able to produce hydrogen sulfide (H2S)
in the gut by degrading sulfur-containing amino acids. Furthermore, increased levels of
H2S alter various host metabolic activities, such as increased lactate, decreased oxygen
consumption, decreased ATP production, and elevated levels of proinflammatory com-
pounds, which have been linked to neuroinflammation [88–90]. The role of gut microbiota
in neurodegeneration is shown in Figure 3.

Figure 3. The role of the gut microbiota in neurodegeneration is depicted schematically. Bad mood,
increasing age, drugs, dietary changes, and circadian rhythms can disrupt gut microbiota home-
ostasis. When gut dysbiosis occurs, beneficial bacteria in the gut are transformed into pathogenic
bacteria, producing a large number of harmful metabolites and proinflammatory molecules, resulting
in increased blood–brain barrier permeability and peripheral inflammatory responses, thereby ag-
gravating oxidative stress in the brain. At the same time, dysbiosis can induce bad mood. Increased
levels of ROS in neuronal mitochondria, endoplasmic reticulum, and peroxisomes, increased protein
and lipid oxidation, and accumulation of neurotoxic proteins lead to neurodegeneration.
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In-depth studies on the pathogenesis of NDs, including AD, PD, and MS, have mainly
focused on the misfolding and aggregation of proteins in neurons. In addition, oxidative
stress has also been considered to be closely related to the occurrence and development
of NDs, but the exact underlying mechanisms remain unclear. Numerous studies have
demonstrated the close association of microbiota-mediated oxidative stress with neurode-
generation. Here, we summarize recent links between the gut microbiota, oxidative stress,
and NDs, with a focus on AD, PD, and MS.

3.2.1. Alzheimer’s Disease

AD is the most common ND worldwide with an insidious onset and progressive
development [4,91]. It is characterized by progressive impairment of cognition and episodic
memory, culminating in the development of dementia [92]. Specific histopathological
hallmarks in the brain associated with AD include Aβ plaques, neurofibrillary tangles
(NFTs), hyperphosphorylation of tau proteins (tau tangles), and neuronal loss [93,94].
Oxidative stress has been suggested to play an essential role in AD etiology prior to plaque
formation, leading to mitochondrial dysfunction in neurons and synapses, as well as
Aβ protein production [95,96]. Previous studies have shown that oxidative stress plays
a pivotal role in the development of AD. For instance, it has been demonstrated that
aggregated Aβ protein stimulates microglia to produce ROS through positive feedback
on Aβ plaque deposition [91]. In addition, tau protein aggregation in neurons leads to
reduced NADH-ubiquitin reductase activity, leading to oxidative stress and mitochondrial
dysfunction [97]. Interestingly, ROS can affect the activity of stress kinases, such as the
phosphorylation-c-Jun N-terminal kinase 1 (p-JNK) pathway, which is associated with
neuronal cell death due to tau hyperphosphorylation and accumulation of Aβ [98]. There
is ample evidence that the oxidation of nucleic acid species in the AD brain is dominated
by the mitochondrial genome, and lipid peroxidation results in the production of certain
cytotoxic agents, such as 4-hydroxyalkenals [99–101].

Recent studies have shown that the gut microbiota plays a significant role in the
pathogenesis of AD [102]. Dysregulation of the gut microbiota leads to oxidative stress,
inflammation, disruption of the blood–brain barrier, activation of the immune system,
neurofibrillary tangles, and Aβ plaques followed by neurodegeneration [21,103]. There are
numerous bacteria in the human gut that play a vital role in the etiology of AD, including
Staphylococcus aureus, Escherichia coli, Salmonella, Mycobacterium, Klebsiella pneumoniae, and
Streptococcus, which promote the production and aggregation of the Aβ protein in the
enteric nervous system [104,105]. Interestingly, in the APPSWE/PS1∆E9 transgenic mouse
model of AD chronically treated with broad-spectrum combination antibiotics, the gut
microbiome of transgenic mice shifted toward proinflammatory bacteria, with a decrease
in amyloid plaque deposition and neuroinflammation [66,106]. Additionally, microbial
amyloid protein, produced by coccus-shaped bacteria, is able to activate the innate immune
system and triggers responses by Toll-like receptors (TLRs) and cluster of differentiation 14
(CD14), resulting in inadequate recognition of misfolded Aβ and decreased Aβ clearance,
followed by the production of cytokines leading to intestinal disturbances [107]. Notably,
age-related reductions in gut microbial diversity are also implicated in AD. It has been
demonstrated that with growing age, there is an increase in Proteobacteria and a decrease
in Bifidobacterium spp., which results in interference in lipid metabolism and a failure to
maintain hippocampal plasticity as well as memory functions [108,109].

Another possible connecting link between the gut microbiota and microbiota-mediated
cerebral amyloid accumulation involves a cross-seeding mechanism of microbial amyloid
(i.e., promoting misfolded aggregation of amyloid from one protein to another) in a manner
similar to the reproduction of prions [107,110,111]. Notably, distinct amyloid conforma-
tions interact with cellular targets to produce various toxicities, which may explain the
different AD phenotypes [112]. Given the multiple roles of gut microbiota dysbiosis in the
pathogenesis of AD, modulation of AD through dietary and gut microbiota interventions
may be potential therapeutic strategies, which will be discussed in detail later.
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3.2.2. Parkinson’s Disease

PD, the second most common ND after AD, is a long-term neurological disorder that
causes both motor and non-motor symptoms [113–115]. Motor symptoms include resting
tremors, akinesia, muscular rigidity, postural instability, and gait abnormalities [116–118].
Non-motor symptoms include anxiety, depression, autonomic dysfunction, cognitive de-
cline, and sleep disturbances [119,120]. The hallmarks of PD are loss of dopaminergic (DA)
neurons and abnormal accumulation of α-syn within the cytoplasm of nerve cells called
Levy bodies [121–124]. Notably, oxidative stress, mitochondrial dysfunction, dopamine
metabolism, abnormal protein aggregation, and the gut microbiota are associated with the
pathogenesis of PD [125–127]. As one of the main pathogenic factors of PD, oxidative stress
has been linked to α-syn protein aggregation and degeneration in DA neurons [98,121,128].
For instance, analysis of the postmortem brain tissue in PD showed that oxidative stress
degenerates DA neurons, reduces the levels of glutathione (GSH), increases the levels of
oxidative stress markers, and stimulates lipid, DNA, and RNA oxidation [129,130]. Addi-
tionally, Tong and colleagues have demonstrated that oxidative stress in DA neurons can
activate the p38 mitogen-activated protein kinase pathway, ultimately leading to neuronal
apoptosis [131]. Interestingly, in the 6-hydroxydopamine-induced PD model in mice, Antro-
dia camphorata polysaccharide reduced ROS by increasing the expression and activity of
antioxidant enzymes, ultimately attenuating the damage of DA neurons in the substantia
nigra and improving motor performance [132].

Notably, PD patients often present with gastrointestinal dysfunction, which suggests
that the imbalance of the gut microbiota is one of the causes of triggering or aggravating
PD [133,134]. Indeed, gut inflammation, early accumulation of α-syn, increased intestinal
permeability, and constipation problems are common in PD patients, again demonstrating
the critical role of the gut microbiota in PD [81,135]. It has been demonstrated that the
disruption of gut microbiota leads to oxidative stress through overstimulation of the
immune system, which in turn activates intestinal neurons and intestinal glia cells, leading
to increased misfolding and accumulation of α-syn in the CNS [136,137]. In addition,
coming to the role of the gut microbiota, toxins and microbial products produced by certain
pathogenic bacteria are able to cause mitochondrial dysfunction in intestinal cells and
the CNS, which is directly associated with PD pathogenesis [138]. In line with this, it is
proposed that the pathogenic bacterium E. coli can produce an amyloid protein called
curli, which promotes the accumulation of α-syn protein in the brain and causes motor
defects in mice [139]. Conversely, when treated with gut-restricted amyloid inhibitors, these
mice showed significant improvements in constipation and motor function, suggesting the
role of the gut microbiota in the etiology of PD symptoms [140]. Interestingly, when the
gut microbiota from PD patients was transplanted into a germ-free α-syn overexpressed
mouse model, a similar pattern of physical injury to PD patients was observed, suggesting
the vital role of the gut microbiota in PD. As discussed above, decreased production of
hydrogen (H2) by the gut microbiota has been proposed as one of the essential factors in
PD [141]. According to a recent study, 50% H2 saturated water was successful in preventing
nigrostriatal degeneration in PD rats and reducing the oxidative stress markers in the
1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP) mouse model [142]. Taken together,
these observations suggest a critical role for gut microbiota in PD, and intervention through
gut microbiota is expected to provide promising strategies for the prevention and treatment
of PD.

3.2.3. Multiple Sclerosis

MS is an immune-mediated chronic inflammatory and central nervous system de-
myelinating disease with a complex and unclear pathogenesis [143]. It has been established
that the pathogenesis of MS involves both genetic and environmental factors. The most
extensively accepted hypothesis is that autoreactive B and T cells cause axonal and myelin
damage, as well as neurodegeneration [144,145]. The major neuropathological hallmarks
of MS pathology are inflammation and degeneration of both white matter and gray mat-
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ter [146]. However, the development of MS may be influenced by a combination of internal
and external factors, ultimately leading to immune dysregulation.

Growing evidence suggests that the imbalance of redox homeostasis plays a vital
role in the pathogenesis of MS. For instance, it has been demonstrated that the excessive
generation of ROS, mitochondrial dysfunction, and impairment of antioxidant defense
systems play important roles in the pathogenesis of MS [147]. Notably, ROS has been
shown to be a mediator of axonal injury and demyelination in both MS patients and
animal models of MS. In addition, oxidative stress mediates mitochondrial dysfunction
in MS patients and leads to CNS energy failure in MS-susceptible individuals [148,149].
Furthermore, recent studies have demonstrated that the gut microbiota has a significant
impact on MS and can be influenced by external factors [150]. For instance, Cosorich
et al. have demonstrated that T helper 17 (TH17) cells, key players in MS, originate in the
gut and that increased TH17 cell frequency is associated with specific alterations of the
gut microbiota in MS patients [151]. Interestingly, transplantation of the MS microbiota
in a mouse model resulted in an increased incidence of autoimmune encephalomyelitis,
leading to an exacerbation of MS symptoms [152,153]. Additionally, diets have been shown
to affect the balance of the gut microbiota and indirectly influence the development of
MS [154]. Moreover, dietary studies in MS patients suggest that dietary interventions
supplemented with vitamin D in a low-calorie diet have a positive effect on alleviating
chronic inflammatory symptoms in MS [155]. Recently, intermittent fasting was introduced
into the treatment of MS due to its availability of abundant gut microbiota as well as the
secretion of glutathione and leptin [156]. All these studies have shown that modification of
the gut microbiota can be considered a promising therapeutic strategy for MS.

4. Gut Microbiota in Neuroprotection

The complex gut microbiota and microbiota–host interactions may directly and indi-
rectly affect the oxidative state of the CNS by producing numerous metabolites such as
absorbable vitamins, SCFAs, polyphenols, diffusible antioxidants, and oxidant gases [60].
Notably, the gut microbiota is also able to optimize dietary energy harvest, influence the
permeability of the blood–brain barrier and the intestinal barrier, modulate the immune
response, and prevent the extensive colonization of pathogens [157,158]. As a component
of the parasympathetic nervous system, the vagus nerve can sense intestinal metabolites,
communicate with the CNS, and integrate into the central autonomic network to gener-
ate specific responses. For instance, under stressful conditions, the vagus nerve can be
suppressed, with deleterious effects on the gastrointestinal tract and microbes, such as in-
flammatory bowel disease (IBD) and irritable bowel syndrome (IBS) due to dysbiosis [157].
Furthermore, the beneficial gut microbiota produces a large number of CNS neurotrans-
mitters such as serotonin, dopamine, and γ-aminobutyric acid, which modulate enteric
nervous system (ENS) activity and may be associated with their respective levels within
the CNS depending on gut permeability and the blood–brain barrier [10].

With our increasing understanding of the essential role of gut microbiota and oxidative
stress in NDs, there is a growing need to develop therapies based on antioxidant strategies
to treat NDs. Although antioxidants have a potent therapeutic effect on certain diseases, the
therapeutic effects of antioxidants for NDs are still limited and require deep mechanistic
understanding [159]. As discussed above, the dichotomous role of gut microbiota has been
observed. On the one hand, the gut microbiota is closely related to the underlying patho-
genesis of neurodegeneration. On the other hand, the gut microbiota and its metabolites
modulate numerous NDs-related pathways, suggesting their potential therapeutic role in
neuroprotection (Figure 4). Therefore, maintaining neuronal health by modulating gut
microbiota homeostasis holds great promise. Here, we describe the role of metabolites
from the gut microbiota as well as the antioxidative and anti-inflammatory probiotics
in neuroprotection.
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Figure 4. Schematic representation of the role of the gut microbiota in neuroprotection. (A) Beneficial
metabolites such as bile acids, vitamins, short-chain fatty acids (SCFAs), steroid hormones, amino acid
metabolites, polyphenols, etc., released by the gut microbiota and interacting with dietary molecules,
can promote blood–brain barrier formation and integrity, reduce inflammation, reduce oxidative
stress, reduce neuronal apoptosis, activate immune response, prevent pathogen infection, and thus
play an important role in neuroprotection. (B) Fecal microbial transfer (FMT), antibiotic and probiotic
treatment, and removal of gut microbiota were found to decrease neurodegenerative conditions and
reduce the pathophysiology of NDs. (C) The scheme of transferring the gut microbiota from a healthy
donor to a patient with dysfunctional gut microbiota and restoring the microbiota, thereby improving
human health, such as treating NDs, constipation, enteritis, obesity, osteoporosis, and autism.

4.1. Interactions of Gut Microbiota with Host and Dietary Molecules

Many host molecules, such as bile acids and steroid hormones, are produced via
multistep biosynthetic pathways and can interact with the gut microbiota to have beneficial
or deleterious effects on the host system. Bile acids are produced in the liver and released
in the gut, mainly associated with the dissolution of lipids and fat-soluble vitamins. They
also play a vital role in the physiological and pathological processes of the CNS [160]. Bile
acids such as taurine deoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA) have
been shown to be neuroprotective without cytotoxicity [161,162]. Moreover, Cuevas et al.
revealed that pretreatment with TUDCA protected against dopaminergic neuronal damage,
attenuated protein oxidation and autophagy, and also prevented α-syn aggregation [163].
Likewise, UDCA was found to convey neuroprotection in drosophila and mammalian
models of charged multivesicular body protein 2B (CHMP2B) Intron 5 (CHMP2BIntron5)
induced frontotemporal dementia (FTD) [164]. Indeed, the gut microbiota plays a vital
role in the conversion of primary bile acids to secondary bile acids and can alter their
solubility, nuclear receptor binding, and blood circulation [165]. Notably, altering bile acid
levels and properties by modulating the gut microbiota may have neurodegenerative and
neuroprotective effects. For example, alterations in secondary bile acid levels have been
found in human and mouse models of a variety of NDs such as AD, PD, and MS [166–168].
Furthermore, a previous study indicated that TUDCA might exert neuroprotective effects
by inhibiting inflammatory responses and oxidative stress in microglia [169]. However,
extensive research is still required to elucidate the specific mechanisms and potential
roles of the gut microbiota in manipulating bile acids. Other common host molecules are
steroid hormones, which are crucial for brain physiology and function [170]. Through
degradation and activation pathways, the gut microbiota can modulate the level of steroid
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hormones [171]. Moreover, it has been demonstrated that both androgen and estrogen secre-
tions are affected by the gut microbiota. Actually, most gut bacteria are able to metabolize
estrogen and can also promote estrogen to undergo oxidation–reduction reactions [172,173].
Interestingly, estrogen influenced by the gut microbiota is neuroprotective and shows
anti-inflammatory and differentiated effects in nerve cells [174,175]. Accordingly, an altered
gut microbiota leads to low levels of estrogen, which leads to neuroinflammation and
neurodegeneration [176,177].

Additionally, dietary molecules such as amino acids, dietary fibers, and polyphenols
are also inextricably linked to the gut microbiota. Dietary amino acids are normally metab-
olized by the gut microbiota, and the resulting dietary amino acids affect the CNS [178,179].
Norepinephrine can be produced by the gut microbiota in the millimolar range, and it
protects neurons from H2O2-induced death by increasing the supply of GSH from as-
trocytes [180]. In addition, indole propionic acid, an indole derivative, is a product of
tryptophan metabolism by the gut microbiota and acts as an antioxidant that reduces
neuroinflammation and attenuates AD pathology [181,182]. Notably, as a branch of tryp-
tophan metabolism, the disturbance of the kynurenine (KYN) pathway was found to
affect memory, anxiety, and stress-related behavior and promote inflammatory responses
and neurotoxicity, suggesting the neuroprotective and anti-inflammatory role of KYN in
NDs [183,184]. Furthermore, as one of the metabolites of arginine, agmatine is involved
in the major processes of synaptic plasticity and memory formation and has therapeutic
effects on a variety of NDs [185,186]. Meanwhile, agmatine has been shown to stimulate
the NRF2 signaling pathway to reduce the production of ROS and protect neuronal cells
from oxidative stress-induced damage [187,188]. In addition, undigested dietary fiber in
the body is converted into SCFAs through anaerobic fermentation of gut microbiota, which
can not only provide energy but also affect the development and function of the CNS
directly or indirectly [189]. It has been reported that SCFAs maintain redox homeostasis
in the brain via regulating microglia homeostasis, thus attenuating neuroinflammation in
AD and PD [190]. Interestingly, transplantation of fecal microbiota from wild-type mice
into the mouse model of PD, combined with butyrate treatment, significantly improved PD
symptoms [191]. Butyrate has also been shown to affect the neuroinflammation and the
cellular oxidative status of astrocytes [192]. Indeed, fecal transplantation is seeing increased
use for the clinical management of neurodegenerative diseases and a number of clinical
trials have been undertaken [193,194]. In summary, SCFAs obtained from dietary fiber have
great therapeutic potential for NDs. Another group of bioactive molecules in plants is the
polyphenols, which can be classified into phenolic acids, flavonoids, and tannins. Due to
their special structure, they are able to scavenge free radicals and have been widely applied
as antioxidants in the treatment of NDs [195]. Many dietary polyphenols have been shown
to be actively converted by the gut microbiota to phenolic acids such as 3-hydroxybenzoic
acid and 3-(3-hydroxyphenyl) propionic acid, which inhibit A aggregation and the pro-
gression of AD [196]. Similarly, proanthocyanidins (PA) can attenuate oxidative stress
in dopaminergic neurons by inhibiting p38, ERK, and JNK signaling pathways, which
may provide a new perspective for PD therapy [197]. Taken together, the above studies
suggest the therapeutic potential of the interactions of gut microbiota with host and dietary
molecules for NDs.

4.2. Vitamins from Gut Microbiota in Neuroprotection

Because the human body lacks the biosynthetic capacity for most vitamins, they must
be exogenously supplied to meet demand. Although vitamins are present in various foods,
inadequate food intake and poor dietary habits can still cause vitamin deficiencies [198].
Notably, the gut microbiota is a rich source of vitamins, especially vitamins B and K, which
are required by both the host and certain gut microbiota [199,200]. In the gut, lactic acid
bacteria, Bacillus subtilis, and E. coli produce vitamin B2 (riboflavin). B6 (pyridoxine, pyri-
doxamine, and pyridoxal) is produced by pyridoxine, pyridoxamine, and pyridoxal, and
vitamin K is produced by Escherichia coli, Propionibacterium, and Eubacterium [198,200]. Al-
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though dietary vitamins are absorbed primarily from the small intestine, vitamins derived
from gut microbiota are taken up in the distal colon and perform various important func-
tions in the body, particularly in neuroprotection. For instance, it has been demonstrated
that vitamin K deficiency is strongly associated with the pathogenesis of AD and that in-
creasing the intake of dietary vitamin K is helpful in improving memory function in elderly
patients [81]. Additionally, vitamin K2 exerts potent antioxidant properties by inhibiting
the activation of the P38 signaling pathway, ROS generation, and the activity of caspase-1,
thereby restoring mitochondrial membrane potential, demonstrating its potential for PD
treatment [201]. Interestingly, supplementation of B vitamins such as B6, B9, and B12 can
slow the shrinkage of specific brain regions associated with cognitive decline in AD [202].
The above studies suggest that vitamins B and K play an important role in improving
neuronal health. However, further constructive research is required to demonstrate the
neuroprotective potential of vitamins produced by the gut microbiota.

4.3. The Effect of Probiotics in Neuroprotection

Probiotics are non-pathogenic living microorganisms known for their beneficial ef-
fects on health; they include Lactobacillus, Streptococcus, Propionibacterium, and Bifidobac-
terium [203–205]. Notably, when the gut microbiota is perturbated leading to certain dis-
eases, probiotic treatment can restore the gut microbiota and ensure the normal functions of
the body, which indicates the vital role of probiotics in health [206]. As the most common
probiotics, Lactobacillus and Bifidobacterium can alter the composition and quantity of gut
microbiota, improve intestinal barrier function, regulate mood and cranial nerve status,
and confer resilience to stress [77,207–210]. Growing evidence indicates the positive effect
of probiotics on redox homeostasis in NDs. Probiotic strains dominated by Bifidobacterium
and Lactobacillus are able to combat excess free radicals in the form of ROS in the body
by producing antioxidants, vitamins, and other bioactive molecules, thereby preventing
oxidative stress-related diseases, especially NDs [22,211].

Research on probiotics in NDs in recent years has focused on their antioxidant effects.
Probiotics affect brain function and the progression of NDs via their ability to modulate
ROS-producing enzymes, chelate metal ions, activate antioxidant pathways, and produce
antioxidant metabolites [212,213]. For instance, it has been shown that probiotic con-
sumption has a positive effect on cognitive function and certain metabolic statuses in
AD patients [214]. In addition, Akbari et al. have revealed that L. plantarum can reduce
malondialdehyde and stimulate the activity of SOD and GPX, thereby scavenging hydroxyl
radicals in mice with d-galactose-induced oxidative stress [214]. Interestingly, in addition
to inhibiting ROS production by NETs to exert antioxidant effects, L. rhamnosus was found
to have antidepressant and antianxiety properties, possibly related to neuroactive sub-
stances of bacterial origin [215]. Notably, the gut microbiota can exert antioxidant activity
through their anti-inflammatory effects, which is considered to improve the symptoms of
a wide range of disorders [216,217]. Wu et al. have revealed that an important strain of
Lactobacillus, L. fermentum, could prevent ROS formation by stimulating the production of
IL-10 [218]. In addition, the combination of L. mucosae AN1 and L. fermentum SNR1, with
strong antioxidant activity, can decrease the level of proinflammatory cytokines, increase
the level of anti-inflammatory cytokines, and inhibit related mediators in the gut, thereby
alleviating oxidative stress, inhibiting the activation of inflammation-related pathways
and maintaining redox homeostasis [217,219]. Similarly, a previous study indicated that a
significant reduction in the abundance of anti-inflammatory bacteria with an increase in the
abundance of proinflammatory bacteria is possibly associated with cognitive impairment
in AD patients [68]. Taken together, the above studies suggest that probiotics may serve as
a potential therapeutic intervention for NDs.

5. Shaping the Gut Microbiota to Maintain Redox Homeostasis for NDs Treatment

Given the close interactions between oxidative stress and the gut microbiota, targeting
the gut microbiota and redox homeostasis may represent potential therapeutic strategies
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for treating NDs. Actually, numerous studies and clinical trials have comprehensively
revealed the positive role of gut microbiota in the treatment of NDs. For instance, sirtuin-1
(SIRT1), a probiotic bacterial protein, has been shown to have neuroprotective effects, and
alterations in the expression and activity of SIRT1 protein are closely associated with Aβ

and tau accumulation in the cerebral cortex in both animal models of AD and human AD
patients. When treated with probiotic supplements, the SIRT1 pathway is activated to
exert antioxidant effects [81,220,221]. In addition, prolonged diet supplementation with
a Lactobacillus strain upregulates the expression of brain-derived neurotrophic factor
(BDNF) in the hippocampus, thereby preventing age-associated cognitive decline [222].
Similarly, Lactobacillus paracasei PS23 supplements can prevent aging-related neurolog-
ical damage and ameliorate cognitive dysfunction, possibly by increasing the activity of
antioxidant enzymes in the hippocampus and modulating microbiota–gut–brain axis com-
munication [223]. Indeed, Bifidobacterium bifidum ATCC 29,521 exerts a beneficial effect
on murine gut microbiota and redox homeostasis and could be a potential bioresource
antioxidant in effective functional foods [224].

Notably, growing evidence indicates the efficacy of this novel therapeutic strategy for
treating or alleviating NDs. A previous study indicated that probiotic mixtures consisting
of S. thermophilus, L. plantarum, B. breve, and other probiotics in the treatment of early
AD in transgenic mice could improve cognitive dysfunction and reduce brain damage by
inhibiting Aβ plaque formation and altering gut microbiota [211]. Moreover, Bifidobacteria
and Lactobacilli strains have been shown to produce vitamins and bioactive molecules as
antioxidants, which play a major role in the pathology of PD [225]. Furthermore, it has been
demonstrated that various species of Lactobacillus and Bifidibacterium are able to prevent the
progression of the experimental autoimmune encephalomyelitis (EAE) animal model of MS
and improve clinical symptoms [226–228]. Indeed, clinical trials indicate that Streptococcus
spp., Lactobacillus spp., and Bifidobacterium spp. supplementation is able to reverse
MS-induced variations in the gut microbiota composition in MS subjects [229]. The current
methods of intestinal flora operation, including cecal fistula, have a broad application
prospect. Notably, a previous study shows that 3D-printed cecal fistula implantation,
which, through the body wall and into the cecum of rats to obtain long-term access to the
gut microbiome, is an effective procedure that allows long-term and minimally invasive
access to the gut microbiome [230]. Taken together, modification of the gut microbiota
while maintaining redox homeostasis could be a promising therapeutic strategy for NDs in
the future.

6. Conclusions and Perspectives

Overall, growing lines of evidence support the close link between redox homeostasis
and the gut microbiota in the development of NDs. In this regard, probiotic supplements
have a positive effect on redox imbalance and damaged gut microbiota, effectively ex-
erting neuroprotective effects. Therefore, shaping the gut microbiota to maintain redox
homeostasis appears to be a novel and effective therapeutic strategy for the treatment
of NDs.

However, the gut microbiota is a vast and diverse reservoir of microorganisms, and
more investigation is required to examine and characterize the role of the gut microbiota, as
well as the interactions between oxidative stress and the microbiota–gut–brain axis. As high-
throughput sequencing technologies continue to evolve, as well as multi-omics approaches
to machine learning, they can help unravel the intricate networks of interactions involved.
For instance, mass spectrometry-based metabolomics, single-cell RNA sequencing, and
spatial transcriptomics should enable the identification of associated metabolic pathways
and untangle the connections involved in the microbiota–gut–brain axis, contributing to
the development of precision medicine. Bioinformatics tools will be essential, to mine the
resulting data, enabling drugs to be designed that target the specific gut microbiota that
mediate oxidative stress and the production of harmful metabolites, and exploring the
neuroprotective and neurodegenerative roles of the gut microbial metabolites. Accordingly,
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further studies will be conducted to reveal how gut microbiota-mediated oxidative stress
contributes to the prevalence of NDs and reveal novel therapeutic strategies to combat
such conditions.
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