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Abstract: Chenodeoxycholic acid (CDCA), a primary bile acid (BA), has been demonstrated to play
an important role as a signaling molecule in various physiological functions. However, the role
of CDCA in regulating intestinal epithelial cell (IEC) function remains largely unknown. Herein,
porcine intestinal epithelial cells (IPEC-J2) were used as an in vitro model to investigate the effects
of CDCA on IEC proliferation and explore the underlying mechanisms. IPEC-J2 cells were treated
with CDCA, and flow cytometry and transcriptome analysis were adopted to investigate the effects
and potential molecular mechanisms of CDCA on the proliferation of IECs. Our results indicated
that adding 50 µmol/L of CDCA in the media significantly increased the proliferation of IPEC-
J2 cells. In addition, CDCA treatment also hindered cell apoptosis, increased the proportion of
G0/G1 phase cells in the cell cycle progression, reduced intracellular ROS, and MDA levels, and
increased mitochondrial membrane potential, antioxidation enzyme activity (T-AOC and CAT), and
intracellular ATP level (p < 0.05). RNA-seq results showed that CDCA significantly upregulated
the expression of genes related to cell cycle progression (Cyclin-dependent kinase 1 (CDK1), cyclin
G2 (CCNG2), cell-cycle progression gene 1 (CCPG1), Bcl-2 interacting protein 5 (BNIP5), etc.) and
downregulated the expression of genes related to mitochondrial biogenesis (ND1, ND2, COX3, ATP6,
etc.). Further KEGG pathway enrichment analysis showed that CDCA significantly enriched the
signaling pathways of DNA replication, cell cycle, and p53. Collectively, this study demonstrated that
CDCA could promote IPEC-J2 proliferation by regulating cell cycle progression and mitochondrial
function. These findings provide a new strategy for promoting the intestinal health of pigs by
regulating intestinal BA metabolism.

Keywords: chenodeoxycholic acid (CDCA); cell proliferation; cell cycle; mitochondria; IPEC-J2 cells

1. Introduction

Bile acids (BAs) are synthesized in the liver from cholesterol and stored in the gall-
bladder. After the dietary stimulus, they are released into the duodenum. Apart from the
universally recognized roles in cholesterol homeostasis and fat digestion in the gastrointesti-
nal tract, pieces of evidence have shown that BAs can also act as a key signaling molecule
to regulate various biological effects, including glucose homeostasis [1,2], immunity [3,4],
and cell proliferation and apoptosis [5,6], through acting on specific BA receptors, mainly
farnesoid X receptor (FXR) and Takeda G-protein receptor 5 (TGR5), or other cellular
signaling pathways.
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Chenodeoxycholic acid (CDCA), also known as 3α,7α-dihydroxy-5β-cholan-24-oic
acid, is one of the major primary BAs in the intestine of humans and animals. In pigs, hy-
ocholic acid (HCA), CDCA, and cholic acid (CA) are the main primary BAs in the intestine,
accounting for about 84%, 11%, and 4%, respectively [7]. CDCA has been applied in the
clinical treatment of cholesterol gallstones in humans [8]. In addition, it has been shown
that CDCA exerts regulatory effects on body metabolic functions [9], including obesity
attenuation [10], brown adipose tissue activation [11], and insulin resistance improve-
ment [12]. Moreover, it has been implicated that intraduodenal infusions of 15 mM CDCA
were involved in stimulating the secretion of intestinal hormones such as glucagon-like
peptide 1 (GLP-1) and cholecystokinin (CCK) in humans [13], that diet supplementation
with 0.02% CDCA could improve intestinal morphology and barrier function in weaned
piglets [14,15] and that 50 µM CDCA treatment alleviated intestinal inflammation in both
porcine intestinal epithelial cells (IPEC-J2) and mouse models [16], suggesting that CDCA
may elicit critical roles in regulating intestinal physiological function. However, the roles
of CDCA in intestinal epithelial cell (IEC) proliferation remain unclear.

In the mammalian intestine, epithelial cells are renewed every 4–5 days [17]. Prolif-
eration of intestinal epithelial cells plays an important role in normal intestinal growth
and development [18]. In addition, cell proliferation is also involved in the restoration
of intestinal epithelial tissue that has experienced inflammatory damage [19]. Therefore,
cell proliferation is necessary for intestinal mucosal renewal in normal and diseased states.
In pigs, especially in neonate piglets, promoting intestinal development and enhancing
intestinal epithelial function are necessary for improving health [20]. However, several
investigators have reported that BAs have different effects on the proliferation of IECs,
including stimulatory effects [5,21], and inhibitory effects [22,23]. To date, the effects
of CDCA on the proliferation of IECs and the possible underlying mechanism remain
largely unknown.

IPEC-J2 is a non-transformed porcine intestinal epithelial cell line that originated from
the jejunal epithelium of neonatal un-suckled piglets. These cells are morphologically and
functionally similar to primary IECs [24]. Therefore, this study was designed to investigate
the effects of CDCA on the proliferation of IECs using the IPEC-J2 model. In addition, cell
transcriptomics was further used to explore the possible underlying mechanism. Our data
showed that CDCA could promote IEC proliferation by regulating cell cycle progression
and mitochondrial biogenesis.

2. Materials and Methods
2.1. Cell Culture

The IPEC-J2 cells were kindly supplied by Dr. Guoyao Wu’s laboratory (Texas A&M
University, College Station, TX, USA). Cells were cultured in Dulbecco’s Modified Eagle
Medium/F12 (DMEM/F12, Thermo Fisher Scientific, Waltham, MA, USA) supplemented
with 5% fetal bovine serum (FBS, Thermo Fisher Scientific, Waltham, MA, USA) and 1%
penicillin-streptomycin (Thermo Fisher Scientific, Waltham, MA, USA). They were grown
at 37 ◦C in a humidified incubator with 5% CO2. The medium was replaced every other
day. We used passage 12–15 cells in these studies.

2.2. Selection of CDCA Concentration

To select the optimal concentration of CDCA (≥98%, Shanghai Yuanye Bio-Technology
Co., Ltd., Shanghai, China), IPEC-J2 cells were seeded in 96-well plates (Corning Incorpo-
rated, Corning, NY, USA) with a density of 1.5 × 105 cells/mL (100 µL per well). After 24 h
of incubation, cells were treated with different concentrations of CDCA (0, 10, 25, 50, 100,
200, and 400 µM) for another 24 h. Cell viability was measured using a cell counting kit
(CCK-8, MedChemExpress, Monmouth Junction, NJ, USA) according to the manufacturer’s
protocol. In brief, cells were incubated with 10% CCK-8 reagent for 3 h at 37 ◦C, and then
an Epoch microplate spectrophotometer (BioTek Instruments, Incorporated, Winooski, VT,
USA) was used to test the absorbance (A) at 450 nm. The calculation formula of cell viability
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was as follows: Cell viability = [A (treatment group) − A (blank group)]/[A (control group)
− A (blank group)] × 100%. The cell viability of the control group was considered to be
100%. In this study, 50 µM CDCA was selected to carry out the following experiments,
since it had higher cell viability.

2.3. Proliferation Assay

IPEC-J2 cells were seeded in 96-well plates (Corning Incorporated, Corning, NY,
USA) with a density of 1.5 × 105 cells/mL (100 µL per well). After 24 h of incubation,
cells were treated with 50 µM CDCA for another 24 h. Cells were incubated with 5-
ethynyl-2′-deoxyuridine (EdU) for 2 h before staining. Cell proliferation was detected using
Cell-Light EdU Cell Proliferation Detection Kit (Ribobio, Guangzhou, China) according
to the manufacturer’s protocol. The percentage of proliferative cells was determined by
quantitation of EdU-positive cells using an Olympus fluorescent microscope (Olympus,
Tokyo, Japan).

2.4. Measurement of Apoptosis, Cell Cycle, Mitochondrial Membrane Potential, and Intracellular
Reactive Oxygen Species

Apoptosis ratio, cell cycle, mitochondrial membrane potential, and intracellular reac-
tive oxygen species (ROS) levels were detected by flow cytometry (FCM). In brief, IPEC-J2
cells were seeded in 6-well plates and treated with or without 50 µM CDCA for 24 h. The
cells were then harvested and measured for apoptosis using an annexin V-FITC/PI apopto-
sis detection kit (Beijing 4A Biotech Co., Ltd., Beijing, China), cell cycle using a PI cell cycle
analysis kit (Beijing 4A Biotech Co., Ltd., Beijing, China), mitochondrial membrane poten-
tial using a JC-1 staining kit (Beyotime Biotechnology, Haimen, China), and intracellular
ROS level using a ROS active oxygen detection kit based on DCFH-DA fluorescent probe
(Beyotime Biotechnology, Haimen, China) according to the corresponding manufacturer’s
instructions. The stained cells were characterized by a high-sensitivity flow cytometer
(Beckman Coulter CytoFlex S, Krefeld, Germany).

2.5. Determination of Cellular Antioxidant Indices and ATP Level

IPEC-J2 cells were seeded in 6-well plates (Corning Incorporated, Corning, NY, USA)
with a density of 1.5 × 105 cells/mL (2 mL per well). After 24 h of incubation, cells were
treated with or without 50 µM CDCA for another 24 h. Subsequently, the cells were lysed
by RIPA buffer (Thermo Fisher Scientific, Waltham, MA, USA) at 4 ◦C for 30 min, and the
supernatant was collected after centrifugation at 13,000× g at 4 ◦C for 30 min. The total
antioxidant capacity (T-AOC), catalase (CAT) activity, and malondialdehyde (MDA) and
adenosine triphosphate (ATP) levels were detected using corresponding assay kits (Nan-
jing Jiancheng Bioengineering Institute, Nanjing, China) according to the manufacturer’s
protocols. The total protein concentration was determined using a BCA protein assay kit
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

2.6. RNA Extraction, Library Preparation, Sequencing, and Data Analysis

For RNA sequencing, IPEC-J2 cells in 6-well plates were treated with or without CDCA
(50 µM) for 24 h. Total RNA was extracted from the cell sample using TRIzol® Reagent
according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA). Then, RNA
quality was assessed using a 2100 Expert Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA) and quantified using the ND-2000 (NanoDrop Technologies, Wilmington, DE,
USA). The high-quality RNA samples (OD 260/280 = 1.8–2.2, OD 260/230 ≥ 1.0, RIN ≥ 6.5,
total RNA ≥ 1.0 µg, concentration ≥ 35 ng/µL) were used to construct the sequencing
library by Majorbio Biotech (Shanghai, China) on an Illumina Novaseq 6000. Short sequence
reads were analyzed on the Majorbio I-Sanger Cloud Platform (https://cloud.majorbio.
com/) (accessed on 21 September 2022). To identify differentially expressed genes (DEGs)
between two different samples, gene expression was expressed in transcripts per million
(TPM). RNA-seq by expectation-maximization (RSEM) was used to quantify the gene
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abundances [25]. R statistical package software EdgeR (Empirical Analysis of Digital
Gene Expression in R) was utilized for DEG analysis [26], and the resulting p-values were
further processed by FDR correction with the Benjamini–Hochberg (BH) method. GO
functional enrichment and KEGG pathway analysis were carried out by Goatools [27] and
KOBAS [28]. The protein–protein interaction (PPI) network was forecasted based on the
STRING online database (http://www.string-db.org/) (accessed on 9 October 2022) [29].
The PPI network of DEGs in IPEC-J2 was evaluated, and interactions with an overall
score > 0.4 were considered statistically significant. The key gene in the PPI network was
investigated topologically by using Network Analyzer plugin, which is well-integrated
into Cytoscape Software. Three centrality methods, including degree, closeness, and
betweenness centrality, were used to explore the key genes in the PPI network. All of the
RNA sequencing data were deposited in NCBI’s Gene Expression Omnibus (GEO) under
the accession number GSE214153.

2.7. RNA Extraction and RT-qPCR

Total RNA was extracted from IPEC-J2 cells using TRIzol (Takara Bio Inc., Dalian,
China), and 1 µg RNA was reverse-transcribed using PrimeScript® RT Reagent Kit with
cDNA Eraser (Takara Bio Inc., Dalian, China). RT-qPCR was performed with gene-specific
primers (Table S1) and an SYBR Green master mix on a CFX96 real-time PCR system
(Bio-Rad, Hercules, CA, USA). Relative fold changes of gene expression were calculated
using the cycle threshold (Ct) method and β-actin or GAPDH as a reference gene, as
previously described.

2.8. mtDNA Copy Number Determination

Total genomic DNA was extracted from the IPEC-J2 cell samples with a DNA tissue
kit (QIAGEN, Hilden, German). RT-PCR was performed with mtDNA-specific primer
(D-loop region) (Table S1) and an SYBR Green master mix on a CFX96 real-time PCR system
(Bio-Rad, Hercules, CA, USA). Relative fold changes of gene expression were calculated
using the 2−(∆∆Ct) method and nuclear DNA (β-actin) as a reference gene, as previously
described [30].

2.9. Statistical Analysis

All statistical significance was assessed by the independent sample t-test using SPSS
(SPSS 20 software, IBM, Armonk, NY, USA). All results were expressed as means ± SEM.
Differences were considered statistically significant if p < 0.05.

3. Results
3.1. Effects of Different Doses of CDCA on Cell Viability of IPEC-J2 Cells

To investigate the effect of CDCA on the porcine intestinal epithelial cells, IPEC-J2
cells were treated with CDCA at various concentrations for 24 h. As shown in Figure 1,
compared to the CON group, the CDCA-treated group significantly increased cell viability
at 25 and 50 µM (p < 0.05). However, when the concentration of CDCA was higher than
200 µM, the cell viability was significantly decreased (p < 0.05). These results indicated that
an appropriate concentration of CDCA is conducive to cell proliferation. Therefore, 50 µM
CDCA was selected to carry out the following experiments because of higher cell viability
at this concentration.

3.2. CDCA Reduces Apoptosis, Improves Mitochondrial Function, and Regulates the Cell Cycle

To verify the effect of CDCA on the physiological function of porcine intestinal ep-
ithelial cells, the cell proliferation was further analyzed by EdU assays, and the apoptotic
ratio, mitochondrial membrane potential, and cell cycle were further analyzed by FCM.
Consistent with the results for cell viability, 50 µM CDCA treatment for 24 h caused signifi-
cantly promoted cell proliferation (Figure 2A,B), a prominent increase in the proportion
of live cells, and a decrease in both the early and late apoptotic cells compared with those

http://www.string-db.org/
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in the CON group (Figure 3A,B). Growth increase can be attributed to cell cycle enhance-
ment. Thus, we wondered whether CDCA could modulate cell cycle progression. As a
result, CDCA treatment in IPEC-J2 cells caused a significant accumulation of cells in the
G0/G1 phase and markedly decreased the proportion of cells in the S- and G2/M-phases
compared with the CON group (Figure 3C,D). These results indicate that CDCA could
promote cell cycle progression, which may be conducive to cell proliferation. Mitochondria
are important organelles that regulate cell survival; their function can be reflected by the
mitochondrial membrane potential. Thus, the mitochondrial membrane potential of IPEC-
J2 cells was further analyzed using JC-1 staining. JC-1 is capable of selectively entering
the mitochondria, where it forms monomers (lower membrane potential) and polymers
(higher membrane potential). After IPEC-J2 cells were treated with 50 µM CDCA for
24 h, the percentage of cells with polymers increased, and cells with monomers decreased
(Figure 3E,F), suggesting the mitochondrial function in CDCA-induced IPEC-J2 cells was
better than that in CON cells.
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3.3. CDCA Could Enhance Redox Balance in IPEC-J2 Cells

ROS production is one of the important indicators of cell health status in mammalian
cells. Therefore, we further examined the level of intracellular ROS in IPEC-J2 cells with
50 µM CDCA or without CDCA treatment for 24 h. As shown in Figure 4, CDCA treatment
significantly decreased intracellular ROS levels (Figure 4A,B). In addition, CDCA also
significantly reduced the MDA level (Figure 4C) and increased T-AOC (Figure 4D) and
CAT activity (Figure 4E) in IPEC-J2 cells. These results indicate that CDCA could enhance
the redox balance by increasing antioxidant enzyme activity and decreasing intracellular
ROS and MDA production.

3.4. The Transcriptome Response to CDCA Treatment in IPEC-J2 Cells

Further RNA-seq analysis of IPEC-J2 cells after CDCA treatment was conducted to
explore the mechanisms of the effects of CDCA on cell function. In the present study,
a total of six cDNA libraries from the CON and CDCA groups were established and
sequenced. The RNA-sequencing of six samples obtained total raw paired-end reads
of around 383.9 million (Table S2). After quality filtering, each sample remained with
high-quality clean reads of approximately 63.3 million, ranging from 60.1 to 68.5 million.
The high-quality clean reads were further mapped to the reference sequences, and the
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alignment results were assessed to achieve secondary quality control and estimate whether
the reference was reasonable. After alignment, 95.47–95.96% and 95.62–95.74% of the clean
reads were successfully mapped to the genome; 6.84–8.92% and 4.83–4.91% of the clean
reads were found for multiple mapped reads; 86.55–88.94% and 90.71–90.91% of the clean
reads were found for uniquely mapped reads in CON and CDCA groups, respectively
(Table S2). Outlier box plots showed that all of the samples had a similar data distribution
and none was considered an outlier (Figure S1A). The correlation analysis between samples
showed that biological replicates from the two groups could be well distinguished and
the experimental design was reasonable (Figure S1B). These results confirmed the high
reproducibility of the RNA-sequencing data.
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Figure 4. Effects of CDCA on oxidative stress and oxidation resistance of IPEC-J2 cells. The repre-
sentative flow cytometry plots (A) of cell intracellular ROS level (n = 3) (B); MDA level (C), T-AOC
activity (D), and CAT activity (E) of IPEC-J2 cells treated with CDCA (n = 5). Values are presented as
mean ± SEM. * p < 0.05, ** p < 0.01 compared with the CON group. ROS, reactive oxygen species;
MDA, malondialdehyde; T-AOC, total antioxidant capacity; CAT, catalase.

PCA plot showed an obvious shift in gene expression with CDCA treatment
(Figure 5A). The volcano map could indicate the whole DEG distribution. Thus, the
volcano map was used to show the overall situation of the DEGs. Compared with the
CON group, the CDCA group significantly upregulated 986 genes and downregulated
1075 genes (fold change > 2; FDR < 0.05) (Figure 5B). Based on these results, we selected
11 downregulated DEGs, 3 upregulated DEGs and 6 unchanged genes for further valida-
tion by RT-qPCR. The results showed that the gene expression observed by RNA-seq was
similar to that by RT-qPCR analysis, suggesting that the results of RNA-seq were reliable
(Figure S2). The Venn plot indicated that 11,602 genes were common between the two
groups, and 268 and 400 genes were uniquely expressed in the CON and CDCA groups,
respectively (Figure 5C).
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Figure 5. Effects of CDCA on the DEGs of IPEC-J2 cells (n = 3). PCA plot of the transcriptional
profiles between the two groups (A). Volcano plot of DEGs between CON and CDCA groups (B). The
red, green, and gray dots indicate the significantly upregulated, significantly downregulated, and
unchanged genes, respectively. The Venn diagram showed the number of specifically expressed genes
in each group, as well as the overlapping co-expressed genes between CON and CDCA groups (C).
DEGs, differentially expressed genes.

The DEGs were subjected to GO functional category analysis, followed by GO enrich-
ment analysis. All of the DEGs were enriched in three main functional categories (top 20),
including biological process (BP), cellular components (CC), and metabolic function (MF)
(Figure 6A). At the BP level, the uppermost enrichment factor of DEG enrichment in GO
terms was the cellular process. In the CC category, most of the DEGs were classified into
cell parts. At the MF level, most of the DEGs were enriched in binding. The results of GO
enrichment (top 20) are shown in Figure 6B. CDCA treatment markedly affected the GO
terms (FDR < 0.05), including cell cycle checkpoint, mitotic cell cycle, DNA replication, and
mitotic cell cycle checkpoint. To better understand the functional changes in the IPEC-J2
cells with CDCA treatment, the DEGs were subjected to the KEGG database for pathway en-
richment analysis. KEGG pathways have six categories, namely cellular processes, genetic
information processing, metabolism, environmental information processing, organismal
systems, and human diseases. The significant changes in the KEGG pathways after CDCA
treatment of IPEC-J2 cells are shown in Figure 7A,B. Furthermore, KEGG pathway enrich-
ment analysis results showed that CDCA treatment significantly enriched KEGG pathways,
including DNA replication, cell cycle, and p53 signaling pathway (Figure 7C).

To systemically analyze the functions of the DEGs in IPEC-J2 cells, we mapped the
DEGs to PPI data and obtained some PPI networks. As shown in Figure 8, a total of
300 relationships (edges) between 141 genes (nodes) were identified. Node centrality
analysis and the node genes with a ranked degree both showed that CDK1 formed a
network with the highest degree (Figure S3, Tables S3, S4, S6). The CDK1 protein plays key
roles in multiple cellular activities including the cell cycle, DNA replication, and apoptotic
process. In addition, among the six clusters in the PPI network (Table S5), cell cycle-related
and mitochondrial biogenesis-related genes were clustered, suggesting the cell cycle and
mitochondrial function were modulated by CDCA treatment.
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Figure 7. Effects of CDCA on KEGG functional annotation and enrichment analysis of IPEC-J2 cells.
Histogram of KEGG functional annotation results for CON and CDCA groups (A). Scatter plot of
KEGG enrichment results for CON and CDCA groups (B). KEGG, Kyoto Encyclopedia of Genes
and Genomes.
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Figure 8. The protein–protein interaction (PPI) network analysis was based on the DEGs after CDCA
treatment. The network was set up according to the string online tool. Nodes represent genes, and
the weights of the edges represent how specifically two genes are associated together. Of the six
clusters (represented by six colors), the red cluster includes genes related to the cell cycle, and the
lime green cluster includes genes related to mitochondrial biogenesis. The detailed information for
node attributes, node degree, and clusters of the PPI network is shown in Tables S3–S5, respectively.

3.5. Cell Apoptosis, Cell Cycle, and Mitochondrial Biogenesis-Related Gene Expression Regulated
by CDCA Treatment in IPEC-J2 Cells

As for the cell apoptosis-related genes, Caspase 2 and Caspase 8 gene expression were
significantly downregulated by CDCA, while Caspase 3, Bax, and Bcl-2 gene expression and
the ratio of Bcl-2/Bax were unchanged by CDCA (Figure 9A). As for cell cycle-related gene
expression, Cyclin-dependent kinase 1 (CDK1), cyclin G2 (CCNG2), cell-cycle progression
gene 1 (CCPG1), and Bcl-2 interacting protein 5 (BNIP5) were significantly upregulated by
CDCA, while CDK4 and p21 were significantly downregulated by CDCA (Figure 9B,C). As
for mitochondrial biogenesis-related genes, the relative expressions of the mtDNA-encoded
gene, NADH dehydrogenase subunits (ND1, ND2, ND3, ND4, etc.), cytochrome b (Cytb),
cytochrome c oxidase subunits (COX1, COX2, and COX3), and ATP synthase F0 subunits
(ATP6 and ATP8) were significantly downregulated by CDCA (Figure 9D). In addition, the
copy number of mtDNA (Figure 9E) and level of intracellular ATP increased after CDCA
treatment (p < 0.05) (Figure 9F), suggesting that CDCA promoted cell proliferation in IPEC-
J2 cells possibly by regulating both the cell cycle progression and mitochondrial biogenesis.
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Figure 9. The genes related to cell apoptosis, cell cycle, and mitochondrial content expression are
regulated by CDCA treatment. Relative expression of genes related to cell apoptosis (A). Relative
expression of genes related to cell cycle (B,C). Relative expression of mtDNA-encoded gene, NADH
dehydrogenase subunits (ND1, ND2, ND3, ND4, etc.), cytochrome b (Cytb), cytochrome c oxidase
subunits (COX1, COX2, and COX3), and ATP synthase F0 subunits (ATP6 and ATP8) by RNA-seq (D).
The copy number of mtDNA (E). The level of cellular ATP regulated by CDCA treatment in IPEC-J2
cells (F). * p < 0.05, *** p < 0.001 compared with the CON group. Bax, BCL2-associated X; CCNG2,
cyclin G2; CCPG1, cell-cycle progression gene 1; Bcl-2, B-cell lymphoma-2; BNIP5, Bcl-2 interacting
protein 5; CDK, Cyclin-dependent kinase; ND, NADH dehydrogenase subunit; COX, cytochrome c
oxidase subunit; Cytb, cytochrome b; ATP, ATP synthase F0 subunit.

4. Discussion

CDCA is one of the major primary BAs in the intestine of humans and animals. CDCA
has been applied in the clinical treatment of cholesterol gallstones in humans [8] and also
has the function of regulating body metabolic functions [9], intestinal hormone (GLP-1
and CCK) secretion [13], and anti-inflammatory action [16]. However, the role of CDCA in
IEC proliferation remained unclear. In this study, for the first time, we provided evidence
that an appropriate level (50 µM) of CDCA could promote cell proliferation accompanied
by an acceleration of cell cycle progression in S and G2/M phases as well as improve
mitochondrial function and the reduction of intracellular ROS production in IPEC-J2 cells.

Cell-cycle progression is the basis of cell proliferation, which is regulated by cell cycle-
related proteins, including cyclins and cyclin-dependent kinases (CDKs) [31]. Cyclin D1, as
a key regulator, can lead to promoting the G1 to S phase. Cyclin D1 binding with CDK 4/6
plays a key role in the G1 to S checkpoint [32]. CDK1 is one of the critical determinants for
the transition from the G2 phase into mitosis [33]. Inhibition of CDKs can lead to cell-cycle
suspension at different phases or checkpoints [34]. The p21 encodes a universal inhibitor of
CDKs [35]. Indeed, in the present study, CDCA significantly upregulated gene expression
of CDK1 and downregulated gene expression of p21, accompanied by a reduced proportion
of cells in the G2/M phase. In addition, there is evidence demonstrating the role of CCNG2
in G2/M regulation [36]. The previous study proved that CCNG2 knock-down by siRNA
could increase the G2/M phase proportion in LSCC cell lines [37]. This is consistent with
our findings that the gene expression of CCNG2 in IPEC-J2 cells was upregulated by CDCA
treatment, leading to a significant decrease in the G2/M phase proportion. Thus, there is a
chance that CDCA accelerated the cell cycle progression by promoting cell transition from
the G2 phase into mitosis.

The p53 signaling pathway can affect DNA replication fidelity and cell division when
the cell responds to extrinsic and intrinsic stresses [38]. p21 is a key target gene of the p53
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signaling pathway and has been proven to regulate cell cycle arrest in the event of DNA
damage [39]. Our study showed that the p53 signaling pathway was significantly enriched
and gene expression of p21 was downregulated by CDCA treatment, which consequently
inhibited cell cycle arrest and promoted cellular proliferation.

Mitochondria are critical targets for BA toxicity at the cellular level [40–42]. It has been
well-characterized that BAs degrade mitochondrial function [41,43]. The mitochondrial
membrane potential collapse, mitochondrial permeabilization and swelling, mitochondrial
ATP biosynthesis impairment, and release of cell death mediators are attributed to BA
cytotoxicity [41,44,45], which finally leads to an energy crisis, cell death, and organ injury.
A previous study showed that increasing concentrations of CDCA (100–1000 µM) influ-
enced the impairment of mitochondrial membrane potential, decreasing mitochondrial
dehydrogenase activity and enhancing mitochondrial permeabilization and swelling in
mouse liver mitochondria [46]. In addition, studies also showed toxic effects in human
colonic T84 cells when the CDCA level was at 500 µM [47] or in Caco-2 cells when the
CDCA level was above 400 µM [48]. Indeed, in the present study, we found that when
concentrations of CDCA were greater than 100 µM, there was a significant decrease in cell
viability. However, conversely, 50 µM CDCA could increase the mitochondrial membrane
potential and promote cell proliferation. These findings suggested that an appropriate
concentration was very important for CDCA to play a role in promoting mitochondrial
function in vitro.

Mitochondrial biogenesis is a complex process. In mammalian cells, the mitochondrion
is an organelle that harbors its genome mtDNA, which encodes 22 tRNAs, 13 mRNAs, and
2 rRNAs. All 13 mRNAs of mtDNA encode 11 subunits and 2 ATP synthases, including
complex I (ND1, ND2, ND3, ND4, ND4L, ND5, and ND6); subunit of complex III (CYTb);
subunits of complex IV (COX1, COX2, and COX3); and subunits of ATP synthase (ATP6
and ATP8) [49]. Mitochondria. metabolic processes are responsible for the generation of
ATP and ROS. Subunits of complexes I and IV are responsible for proton pumping in the
mitochondria. ATP6 is a key component of the proton channel of the F1F0-ATPase complex.
It is worth noting that the results of this study revealed that both the mtDNA-encoded
11 subunits of complexes and subunits of ATP synthase-related gene expression were
downregulated by CDCA treatment. However, both the copy number of mtDNA and
the level of intracellular ATP were enhanced by CDCA. It can be speculated that these
results may reflect the negative feedback regulation in mitochondrial biogenesis-related
gene expression or mitochondria with more efficient energy metabolism induced by CDCA,
which needs further investigation.

The mitochondrial membrane potentials were often altered by the activities of respira-
tory chain complexes, which indicated the viability of cells [50]. In this study, an increased
mitochondrial membrane potential in IPEC-J2 cells was observed after CDCA treatment.
The increase in mitochondrial membrane potential may be due to the strongly increased
efficiency of respiratory chain-mediated proton extrusion for the matrix. In general, nor-
mal cells conduct energy metabolism primarily through efficient mitochondrial oxidative
phosphorylation (mtOXPHOS). The previous study showed that the enhancement of mtOX-
PHOS can lead to less electron leakage from the electron transport chain, and in turn,
reduce the production of ROS in cells [51]. In the present study, the levels of intracellular
ROS in the IPEC-J2 cells were significantly decreased by CDCA treatment, which may
further reflect that CDCA could promote efficient mtOXPHOS. Furthermore, intracellular
ROS overproduction will establish a vicious cycle of oxidative stress in the mitochondria,
ultimately damaging mitochondrial and cellular proteins, lipids, and nucleic acids [52]. Our
data clearly showed that CDCA could reduce oxidative stress in IECs and improve their
antioxidant capacity, as reflected by the increased T-AOC and CAT activity and decreased
MAD level, which could reduce oxidative stress-related mitochondrial dysfunction and cell
damage. Mitochondria play a central role in the regulation of cell apoptosis, which is closely
related to cell proliferation [53]. Several investigators have reported the different roles
of BAs in intestinal cell proliferation, including stimulatory effects by taurine-conjugated
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cholic acid (TCA) [5] and glycochenodeoxycholic acid (GCDCA) [21], and inhibitory effects
by deoxycholic acid (DCA) [5], ursodeoxycholic acid (UDCA) [22], and hyodeoxycholic acid
(HDCA) [23]. However, these studies did not focus on the regulation of mitochondrial func-
tion by BAs, and it is unclear whether the regulation of cell proliferation by BAs depends
on mitochondrial function. Therefore, even though we observed that CDCA promoted IEC
proliferation related to improvement in mitochondrial function, it is necessary to further
determine the role of mitochondrial function in the process of cell proliferation regulated
by BA.

Apoptosis activation can be classically triggered by two distinct pathways: the ex-
trinsic, or death receptor, and the intrinsic, or mitochondrial pathway. The decline in
mitochondrial membrane potential is one of the characteristics of mitochondrial damage,
which could induce the release of mitochondrial Cytochrome c into the cytosol, which
further combines with Caspases to form a Caspase-activating complex [54]. Furthermore,
signaling disruption of mitochondrial membrane potential could reflect increased mito-
chondrial membrane permeability and the occurrence of mitochondrial dysfunction—a
pivotal and irreversible event in the apoptotic pathway [55]. Our results demonstrated that
CDCA could increase mitochondrial membrane potential in IPEC-J2 cells, implying that
CDCA may prevent IPEC-J2 cell apoptosis through the mitochondria-mediated pathway.
In addition, the apoptosis process is regulated by two protein families: the Bcl-2 family,
which is responsible for the initiation phase, and the Caspase family of proteases that are
involved in the execution phase of apoptosis [56,57]. In the present study, CDCA did not
affect the gene expression of Bcl-2, while it downregulated the gene expression of Caspase
2 and Caspase 8 in the IPEC-J2 cells, which can be explained from another perspective,
namely that CDCA may promote cell proliferation by inhibiting cell apoptosis.

5. Conclusions

In summary, the present study combined flow cytometry and transcriptome analysis
to reveal for the first time that in vitro, an appropriate concentration (50 µM) of CDCA
could promote cell proliferation by accelerating cell cycle progression in the S and G2/M
phases, inhibiting cell apoptosis and enhancing mitochondrial function by increasing
mitochondrial membrane potential and antioxidant capacity, and decreasing intracellular
ROS and MDA levels in IPEC-J2 cells. These findings provide a theoretical basis for
promoting IEC proliferation and intestinal development in pigs by regulating intestinal
BA metabolism.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox11112285/s1, Table S1: Primers used for RT-qPCR analysis;
Table S2: The raw data from RNA-seq analysis of CON and CDCA groups; Table S3: The node
attributes table for the PPI network; Table S4: The node degree information for the PPI network;
Table S5: Clusters of the PPI network; Table S6: The centrality degree of nodes centrality analysis
for PPI network; Figure S1: Outlier box plots to identify biological outliers (A). All of the samples
had a similar distribution of the data, and none were considered an outlier; The results of correlation
analysis between samples (B). Results showed that biological replicates from the two groups could be
well distinguished and the experimental design was reasonable. These results confirmed the high
reproducibility of the sequencing data; Figure S2: Validation of transcriptomic results by RT-qPCR in
IPEC-J2 cells. The 3 upregulated DEGs, 11 downregulated DEGs, and 6 unchanged genes observed
by RNA-seq were selected for validation using RT-qPCR. All validated genes have similar trends in
expression when comparing RNA-seq with RT-qPCR. # FDR < 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001,
versus CON group. IL-6, interleukin-6; CDK, cyclin-dependent kinase; ZO-1, zonula occludens-1;
CLDN1, claudin 1; OGA, O-GlcNAcase; OGT, O-GlcNAc Transferase; Bax, BCL2-associated X; Bcl-2,
B-cell lymphoma-2; FXR, farnesoid X receptor; LXRα, liver X receptor α; TGR5, G-coupled protein
receptor; ND, NADH dehydrogenase subunit; COX, cytochrome c oxidase subunit; Cytb, cytochrome
b; ATP, ATP synthase F0 subunit; Figure S3: The nodes centrality analysis for protein–protein
interaction (PPI) network. Three centrality methods, including degree, closeness, and betweenness

https://www.mdpi.com/article/10.3390/antiox11112285/s1
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centrality, were used to explore the key genes in the PPI network. The detailed information for the
centrality degree is shown in Table S6. Refs. [58–68] cited in Supplementary Materials.
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