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Abstract: In recent years, there has been a growing interest in the application of antioxidants in
food and pharmaceuticals due to their association with beneficial health effects against numerous
oxidative-related human diseases. The antioxidant potential can be measured by various assays with
specific mechanisms of action, including hydrogen atom transfer, single electron transfer, and targeted
scavenging activities. Understanding the chemistry of mechanisms, advantages, and limitations of
the methods is critical for the proper selection of techniques for the valid assessment of antioxidant
activity in specific samples or conditions. There are various analytical techniques available for
determining the antioxidant activity of biological samples, including food and plant extracts. The
different methods are categorized into three main groups, such as spectrometry, chromatography,
and electrochemistry techniques. Among these assays, spectrophotometric methods are considered
the most common analytical technique for the determination of the antioxidant potential due to
their sensitivity, rapidness, low cost, and reproducibility. This review covers the mechanism of
actions and color changes that occur in each method. Furthermore, the advantages and limitations of
spectrophotometric methods are described and discussed in this review.

Keywords: antioxidative activity; determination; free radicals; plant-based antioxidant; phenolic
compounds; colorimetry

1. Introduction

Many studies have been conducted related to the oxidation origin of free radicals
and the general role of antioxidants since the beginning of the 21st century. This interest
was generated because free radicals are highly reactive and unstable molecules with a
significant impact on the human biological system even though they are neutral. In fact,
some important lipid-derived compounds, such as aldehydes, can produce negative effects
on human health, although these compounds can naturally form during food processing,
mainly linked to thermal treatments [1]. Radicals’ significant activity is an outcome of an
atom that carries an unpaired electron. Due to this lack of outer-shell electrons, they are
constantly searching to bind with another atom or molecule to stabilize themselves [2].
Despite antioxidant defense mechanisms, human cell damage accelerates aging and can
play a critical role in the development of other diseases [3,4]. Further oxidative modification
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of biological macromolecules (e.g., lipids, proteins, and DNA) can result in tissue injury [5].
In understanding these occurrences and preventing them, a higher quality of life may
be gained.

Recently, extensive research has been classified into different types of free radicals.
The three main categories are: reactive oxygen species (ROS), reactive nitrogen species
(RNS), and reactive sulfur species (RSS), which are formed from oxygen, nitrogen, and
sulfur atoms, respectively [6]. Examples of ROS, RNS, and RSS include hydrogen oxide,
hydrogen peroxide, singlet oxygen, alko-xyradical, peroxyl-radical, nitrogen monoxide,
nitric oxide superoxide anion, hydroxyl anions, alkyl-thiol, etc. [2,6,7]. More specifically,
the ROS group includes lipid peroxidation products and protein carbonyl species while the
RNS group includes nitric oxide and peroxynitrites. Nitric oxide plays a key role in DNA
damage, inflammation, cancer cell growth, and apoptotic malfunction, even though it has a
lifespan of only a fraction of a second. In addition, peroxynitrites have the potential to cause
lipid peroxidation, DNA damage, and long-term damage to all biomolecules. Similarly,
sulfur species (RSS) may act in unison to damage biomolecules and, hence, extensive
damage to genes in DNA may result in genes that produce ineffective proteins [4,8]. The
origin of radicals is not yet well defined, but our own body often produces free radicals
in the process of breaking down nutrients to create the energy that allows our bodies to
function. Endogenous sources are multifaction in mitochondria, peroxisomes, endoplasmic
reticulum, phagocytic cells, etc. while some exogenous sources may be air pollution,
ultraviolet radiation, alcohol, smoking, contact with heavy metals, pesticides, and certain
drugs such as halothane and paracetamol [9].

Fortunately, antioxidants can neutralize free radicals and reduce the risk of damage [10].
Antioxidants have become rapidly known for their health-promoting capabilities. By def-
inition, the term “antioxidant” refers to a class of compounds with synthetic or natural
orientation, which can act as chain-breaking antioxidant inhibitors, stopping the chain reaction
of free radicals by complexing with them [11]. Apart from stopping the formation mechanism,
an antioxidant compound must be able to scavenge radicals and form new ones that are
stable [12]. Natural compounds such as these can be found in fruits, roots, vegetables, and
plants [13–16]. In addition to this, a study conducted by Yashin et al. [17] suggests that the
most biologically active compounds are contained in various spices and herbs.

The main representatives of antioxidants are vitamins A, C, and E; beta-carotene; an-
thocyanidins; phenols; flavonoids; phenolic acids, etc. [17]. Certainly, natural antioxidants
that are consumed daily in our diet can protect our bodies and act as anticarcinogenic
agents. Higher antioxidant and anticancer activities are also demonstrated in cases where
there is a synergetic effect between different antioxidant natural molecules [18–20]. En-
dogenous defenses in humans have gradually improved over time, resulting in a balance
between free radicals and oxidative stress. Enzymatic antioxidants and non-enzymatic
oxidants are the two main types of antioxidants found in humans [6]. Antioxidant defense
mechanisms attempt to scavenge reactive oxygen species and prevent their formation,
although they are not always successful. The antioxidant network is complex, containing
substances that are both endogenous and ingested. Enzymes called superoxide dismutase
(SOD) convert O2 to H2O2 and eliminate it from the body [21]. However, because of
the blood–brain barrier, antioxidants sometimes fail to provide adequate protection [22].
Numerous studies have demonstrated the necessity of antioxidants, but currently, the
preferred choice of determination method is a controversial challenge. Antibody, fluores-
cence, light emission, spectrophotometric, chromatography, and electrophoretic techniques
are the most widely used quantification procedures for determining the total antioxidant
activity (TAA) [6,23,24]. Although spectrophotometric methods are standard and very
basic techniques, they have been used due to their simplicity and low cost. Established
spectrophotometric methods such as ABTS, DPPH, FC, FRAP, and CUPRAC have been
used for years, as they are characterized by rapidity, reliability, and simplicity [25]. Under-
standing the basic principles is critical for selecting the best suitable procedure [5,26,27].
The main goal of this review is to classify, outline, and discuss each of these spectrophoto-
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metric assays along with their mechanism of action in order to present to the readers the
advantages and disadvantages while providing a thorough understanding of free radicals
and natural antioxidant molecules.

2. Oxidation Process and Radicals

As mentioned before, free radicals are chemical entities (atoms, molecules, or ions),
that have a single unpaired electron in one of their outer orbits, which makes them unstable
and reactive [28]. The outcome is the formation of more radicals or unwanted side products
as an electron attempts to bind with another. The majority have a half-life that depends
on their environment. For example, the half-life of NO• or most oxygen species is a few
minutes whereas the half-life of sulfur anion free radical is seconds. The initiation of the
generation of radicals is any source of heat, ultraviolet irradiation, and air pollution, or
naturally occurs in mitochondria. In humans, small molecules, peptides, proteins, and
enzymes mostly contain nitrogen, oxygen, and sulfur, which serve a variety of functions in
living creatures [29]. Nitrogen and oxygen are usually bonded in ‘chains’ of two to three
atoms (peroxides, ozone, dinitrogen trioxide, etc.) while sulfur chains can be considerably
longer (Table 1). These atoms have many oxidation states, and sometimes, during certain
events and under certain circumstances, they release free radicals as side products [2,28,29].
During the propagation step, free radicals react with other molecules until their termination,
where the free radicals bind together in a way that the chain is no longer propagated.

Table 1. Reactive oxygen (ROS), nitrogen (RNS), and sulfur (RSS) species and their non-free-
radical species.

Reactive Species

ROS RNS RSS

Radical

Peroxyl ROO• Nitric oxide NO• Alkoxyl-thiyl RS•
Alkoxyl RO• Nitrogen dioxide NO2• Sulfide cation (RSR)•+

Hydroxyl •OH Disulfide anion (RSSR)•−
Superoxide O2•− Disulfide cation (R2S ∴ SR2)•+

Bicarbonate HCO3• Perthiyl RSS•
Sulfinyl RSO•

Sulfonyl RS(O)2•
Sulfur trioxide anion SO3•−

Sulfate anion SO4•−

Non-Radical

Hydrogen peroxide Peroxynitrite ONOO− Sulfate SO4
2−

H2O2 Nitrosyl cation NO+ Dithionate S2O6
2−

Singlet oxygen 1O2 Nitrous acid HNO2 Sulfite SO3
2−

Ozone O3 Nitryl chloride NO2CL Disulfide R2S
Peroxide R2O2 Nitroxyl anion NO− Hydrogen sulphide H2S
Alcohol ROH Dinitrogen trioxide N2O3 Disulfide-S-dioxide RS(O2) SR

Organic peroxide ROOH Dinitrogen tetraoxide N2O4 Disulfide-S-monoxide RS(O)SR
Peroxynitrous acid ONOOH Sulfenic acid RSOH

Thiol RSR
Tetrathionate S4O6

2−

Peroxodisulfate S2O8
2−

Reactive oxygen (ROS), nitrogen (RNS), and sulfur (RSS) species are formed both
endogenously and exogenously [2]. The most prevalent free radicals that cause harm to
biological systems are oxygen-free radicals, also known as ROS [30]. They are produced as
a by-product of biochemical reactions by neutrophils and macrophages in mitochondria,
peroxisomes, and other organelles [31]. Activated forms of ROS are illustrated in Table 1
and are usually separated as small particles that do not contain carbon atoms, such as
•OH, in contrast with forms such as ROO•. Reactive sulfur species have also received
attention for their role in oxidative stress, a phenomenon caused by an imbalance between
the production and accumulation of reactive species in cells and tissues and the ability of a
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biological system to detoxify these reactive products [32]. Normally, sulfur radicals can be
produced by hydrogen donation, enzymatic oxidation, and interaction with reactive oxygen
species such as hydrogen peroxide, singlet oxygen, peroxynitrite, and superoxide [29].
When cellular thiols are oxidized, they form species that can oxidize and inhibit the
action of proteins and enzymes. Currently, known sulfur-free radicals include disulfides
and monosulifes, disulfide-S-oxides, and sulfenic acid agents (Table 1). According to
Abedinzadeh et al. [33], the formation of highly reactive sulfur radicals participates in
several different reactions, which lead to disulfide radical anion, thiyl peroxyl radical, and
others. On the other hand, reactive nitrogen species (RNS) are a class of antimicrobial
compounds produced by nitric oxide and superoxide. When they combine, they are
converted to a peroxynitrite free radical. Rapid protonation of peroxynitrite anion in vivo
gives peroxynitrous acid (ONOOH), which acts as an electrophilic nitrating agent for
tyrosine and tryptophan sidechains in proteins. The decomposition of peroxynitrous acid
can generate hydroxyl radicals, which can subsequently damage human DNA [34]. Further
damage to DNA clones has been reported as the presence of nitric oxide free radical
is related to dose-dependent DNA strand breaks and the transformation from cytosine
to uracil and 5-methylcytosine to thymine [35]. The endogenous antioxidant defense
system can also be overwhelmed by ROS, RNS, and RSS, resulting in cellular damage
and dysfunction, which leads to a variety of illnesses. ROS and RNS are key regulatory
mediators in signaling pathways at low concentrations, but they are toxic in moderate and
high quantities, inactivating critical cellular components [36].

Nitric oxide (NO•) has two purposes in health and sickness and its level influences
both. Nitric oxide has the potential to act as an active marker of cancer progression during
physiological and pathological processes by encouraging angiogenesis or the production
of new blood vessels [37]. Furthermore, by upregulating p53, poly (ADP-ribose) poly-
merase, and DNA-dependent protein kinase, NO• may affect tumor DNA repair processes
(DNA-PK). The use of NO• in cancer research has significant therapeutic implications for
disease detection and treatment. At the same time, the ratio of ROS/RNS is engaged in a
range of physiological activities, including immunological function (i.e., protection against
harmful microorganisms), cellular signaling pathways, mitogenic response, and redox
regulation, and has beneficial effects at moderate or low levels. However, at higher ratios
of ROS/RNS, oxidative and nitrosative stress can occur, which can destroy biomolecules as
the antioxidant and oxidant levels are unbalanced [9,38]. Increasingly more free radicals
build up, causing extensive damage to macromolecules, including nucleic acids, proteins,
and lipids.

Peroxidation of lipid products and protein carbonyls is only one of the side effects
of ROS when nitric oxide and peroxynitrites are produced from nitrogen radicals [4].
Therefore, any anomalies that occur in these crucial structural components have been related
to the onset of a variety of neurodegenerative diseases, such as Alzheimer’s, Parkinson’s,
etc. [39]. A study by Porter et al. [40] indicated that malondialdehyde (MDA, ROS agent)
interacts with low-density lipoproteins and, as a result, lipid peroxidation forms, which
indirectly causes atherosclerosis. Additionally, ONOO− is another major RNS player that
acts as a lipid peroxidation catalyst, which causes membrane and lipoprotein disruption. In
the growth of cancer, ONOO− and MDA act as cytotoxic and mutagenic agents, promoting
DNA damage through mutations, resulting in decreased tumor suppressor gene expression
or enhanced oncogene expression [41]. The possible consequences of the effects of lipids
and proteins include tissue damage, neurological illnesses, cancer, cardiovascular diseases,
cataracts, rheumatoid arthritis, asthma, stroke, myocardial infarction, chronic heart failure,
diabetes, and many other neurodegenerative disorders [4,22,34].

3. Classification of Natural Antioxidants

Antioxidants can be separated into two main categories: synthetic and natural, which
are derivatives of fruits, herbs, and plants [42–44]. Additionally, different plant by-products
are also an economic source of natural antioxidants [45]. Nowadays, the employment
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of synthetic antioxidants in food, such as butylated hydroxytoluene (BHT) or butylated
hydroxyanisole (BHA), has raised social concern, as these compounds are effective and
relatively cheap to produce, but they can generate allergies and serious problems for human
health in the long term [46,47]. This is also the major reason why many companies are trying
to replace compounds synthesized in the laboratory with natural antioxidants to prevent
oxidation in food products and secure a healthier lifestyle [48]. However, antioxidants must
meet some of the following criteria to be utilized in this task. Firstly, they must be efficient,
and their utilization must be cost-effective. Secondly, large-scale usage is not practicable if
they are too expensive or complex to synthesize or isolate. Finally, they need to be kept at
low concentrations, as these substances can be harmful to people at extremely high levels.

It is well known that plants, fruits, vegetables, herbs, seeds, and other natural sources
present a large cocktail of antioxidants, such as phenolic compounds, carotenoids, and
vitamins [16]. Due to this fact, a diet rich in fruits and vegetables is usually recommended
in order to receive all the benefits. By doing so, it is possible to prevent or delay certain
diseases, such as cardiovascular diseases or diabetes [46,49]. This variety of phenolic acids
and flavonoids, along with a general classification of antioxidants, is shown in Figure 1.
Additionally, some by-products of the food and agricultural industries, such as shells or
peels, have been and continue to be investigated for the extraction of antioxidants. It is
also important to note that, depending on the type of the plant and its morphological
parts, the antioxidant capacity can vary significantly, as the antioxidant capacity of the
leaves is not the same as that of the stem [27]. Based on this, different processes such as
extraction, separation, and characterization of natural antioxidants have been investigated
over the years.
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According to Figure 1, natural antioxidants can be classified into endogenous and
exogenous antioxidants. Endogenous antioxidants are synthesized internally by the
metabolism while exogenous antioxidants are obtained mostly in plants. The combi-
nation of endogenous and exogenous antioxidants in the human body helps maintain
the nucleophilic tone, which translates into a healthy physical state [49]. Endogenous
antioxidants can be divided into enzymatic and non-enzymatic. Enzymatic antioxidants
act as the first line of defense in the human body while non-enzymatic antioxidants usually
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act as the second line of defense. The main representatives of enzymatic antioxidants
with the highest effectiveness are superoxide dismutase (SOD) and catalase (CAT). SOD is
responsible for obtaining O2 and H2O2 from the O2

− radical. Then, CAT takes H2O2 and
converts it to H2O and O2 [26]. Non-enzymatic proteins such as albumin and transferrin
are also endogenous antioxidants. Proteins of this type are capable of trapping metal ions,
avoiding the formation of new reactive species [49]. Exogenous antioxidants can also be
divided into many different compounds. The most significant ones that are present in the
diet of an average person are phenolic compounds such as flavonoids and phenolic acids,
vitamins such as ascorbic acid (C) and tocopherol (E), and carotenoids [47].

In the case of vitamins, those that are water-soluble, such as ascorbic acid, are re-
sponsible for stopping free radicals present in the aqueous phase. Fat-soluble vitamins,
such as tocopherol, are present in cell membranes, preventing their degradation [26]. The
largest groups of exogenous natural antioxidants are phenolic structures. Within them,
a distinction can be made between phenolic acids and flavonoids. Both are present in
plants and this is also the reason why plant-derived foods contain a large amount of these
exogenous antioxidants. As can be seen in Figure 1, these acids are divided into two groups
depending on whether they are formed from benzoic or cinnamic acid. Some examples are
caffeic acid (derived from hydroxycinnamic acid) and vanillic acid (derived from hydroxy-
benzoic acid). It should be noted that compounds derived from hydroxybenzoic acid have
a lower antioxidant capacity than those derived from hydroxycinnamic acid. In general, it
is estimated that the average person consumes about 200 mg/day of phenolic acid during
the day [46].

On the other hand, flavonoids are present in large amounts in plants, formed from
primary metabolites. Plants can transform the amino acids tyrosine and phenylalanine
into new compounds. All of them have a general structure consisting of 3 phenyl rings
and another heterocyclic ring containing an oxygen atom, forming a 15-carbon skeleton.
Many of these compounds with variations in the two phenyl rings are found in nature [50].
Flavonoids are also present in the diets of people, reaching higher levels of daily intake
than phenolic acids. Delving a little deeper into this group of compounds, flavonols are
more common than flavones. They accumulate in the leaves and skin of plants and can act
as complex-forming agents with metal ions due to the presence of carbonyl and hydroxyl
groups in their structure [46].

4. Natural Antioxidant Mechanism in Radical Scavenging

Antioxidants have a differing capacity to stop the propagation of free radicals. The
important factors influencing this are both the structure of the antioxidant and the structure
of the compound to be oxidized, the presence of pro-oxidants, and the concentration of all
of them. In addition, the region in the organism where all these substances are present and
react together must be considered. There are various ways in which antioxidants carry out
their work and there are numerous variables that can affect the antioxidant capacity [26].
This section will show some of the known mechanisms used by natural antioxidants in
dealing with the propagation of free radicals. As the number of natural antioxidants is very
large, only a selection of the best-known and most important ones will be discussed.

Starting with phenolic acids, which are among the most abundant exogenous antiox-
idants, their ability to neutralize free radicals depends on several things, including the
number of hydroxyl groups present on their aromatic ring, their position on it, and the
presence of other substituents. As a general rule, the greater the substitution of the aromatic
ring, the greater the difference in the antioxidant activity of these compounds. An aromatic
ring that is unsubstituted cannot act as a hydrogen donor and therefore has a lower an-
tioxidant capacity [51,52]. There are many different mechanisms by which an antioxidant
compound can perform its function. The first and most common is known as HAT or
hydrogen-electron transfer. This mechanism is used not only by phenolic acids but by all
antioxidants that have a labile hydrogen atom in their structure. These compounds give up
their hydrogen to stabilize the radical. Once this is carried out, the antioxidant compound



Antioxidants 2022, 11, 2213 7 of 33

becomes a radical itself, but it can be stabilized and reach a state where it is harmless [53]. A
way of measuring how easily a hydrogen atom of an antioxidant compound can react with
a free radical is the bond dissociation energy. The lower the value, the easier a hydrogen
atom is transferred [54]. An example of this mechanism is shown in Figure 2.
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Another mechanism widely used by phenolic acids is the so-called SET or single
electron transfer. In this case, the antioxidant gives up an electron to the free radical to
stabilize it in an anionic form as shown in Figure 3 [46,53].
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The third and fourth mechanisms by which the various phenolic acids exert their
antioxidant capacity are known as transition metal chelation and sequential proton loss
electron transfer (SPLET). The metal chelation mechanism is the ability of certain antioxi-
dants to chelate transition metals, preventing them from catalyzing reactions that produce
free radicals inside an organism (Figure 4). Some of these metals are Fe, Cu, and Mn [53,55].

On the other hand, SPLET, or sequential proton loss electron transfer, occurs when
the antioxidant compound donates a proton to a free radical and transforms into an anion,
which subsequently donates an electron to stabilize itself [53]. An example of this is shown
in Figure 5.
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Figure 5. Phenolic acid derivative neutralizing a free radical via SPLET [53].

In the previous section, it was pointed out that antioxidants derived directly from
cinnamic acid have a higher antioxidant capacity than those derived from benzoic acid.
This is due to the presence of the double bond of cinnamic acid, which can conjugate with
the electron cloud of the aromatic ring, giving it a greater capacity to stabilize reactive
species. Moreover, since the carbonyl group of cinnamic acid derivatives is distant from the
aromatic ring, their antioxidant activity is higher than that of benzoic acid derivatives [26].
Flavonoids, as phenolic structures, also present these mechanisms. Their ability to neutral-
ize free radicals is influenced both by the type of catechol ring present in their structure
and by the presence of hydroxyl groups. Additionally, their double bond plays a critical
role, as it can be conjugated and provide greater structural stability [46]. An example of a
typical flavonoid structure is shown in Figure 6.
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Figure 6. Most common structure of flavonoids. R1-R5 can range from hydrogen atoms to hydroxyl
or methoxy groups [46].

Apart from phenolic structures, there are many other compounds in exogenous an-
tioxidants. Among vitamins, tocopherol, or vitamin E, is a fat-soluble vitamin present in
cell membranes. Although this compound has a phenolic structure, it is classified within
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the group of vitamins. There are, in turn, different classes of tocopherols depending on
their structure. α-Tocopherol is the most abundant form of vitamin E in nature [46,49]. This
compound uses the SPLET mechanism to exert its antioxidant activity (Figure 7).
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In the case of endogenous natural antioxidants, the non-enzymatic ones, such as
transferrin and albumin, use the mechanism of metal chelation to trap metal ions as already
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mentioned. As for those that are enzymatic, such as SOD and CAT, they catalyze a series of
reactions essential for the correct functioning of the organism [56]:

H2O2 + Catalase− Fe (III)→ H2O + Catalase− Fe (IV)
H2O + Catalase− Fe (III)→ H2O2 + Catalase− Fe (IV)

5. Spectrophotometric Methods for Measuring Antioxidant Activity

Based on the previous discussion, it clear that it is critical to investigate the techniques
that can be used to determine the total antioxidant activity (TAC) and total phenolic
content (TPC). In this context, spectrophotometric (colorimetric and fluorescence) tests
have received more attention as they are fast, reproducible, easy, and cheap [6,26,57].
Colorimetric assays, which are the most famous, such as DPPH, FRAP, ABTS, etc., change
their color due to an electronic transition in atoms or molecules. A change in the electronic
transitions affects how much light is absorbed by the molecules, which in turn alters the
color of the molecules. Numerous complexes enter an excitation state after receiving an
electron. The production of brightly colored complexes is caused by the fact that the
excitation energy needed for an electron to transition from one energy level to another
frequently falls in the visible area of the electromagnetic spectrum. Because of the different
types of donors and acceptors involved, the absorption wavelength of the transition bands
is unique. Any wavelength from 400 to 750 nm is visible as red, orange, yellow, green, blue,
and violet [58]. All spectrophotometric methods are quantification techniques as a result of
the regression line and regression equation of different concentrations of standards [59].
Depending on each case, the antioxidant structure and properties and the solubility and
partition coefficient dictate the prevailing mechanism in a given system and guide the
selection of the optimum assay [57,60]. Table 2 illustrates the spectrophotometric assays that
will be addressed in more detail, along with their absorption maxima (λmax), fundamental
principle, and any observed color shifting.

Table 2. Spectrophotometric parameters of each assay.

Assay nm Principle of Method Determination
Color Shifting Reference

From To

DPP 515–520 Antioxidant reaction with
free organic radicals Colorimetry
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Table 2. Cont.
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5.1. HAT and ET methods
5.1.1. DPPH

In 1958, Blois [80] first devised this method by employing a stable free radical and
using cysteine as a model antioxidant. This reaction is explained below, where Z• is used
to simulate the DPPH radical and RSH the cysteine molecule. After the creation of RS, the
free radical reacts with another molecule to produce RS-RS [81]:

Z• + RSH→ ZH + RS•

RS• + RS• → RS− SR

Nowadays, DPPH is one of the most commonly used free radical scavenging antioxi-
dant assays, which utilizes a π radical system of aromatic benzoic rings [26]. Due to the
spare electron’s delocalization over the entire molecule, which prevents it from dimerizing
like the majority of other free radicals, DPPH is classified as a stable free radical. It has
been widely used in serum, biological fluids, and food samples. The only requirements are
a UV spectrophotometer and DPPH reagent (2,2-diphenyl-1-picrylhydrazyl) [18]. DPPH
reagent is a crystalline powder with a dark color, made up of stable free radical molecules,
which is generally used as a radical and a trap (“scavenger”) for other radicals. Although
the DPPH radical can be dissolved in several organic solvents, it cannot be dissolved in
water. Methanol, ethanol, or aqueous mixtures of these compounds are typically used to
dissolve it. The water quantity in this last case should not exceed 60% to make the radical
more soluble [82].

Due to a broad absorption band centered at 515–520 nm (Table 2), the DPPH radical
has a deep violet color in solution, and when neutralized, it becomes colorless or pale
yellow [23]. The change in optical absorption can be used to measure the number of
initiating radicals, and this characteristic allows visual monitoring of the reaction of ascorbic
acid [59,83]. The EC50 value of the antioxidant activity of the DPPH scavenging method
is defined as the effective antioxidant concentration required to reduce the initial DPPH
concentration by 50%. It is also possible to use TEC50, which is the time it takes to reach
the steady state with EC50. Another expression is the antiradical efficiency (AE) formula,
which is described by Equation (1):

AE = (EC50 × TEC50)−1 (1)

This formula combines EC50 and TEC50 into a single quantity [27]. At the same time,
Equation (2) is used to compute the reduction in the absorbance at various concentrations,
which represents the antioxidant activity:

Antioxidant activity (%) = (Eradical − Estandard/Eradical) × 100 (2)

where E is the extinction coefficient of DPPH [81].
DPPH has been used in the past in many studies to measure the antioxidant activity of

common antioxidants such as ascorbic acid, BHT, propyl gallate, flavonoids, peptides, and
phenolic acids [84–87], as it appears to have the potential to bind with any radical such as
NO•, RS•, OH•, and O2•− [81]. The currently proposed mechanism for DPPH is illustrated
in Figure 8. It is believed that the mechanism is an electron transfer (ET) approach, as the
hydrogen atom transfer (HAT) mechanism is merely a minor reaction pathway [60].

Furthermore, DPPH is characterized by many advantages as it is simple, inexpensive,
and fast in contrast with other assays such as ABTS. The radical is stable and does not
require a generator. Even with weak antioxidants, the radical scavenging period of 30 min
enables DPPH to react effectively. To prevent the possibility of thermal destruction of the
compounds being examined, the antioxidant efficiency is assessed at room temperature.
The results are repeatable and extremely accurate. Additionally, DPPH can quickly screen
a large number of samples and bioactive substances (polyphenols, flavonoids) with a good
correlation. However, other radicals in the examined substances tend to react with DPPH.
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In addition to this, Lewis bases have an impact on DPPH and the absorbance tends to
decrease when exposed to light [58,81]. Finally, various modifications of the DPPH method
have been involved for a wide range of applications based on the requirements and, more
importantly, affordable inputs.
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5.1.2. Folin–Ciocalteu (FC)

Folin–Cioclteu (FC) reagent is a mixture of phosphomolybdate and phosphotungstate
used for the colorimetric in vitro analysis of phenolic and polyphenolic antioxidants [89].
The name Folin–Cioclteu was given after Otto Folin, who first proposed the quantification
of tyrosine levels in 1927 [62,90]. It is the most commonly used assay for identifying the
total phenolic content of diverse plant or food samples. FC generates a blue color when
it reacts with phenols and is absorbed at 760–765 nm. The blue color is thought to be
caused by a complicated Mo(V) [62]. The assay that was initially created is the Folin–Denis
(F-D) test, which was then used to assess the total protein concentration by measuring
the tryptophan and tyrosine levels. However, during the process of improvement, the FC
assay was found to be more accurate and repeatable. Thus, it has been used over the years
not only for the determination of total phenolic content but also for the determination of
nitrogen-containing substances such as hydroxylamine and guanidine, thiols, numerous
vitamins, the nucleotide base guanine, the trioses glyceraldehyde and dihydroxyacetone,
flavonoids, and various inorganic ions [60,62,91–93]. The current theoretical oxidation–
reduction mechanism is SET or ET. The original FC assay uses a buffer for pH adjustment
while gallic acid is the most commonly used reference standard. TPC values are usually
given as gallic acid equivalents (GAE) [59,63,89]. However, TPC values are sometimes
presented as catechin, caffeic acid, chlorogenic acid, or ferulic acid equivalents [94]. As
Figure 9 demonstrates, the reaction between FC reagent and phenolic compounds occurs
at pH 10 due to the addition of Na2CO3. In these alkaline conditions, the dissociation of
phenolic proton results in the creation of a phenolate ion, which is in charge of reducing
the FC reagent. Hence, the central molybdenum ion accepts one electron from the phenolic
antioxidant, and hence, the reduction from Mo6+ ion to Mo5+. The anionic derivatives of
the phosphotungstic and phosphomolybdic acids change from a yellow color to blue [95].
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Figure 9. Folin reagent transformation mechanism with gallic acid [96]. 
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The use of the Folin–Ciocalteu test to quantify TPC has numerous benefits, including
ease of use, repeatability, and robustness. It does, however, have significant shortcomings.
The test is sensitive to pH, temperature, and the reaction duration. Therefore, carefully
selection of the reaction state is crucial for obtaining consistent and trustworthy findings.
Due to the contribution of the non-phenolic reducing agents present in the system when
reducing Folin–Ciocalteu reagent, TPC overestimation is a significant concern for the Folin–
Ciocalteu test [58]. Reducing sugars and certain amino acids are two examples of these
compound categories. As a result, when compared to data using HPLC techniques, TPC
measurement results may be overstated [26].

5.1.3. CUPRAC

Recently, Apak and his group developed, for the first time, the cupric ion-reducing
antioxidant power (CUPRAC assay, 2,9-dimethyl-1,10-phenanthroline) [97]. CUPRAC tests
an antioxidant’s ability to decrease an oxidant, which changes color when it is reduced.
The degree of color change is proportional to the total antioxidant capacity concentration
as cupric Cu2+ transforms to cuprous Cu+ [26]. This approach has been utilized at 450 nm
and it has been used with both lipophilic and hydrophilic antioxidants such as epicatechin
gallate, rosmarinic acid, quercetin, epigallocatechin, catechin, acid caffeic acid, epicatechin,
gallic, rutin, and chlorogenic acid in diverse matrices [5,98]. Further antioxidants measured
by the CUPRAC method are ascorbic acid, tocopherol, carotene, uric acid, albumin, and
bilirubin [5].

There are many different phenanthroline derivatives, such as neocuproine (Nc),
BCS (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline disulfonic acid), and bicinchoninic
acid (BCA:2-(4- carboxyquinolin-2-il) chinolin-4-carboxylic acid), which can stabilize Cu+

ions [46,64,65,99]. The transition of Cu(Nc)2
2+ to Cu(Nc)2

2+ changes the color from light
blue to yellow [26]. A general explanation of the current reaction is illustrated in Figure 10.
Usually, CUPRAC is utilized at a pH of 7.0 with ammonium acetate aqueous buffer, which
is close to the physiological pH of 7.4 and takes around 30 to 60 min depending on the speed
of the antioxidant [26]. The proposed mechanism is explained by electron transfer (ET) or
single electron transfer (SET), along with the FRAP, DPPH, and Folin approaches [81,100].
The CUPRAC capacity can be expressed either as % inhibition or the equivalent of a stan-
dard compound, namely Trolox, gallic acid, ascorbic acid, quercetin, or α-tocopherol. Some
of CUPRAC´s biggest advantages are that the reagents are more widely available, less
expensive, and more stable than DPPH. It can work with simple instrumentation, and there
have been no reports of chemical interference in solutions. In fact, there is always a good
correlation with many polyphenolics, including flavonoids and phenolic acids [5,81,101].
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5.1.4. FRAP

Ferric-reducing/antioxidant power (FRAP) is another colorimetric method that was
first announced by Iris Benzie and J.J. Strain for the quantification of ascorbic acid in
plasma and serum [102]. Since then, it has been widely used to measure chalconaringenin,
rutin, ascorbic acid, chlorogenic acid, lycopene, and phenolic compounds in a variety of
matrices such as vegetables, herbs, fruits, beverages, oils, and medicinal plants [23]. The
transformation from a colorless solution to a blue solvent is caused under acidic conditions
with pH of 3.6 to maintain iron solubility while the maximum intensity is observed at
593 nm [23,26,68]. Lower pH levels reduce the ionization potential, which drives electron
transfer while increasing the redox potential, resulting in a shift in the primary reaction
mechanism [26]. Even though the FRAP assay provides quick, repeatable findings, there is
one major limitation as the antioxidant must be water soluble [102].

When Fe3+-TPTZ (ferric 2,4,6-tripyridyl-s-triazine) complex reacts with an antioxidant
compound, a single electron is transferred to the ferric ion, converting it into Fe2+-TPTZ
(ferrous tripyridyltriazine). Therefore, the FRAP method can again be described as an ET-
based or SET-based mechanism [26]. A possible representation of the general mechanism
with [Fe(TPTZ)2]3+ is given in Figure 11.
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Although tripyridyltriazine (TPTZ) is the iron-binding ligand in the original FRAP
assay, other ligands have been used for ferric binding, such as ferrozine for ascorbic acid–
reducing power evaluation. More recently, FRAP investigations have suggested potassium
ferricyanide laggard (PFRAP) as a new promising ferric complex [26,57]. As Prior et al.
reported that other antioxidant activity assays have a weak association with FRAP, it is
advised that this assay is used in conjunction with other approaches to identify dominant
pathways for various antioxidants [60]. Nevertheless, FRAP is characterized by low cost,
sensitivity, and repeatability, as it is capable of screening a broad range of biological
materials, including aqueous and organic extracts from pharmaceuticals, foods, and plants,
in addition to plasma, blood, serum, saliva, tears, urine, cerebrospinal fluid, and exudates
and transudates [58,60].

5.1.5. FOX

The ferrous oxidation xylenol orange (FOX) reagent is an aqueous solution of ferrous
ammonium sulfate, sorbitol, sulfuric acid, and xylenol orange that is used to assess hydro-
gen peroxide levels mostly in biological systems and sometimes in plants. After a series
of oxidation processes, the reagent is incubated with the sample, and the absorbance is
measured at a wavelength of 560 nm [72]. FOX is utilized in an acidic environment and the
test relies on the oxidation of Fe2+ to Fe3+ [73]. An oxidant, such as hydroperoxides (see
the below reaction), oxidizes ferrous ion to ferric ion, which is then treated with xylenol
orange (XO) reagent to generate a ferric-XO complex, which gives a blue–purple color at
550–560 nm [23]. The current procedure has received significant attention due to its low cost
but also because FOX reagent is unaffected by environmental conditions such as oxygen
or light levels. It is still widely used to determine hydroperoxides in various biological
samples and lipoxygenase activity in plant extracts and plant tissue [23]. However, this
assay has only been applied in a few investigations into natural antioxidants:

Fe2+ Hyperoxides→ Fe3+ Xylenol Orange→ Fe3+ “Xylenol Orange Complex”

5.1.6. FTC

The mechanisms associated with the ferric thiocyanate (FTC) assay are identical to
FOX, with the only difference being that ferric ion is converted by an oxidant from ferrous
ions that are monitored as a thiocyanate complex distinguished at 500 nm [23]. The
combination of Fe3+ and [SCN]− ions has a blood-red color. The ferric thiocyanate assay
determines the presence of different oxidizers, such as lipid hydroperoxides, and evaluates
the effects of antioxidants by oxidizing ferrous to ferric ions and then complexing the latter
with thiocyanate. The current process is referred to below. Most investigations, including
the FOX assay, are performed at a stable pH value of 7.0 and 40 ◦C while the absorbance
is measured at 500 nm every 24 h until it reaches a maximum value. This is a simple and
repeatable experiment that is commonly used for the identification and quantification of
the total phenolic content, lipid oxidation, and flavonoid content. Usually, gallic acid is
used as a standard, but if any chemical is absorbed in the area of 500 nm, the results are
overestimated or unreliable [23,74,103]:

Fe(SCN)2 “FTC Reagent”
Hyperoxides→ Fe(SCN)3 “Fe3+ Thiocyanate Complex”

5.1.7. β-Carotene Bleaching Assay

The initial application for this assay was proposed by Marco et al. [104] in 1968
in an attempt to prevent the autooxidation of emulsified linoleic acid in extracts. Over
time, adjustments were made to the technique to increase the convenience and reduce its
flaws. The current assay can quantify pro-oxidants and antioxidant species. However, this
application is extensively applied to peroxyl radicals to produce β-carotene epoxides, which
act as radical scavengers or antioxidants [75]. Lipids, such as linoleic acid, form a peroxyl
radical (LOO•) in the presence of ROS and O2. As shown in Figure 12, this peroxyl radical
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combines with β-carotene to create a stable carotene radical. As a result, the concentration
of β-carotene in a testing solution is reduced. In the presence of an antioxidant, β-carotene
competes for the formation of the mentioned adduct. Antioxidant effects can thus be easily
verified by bleaching the color of a test solution at 470–490 nm [23,97].

The noticeable difference in these nanometers is the decolorization of the orange–
yellow or dark-yellow carotene solution, which is caused by breaking the π-conjugation by
the addition reaction of radicals into a C=C bond of β-carotene. The bleaching rate (R) of
β-carotene is measured with Equation (3):

R = [ln(a/b)/t] (3)

where ln = natural log, a = absorbance at time 0, and b = absorbance at time t. Additionally,
the antioxidant activity can be measured with Equation (4) [58]:

AA = (Rcontrol − Rsample)/Rcontrol × 100 (4)Antioxidants 2022, 11, x FOR PEER REVIEW 17 of 32 
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Many different phenolic compounds have been confirmed with this assay, along
with flavonoids and lipid acids. However, because of the differences in the antioxidant
molecule sizes, β-carotene activity sometimes lacks linearity. The lipophilicity of phenolic
antioxidants increases as the chain length increases, leading to an increase in the antioxidant
activity up to a certain point. A sharp decrease in the antioxidant activity is observed after a
particular chain length. This threshold phenomenon is referred to as the cut-off effect [105].
Therefore, based on this theory, high lipophilicity derivatives have a higher inhibitory effect
on β-carotene bleaching. As a result, it is crucial to test how well the antioxidants work in
oil–water emulsions to assess their characteristics before being used in food systems [58].

The current assay can screen materials that are both lipophilic and hydrophilic. How-
ever, many drawbacks must be considered, as it is time-consuming and it has a poor
correlation with several assays, including FRAP, CUPRAC, ABTS, and DPPH. Moreover,
β-carotene is highly susceptible to the effects of oxygen, pH, temperature, and solvents [58]
while the reproducibility of this assay varies significantly according to Prieto et al. [106]
and Mikami et al. [107], who reported high and low reproducibility, respectively.

5.1.8. ABTS

The Trolox equivalent antioxidant capacity (TEAC) or ABTS, as it is also well known
as, was first developed by Miller et al. [108] for measuring the total antioxidant capacity
in body fluids and drug solutions based on the absorbance of the ABTS•+ radical cation.
More specifically, this assay assesses antioxidants’ ability to scavenge the stable radical
cation ABTS•+ (2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid). An ABTS•+ radical
is generated when ABTS is converted by a strong oxidant. Metmyoglobin and hydrogen
peroxide were employed in the original TEAC test to produce an intermediate radical of
ferrylmyoglobin, which then interacts with ABTS to produce ABTS•+. Years later, peroxide
or persulfate was used to replace the oxidizing agent [26].

Antioxidants can neutralize the radical cation produced by ABTS by either direct
reduction by electron donation or radical quenching via hydrogen atom donation, with the
balance of these two pathways [27]. As a result, while the TEAC assay is typically classified
as an ET-based approach, the HAT mechanism is equally applicable. Figure 13 describes the
formation of ABTS•+ from ABTS using K2S2O8 followed by the reaction with antioxidant
species. During this process, a blue–green chromophore with maximum absorption at
734 nm is produced in the presence of antioxidants. Among these, 734, 414, 645–650, 734,
and 815–820 nm are also reported by Opitz et al. [67], Prior et al. [60], and Rubio et al. [64],
as the maximum absorption depends on the reaction duration, intrinsic antioxidant activity,
and sample concentration. As the blue–green ABTS•+ chromophore can be absorbed at
several different wavelengths, 734 nm is selected as the optimum in many publications
since any potential interferences are minimized and decreased. The current assay evaluates
antioxidant mechanisms in dietary components in a wide pH range on both lipophilic and
hydrophilic compounds in water and organic solvents [26].
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Using Formula (5), the Trolox equivalent antioxidant capacity can be measured:

TEACsample = (Asample − Ablank)/(ATrolox − Ablank). f. CTrolox, w (5)

where ATrolox represents the maximum absorbency after the addition of an established
volume of Trolox, Asample represents the maximum absorbency measured after the addition
of an established volume of sample, Ablank represents the maximum absorbency measured
at end-point addition after the addition of an established volume of solvent, f is the dilution
factor of the sample, and CTrolox is the effective concentration of Trolox in µmol/l [109].

Nowadays, the ABTS or TEAC test is more commonly used for measuring the relative
ability of antioxidants to scavenge ABTS generated in the aqueous phase, as compared
with a trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) standard. A wide
range of free radicals, including hydroxyl, peroxyl, alkoxyl, and inorganic radicals, react
quickly with ABTS [57,60]. The diphenylpicrylhydrazyl (DPPH), oxygen radical absorbance
capacity (ORAC), and ferric-reducing ability of plasma (FRAP) assays are some other
antioxidant capacity assays that employ Trolox as a standard. Frequently, TEAC is used to
determine the antioxidant content of foods, drinks, and dietary supplements [24]. Previous
articles have also used this assay on aromatic plants, carotenoids, and phenolic compounds.

In contrast to the DPPH radical, which dissolves solely in an organic medium, the
ABTS cationic radical is soluble in both organic and aqueous media. Because of this, both
lipophilic and hydrophilic materials can be screened using the ABTS assay. Additionally, a
good correlation has been reported for bioactive compounds (phenols, flavonoids), with
a regression factor of more than 0.8. On the other hand, one major disadvantage is that
the ABTS+ radical cannot be produced chemically and cannot be found in any biological
system. ABTS•+ radical production is a slow reaction that takes between 12 and 16 h as
opposed to the easily accessible commercial DPPH [26,58].

5.1.9. ORAC

The oxygen radical absorbance capacity (ORAC) was founded by Ghiselli and
Glazer et al. [60] and was developed further by Cao et al. [110]. Since then, the ORAC
test has been established in food, pharmaceutical, botanical, biological, and cosmetic samples
because it can be used to indicate any oxygen species. The fundamental principle of ORAC
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depends on the fluorescence quenching that occurs when antioxidants react with a peroxyl
radical. There are many peroxyl radical generators such as α-azobisizobutyronytril (AIBN),
2,2-azobis(2-amidinopropane) chlorhydrate (ABAP), and 2,2-azobis(2,4-dimethylvaleronytril)
(AMVN); however, 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) is most com-
monly used [111].

The main mechanism is described in Figure 14, showing the interaction of the thermally
generated C-centered free radicals produced by AAPH with the fluorescent probe as peroxy-
free radicals when oxygen is present. The oxidizable substrate/fluorescent probe can react
with the peroxyl radical, modifying the fluorescence intensity and typically speeding up
the rate of fluorescence degradation. The azo AAPH utilizes peroxyl radical generators in
hydrophilic systems, with phycoerythrin or, more recently, fluorescein as the fluorescent
probe. In the case of the evaluation of hydroxyl radicals, H2O2–CuSO4 is commonly
employed while phycoerythrin is a redox-sensitive fluorescent indicator protein whose
fluorescence degradation is evaluated in the presence of free radical scavengers using
Trolox as a standard [26,60]. Usually, the measurements are expressed as Trolox equivalents
per gram on a dry basis [26,60,68]:

ACFl = [(AUCSample − AUCBlank)/(AUCTrolox − AUCBlank)] × (molarity of Trolox/molarity of sample)

where ACFl represents the antioxidant capacity, AUCsample represents the net area under the
curve of the mixture, AUCblank is the net area under the blank curve buffer, and AUCTrolox
is the net area under the curve of Trolox [60,68].

The ORAC assay is related to the study of ascorbic acid, bilirubin, glutathione
(GSH), uric acid, α-tocopherol, β-carotene, and polyphenols [97]. The first trial em-
ployed B-phycoerythrin (B-PE), a protein obtained from Porphyridium cruentum [68]. Major
drawbacks include the inconsistency in the assay results and false low ORAC values
of B-PE photobleached after exposure to excitation light. Therefore, these reasons led
to the development of more stable complexes that are less reactive FL(3′,6′-dihydroxy-
spiro[isobenzofuran-1[3H],9′[9H]-xanthen]-3-one) or dichlorofluorescein (H2DCF-dA-2′,7′-
dichlorodihydrofluorescein diacetate) [24,68,110]. The ORACFL assay was designed to
measure the hydrophilic chain-breaking antioxidant capacity against peroxyl radicals. This
excludes lipophilic antioxidants, which are particularly crucial against lipid oxidation in all
systems, and other physiologically reactive radicals (HO•, HOO•, ONOO•, O2•−, etc.). To
make the ORAC assay more widely applicable, it was modified to assess both lipophilic
and hydrophilic antioxidants using a solution of acetone/water (50 % v/v) containing 7%
randomly methylated-cyclodextrin (RMCD) to solubilize the antioxidants [10].
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Figure 14. AAPH generates free radicals and afterwards, the reaction between the fluorescence probe
and antioxidant occurs [23,112].

ORAC and ORACFL are described as a traditional HAT reaction mechanism [67].
Usually, the oxidation of fluorescein is accompanied by a decrease in the fluorescence
measured over time at an excitation wavelength of 485 nm and an emission wavelength of
520 nm for 30–40 min at pH 7.4 and 37 ◦C [26,68]. This change in fluorescence is dependent
on the number of free radicals. It is also worth mentioning that when the pH value drops
below 7, its intensity decreases significantly.

The HORAC assay was developed by Ou et al. (2002) [113] as there was a validated
assay for the total antioxidant capacity for peroxyl radicals (ORAC) but no such assay
had been reported for hydroxyl radicals in matrices such as biological fluids, cells, plants,
and tissue. HORAC uses a Co (II)-mediated-Fenton mixture (Co (II), Fe (II), and H2O2) to
generate a hydroxyl radical. The formation and hydroxylation of p-hydroxybenzoic acid
confirms the generation of the hydroxyl radical under the experimental conditions. The
original fluorescence readings are obtained every minute after stirring. Different quantities
of gallic acid standard solutions are used to create the calibration curve. The hydroxyl
radical can oxidize fluorescein (3,6-dihydroxy-spiro[isobenzofuran-1[3H],9[9H]-xanthen]-3-
one) to produce a fluorescein-free product.

Antioxidants suppress this reaction by a hydrogen atom transfer mechanism, inhibit-
ing the oxidative degradation of the fluorescein signal. The fluorescence signal is measured
at an excitation of 485 nm and emission occurs at 535 nm in the same conditions as ORAC
(pH 7.4 and 37 ◦C). The diluted sample is reanalyzed until the fluorescent reading is re-
duced by more than > 95%. The HORAC values are expressed as micromoles of GAE per
gram for solid samples and as micromoles of GAE per liter for liquid samples [113]. The
area under the fluorescence decay curve (AUC) is integrated, and the net AUC, a measure
of the hydroxyl radical prevention capacity, is obtained by subtracting AUC of the blank
from that of the antioxidant [24,114]:

Fl = [(AUCsample − AUCblank)/(AUCgallic acid − AUCblank)] × (molarity of gallic acid/molarity of sample)
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Although the actual mechanism of the Fenton-like reaction is exceedingly complex
and there is no solid evidence of how hydroxyl radicals are involved, it is believed that
HORAC uses an HAT mechanism [26,115].

5.1.10. TBA-TBARS

From the earliest 1940s to 1996, thiobarbituric acid (TBA) was a very common spec-
trophotometric procedure for monitoring the transformation of aromatic aldehydes, 2-
deoxy sugars, and HO• radicals at 535 nm [69]. Nowadays, the TBA assay is especially
well-suited for the detection of oxidative rancidity in lipids, which are unsaturated and
contain two or three bonds. In particular, it is useful for matrices such as fruits and
vegetables or biological fluids [71]. There are no previous reports related to medicinal
plants [70,101]. This technique involves the combination of ascorbic acid (AA), deoxyribose,
phosphate buffer, ferric chloride, hydrogen peroxide, ethylenediamine tetraacetic acid
(EDTA), trichloroacetic acid (TCA), and thiobarbituric acid (TBA). Each of these reagents
plays a key role in the assay.

The test begins by complexing EDTA with Fe2+, which interacts with H2O2 to produce
the HO• radical. The radical must be produced at a temperature of 37 ◦C for approximately
12 h. In the presence of ascorbic acid, the produced HO• radical reacts with the deoxyribose
sugar to produce a variety of products. The addition of ascorbic acid is intended to speed
up the radical’s breakdown of deoxyribose in the reaction mixture. When the resulting
product mixture with TBA is heated at a low pH value, it forms malondialdehyde (MDA).
After the creation of MDA, the MDA-TBA chromogen is formed. As demonstrated in
Figure 15, a nucleophilic attack involving TBA and MDA is followed by dehydration to
produce the final solvent of MDA-TBA2, also known as TBARS. The scavenging activity
toward the HO• radical is measured based on the inhibition of deoxyribose degradation.
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Generally, the MDA/TBA ratio is a good predictor of lipid peroxidation. The oxalate
toxicity produced by the enhanced lipid peroxidation is indicated by elevated levels of
thiobarbituric acid reactive substances (TBARS). The color of TBARS solvent is red-pink
and can be detected spectrophotometrically at 532 nm. Normally, the TBARS assay takes
around 2 h to be completed and is carried out at 50–70 ◦C in an acidic environment
(pH = 4) [70]. However, because MDA is extremely water soluble and tends to appear as a
polymer in an aqueous solution, its detection in a lipid sample is particularly challenging.
The TBA number is defined as the number of milligrams of malonaldehyde per kilogram
of sample [101].
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5.2. Targeted Scavenging Activities
5.2.1. Hydrogen Peroxide Scavenging Assay Activity

Horseradish peroxidase (HRP) is the most frequently employed enzyme in this test.
Typically, an HRP-H2O2 complex reacts with 7-hydroxy-6-methoxycoumarin (scopoletin),
which is a fluorescent substrate. This process is described in Figure 16. Under UV light, the
blue color of the product can be detected at 460 nm at pH 4.5. Borate buffer is used to inhibit
the reaction (pH 10) [116]. The reaction is stopped, and the fluorescence or absorbance is
then determined. Either spectrophotometric or fluorometric approaches can be used to
measure the scavenging capacity. The fluorescence intensity is inversely proportional to the
concentration of oxidized scopoletin. Therefore, the amount of H2O2 can be determined by
observing the decrease in scopoletin’s fluorescence [58,117].
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5.2.2. Superoxide Radical Scavenging Activity

Superoxide dismutase or SOD, as it is well known, is the name of the antioxidant
enzyme that is responsible for scavenging O2•− radicals. This enzyme was discovered
in 1969 by McCord and Fridovich [118]. SOD has the ability to transform O2•− radicals
into H2O2, which is then broken down by catalase and glutathione peroxidase into O2
and water. One of two methods that can be used to produce O2•− radicals is a non-
enzymatic method employing phenazine methosulphate (PMS), nitroblue tetrazolium
(NBT), and a reduced version of nicotinamide-adenine dinucleotide (NADH). The other
is described by Robak and Gryglewski [119] and is based on a hypoxanthine-xanthine
oxidase superoxide-generating system. Figure 17 illustrates the first assay mechanism,
with the invention of NBT, as it is the most famous one. NBT is a light-yellow soluble
salt before it is reduced by oxygen. When the reduction occurs at pH 7.4, the tetrazole
ring is broken, causing dismutation, which then produces a bright blue color product
called formazan [58]. Superoxide radicals are produced by the non-enzymatic phenazine
methosulfate-nicotinamide adenine dinucleotide (PMS/NADH) system. The reaction
has maximum absorbance at 560–562. This application has been widely used for many
antioxidants and especially biological samples [76,77]. However, it cannot be characterized
as a specific and targeted assay since different reductases can lower NBT.
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5.2.3. Nitric Oxide Radical Scavenging

Nitric oxide radicals have been determined by aqueous sodium nitroprusside (SNP)
solution, which can react with oxygen at physiological pH 7.2 to form nitrite ions. These
nitric ions can therefore be measured using the Griess–Illosvoy method [120]. Johann
Peter Griess, a German scientist, invented the diazotization assay in 1864. The modified
experiment featured the interaction of nitrite (NO2

−) with sulfanilic acid in an acidic
environment. This produced a diazonium ion, which was then linked with N-(1-naphthyl)
ethylenediamine (NED) to produce a water-soluble and red azo dye (HO3SC6H4-NN-
C10H6NH2). The addition of NED is necessary to improve coupling and the repeatability,
sensitivity, and solubility of the azo molecule. The red color that occurs is indicated at
540 nm against a blank sample [76]. Furthermore, under aerobic conditions, NO• can
combine with O2 to form the stable compounds nitrate (NO3

−) and nitrite (NO2
−), which

can also be measured using the Griess reagent. However, the synthesis of NO3
− and NO2

−

does not if an antioxidant is present [58] (Figure 18).

5.2.4. Peroxynitrite Scavenging Capacity

Only a few articles have been published about the ability of an antioxidant to scavenge
peroxynitrite radicals. The two most important methods are, namely, the inhibition of
tyrosine nitration by ONOO− [121] and the inhibition of dihydrorhodamine (DHR) at
wavelengths of 485 or 505 and 529 or 530 nm, respectively, in the presence of an antioxi-
dant [23,58]. Figure 19 describes the general mechanism involving the DHR reagent and
free radical. Nevertheless, the DHR method has one major limitation: it lacks specificity. As
ONOO− quickly breaks down, NO• and O2•− are produced and DHR could potentially be
oxidized by these two species. For this reason, Beckman et al. [122] first described a method
for synthesizing peroxynitrite and measuring its concentration spectrophotometrically
at 302 nm. With further developments by Evans Blue [78], the peroxynitrite scavenging
activity is measured at pH 7.4 at 611 nm after 30 min of incubation at 25 ◦C. By comparing
the findings of the test and blank samples, the percentage scavenging of ONOO− can
be determined.
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6. Advantages and Limitations of Spectrophotometric Assays

Antioxidant scavenging is becoming more interesting to scientists, who are attempting
to understand the mechanisms involved in biological systems, the antioxidant capacity of
food, and the free radicals of various substrates. Alternative methods for the measurement
of antioxidant activity are still required (liquid and gas chromatography, electrophoretic
procedures, etc.), although spectrophotometric applications are important. The benefits
of employing spectrophotometric TAC assays are numerous and include their ease of use,
low cost per sample, quick turnaround times, and the ability to be carried out manually,
semi-automatically, or automatically. However, many parameters can affect the results
of the measurements, such as the working pH area, the temperature of the current reac-
tion, the applicability of the assay to both hydrophilic and lipophilic compounds, and
others [26,67,101,123]. Therefore, there is an imperative need to select the applicable assay
in each case, as the ABTS and CUPRAC tests can detect both hydrophilic and lipophilic
antioxidants and FRAP and FC exclusively detect hydrophilic antioxidants while others
such as DPPH can only be applied to hydrophobic systems. At the same time, interferences
that may appear could affect the color of the food matrix and can be absorbed in the same
area as the antioxidants [97].

The TAC tests have the benefit of being able to quantitatively assess the antioxidant
components of a sample. It takes a lot of time and effort to measure each antioxidant
component separately [124]. Several studies on food, plants, and human body fluids have
been the subject of several years of investigation. Cao et al. [110] and Prior et al. [60]
observed no link between serum ORAC and TEAC or between serum FRAP and serum
TEAC. Furthermore, to demonstrate how these approaches differ from one another, a
comparative analysis of the antioxidant capacities of 30 plant extracts was performed using
the DPPH, ABTS, and FRAP tests [125]. The FRAP and ABTS assays had the highest
correlation (0.946) while the ABTS and DPPH assays had the lowest correlation (0.906).

Undoubtedly, one of the most common assays is the DPPH approach. The applica-
tion of this test facilitates an understanding of a variety of chemical processes and offers
several obvious advantages, such as affordability, experiment simplicity, reproducibility,
applicability at room temperature, and automation possibilities [126]. However, the over-
lapping spectra of substances that are absorbed in the same wavelength range as DPPH
is a significant drawback. For instance, anthocyanins exhibit significant absorption in the
same wavelength range (500–550 nm) as DPPH, which could introduce interference into
the data and affect how it is interpreted [57]. On the other hand, CUPRAC reagent is more
stable and convenient to use than other chromogenic reagents (e.g., ABTS, DPPH). The
CUPRAC assay works best at a pH of 7.0, which is very similar to the physiological pH
(7.4) and simulates antioxidant action in natural settings. Furthermore, it is characterized
by robustness in contrast to free radical reagents, such as DPPH, as it is not affected by
physiological conditions such as air, humidity, and sunshine [26]. Additionally, CUBRAC,
like the ABTS assay, is very selective because it has a lower redox potential than the Folin or
ferric ion-based approaches. Additionally, the CUPRAC reagent does not cause oxidation of
simple sugars or citric acid, which are not considered as real antioxidants, but the majority
of phenolic antioxidants are readily oxidized due to their advantageous redox potentials.
Moreover, the CUPRAC reagent can easily oxidize several antioxidants that are resistant to
the FRAP, FOX, and FTC assays, with perfectly linear absorbance–concentration curves [97].
Although, this assay does not assess antioxidant enzymes or certain thiol antioxidants, such
as glutathione [26,64].

Another favorable assay is the Folin–Ciocalteu test. Numerous benefits also exist for
the use of FC to quantify TPC, including its ease of use, repeatability, and robustness. In
fact, according to a previous report, there is a strong correlation in the Folin-determined
concentration between FRAP and ABTS assays (0.946) in contrast with ABTS and DPPH
assays (0.906) [17]. It does, however, have significant shortcomings. This test is sensitive
to pH, temperature, and the reaction duration. Therefore, careful selection of the reaction
state is crucial for achieving consistent and trustworthy findings. Due to the involvement
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of non-phenolic reducing agents present in the system when reducing the Folin–Ciocalteu
reagent, TPC overestimation is a significant concern for the Folin–Ciocalteu test. Reducing
sugars and certain amino acids are some of these pollutants [126].

Indirect measures, which are based on determining a sample’s capability to reduce a
metal complex, can also be performed with FRAP. One major limitation of the FRAP assay
is that an aqueous testing apparatus is required, but it provides quick, repeatable findings.
Consequently, a water-soluble antioxidant must be used as the reference [23]. In addition,
the propensity of blue to precipitate, form a suspension, and stain the measurement vat is
a drawback of this FRAP test. Because of this, the timing of the addition of Fe3+ (FeCl3)
is crucial and may lead to inaccuracies in the interpretation of the outcomes [26]. In fact,
FRAP results can vary tremendously depending on the timescale of analysis. Moreover,
after several hours of reaction time, the absorption of polyphenols such as caffeic acid,
tannic acid, ferulic acid, ascorbic acid, and quercetin gradually increases. Some polyphenols
have slower reactions and need more time to be detected while others react rapidly with
iron complexes, leading to degradation into other compounds with differing or lower
reactivity [60]. Therefore, a single-point absorption terminus might not be indicative of a
finished reaction. Regarding its limitations, any substance that has a lower redox potential
than the redox pair Fe3+/Fe2+ has the ability to reduce this system, raising the FRAP value
and producing artificially high findings [60].

The FRAP assay has many similarities with the TEAC procedure, with the exception
that TEAC is carried out at neutral pH and the FRAP assay is performed under acidic
(pH 3.6) conditions [24]. The main advantage of TEAC is that it uses ABTS, which is soluble
in both aqueous and organic solvent environments, allowing simultaneous assessment of
hydrophilic and lipophilic antioxidants. Since the ABTS radical scavenging method can
be tested over a wide pH range, it is useful for researching how pH affects antioxidant
mechanisms in food-related components. Furthermore, this simplifies operations and
allows for automated analysis. On the other hand, it could take a while to reach an
endpoint due to the radical ABTS employed in the procedure, which does not reflect a
physiological radical source. Although, due to the use of the synthetic ABTS radical cation,
which is not present in food or biological systems, the TEAC assay has also been criticized
for lacking biological relevance. As a result, numerous phenolic substances can interact with
ABTS•+ because they have low redox potentials [26,97]. A previous study also suggests
that there is no correlation between the HORAC and ORAC values [113]. ORAC measures
the capability of absorbing peroxyl radicals while HORAC principally measures the ability
to prevent metal-chelating radicals from doing so. Samples with high HORAC values are
therefore anticipated to not necessarily have high ORAC values and vice versa. Due to the
fact that many antioxidants are also metal chelators, the Fe(II)/H2O2 mixture suffers in a
scavenging assay. This is also the reason why FC has replaced ORAC in many cases [78]. It
is therefore impossible to determine whether the antioxidants are merely effective metal
chelators or HO• scavengers. By converting Fe(III) to Fe(II), dietary antioxidants (such as
vitamin C) can function as pro-oxidants and increase the rate of oxidation [24].

Finally, the TRAP, TBARS-TBA, and β-carotene bleaching assays are used for their
applicability to many different carbonyl compounds formed from lipid peroxidation. Gen-
erally, there is a good correlation between the FOX and TBARS approaches. However, in
the study conducted by DeLong et al. [72], the UV-induced increases were greater in TBARS
plant tissues than in the FOX assay. In a previous survey by Bhuvaneswari et al. [127],
FTC was used to evaluate the total phenolic content, flavonoid content, and antioxidant
properties among different cultivars of Piper betle L. In comparison with other assays, no
significant difference was found between ABTS and FOX while FOX was also as good as
TBA and FRAP [127]. Moreover, the TRAP values for a given combination of antioxidant
compounds are often lower than the TEAC values while the correlation between FRAP
measurements is typically low [60,114]. Meanwhile, the TRAP and HORAC correlation
coefficient is mentioned as 0.94 while in the case of ORAC-TRAP, the correlation is found to
be r = 0.96 [114]. However, one major disadvantage of the TBA assay is that is not specific to
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MA, and this results in an overestimation of the MA concentration [101]. Additionally, due
to the instability of the substrates utilized for lipid peroxidation, antioxidant assays based
on the spectrophotometric methods of thiobarbituric acid-reactive substance production
have low reproducibility. Finally, the bleaching β-carotene test is disadvantaged by its
inability to be repeated, as the complexity of the reaction involving carotenes under oxygen
shows antioxidant action at low oxygen concentrations and propagation of the oxidative
chain in air-saturated solutions [128].

7. Conclusions

Natural and potent antioxidants are in demand for food and pharmaceutical products.
Effective identification of sources of naturally occurring antioxidants and design of novel
antioxidant compounds require reliable methods for antioxidant activity evaluation. Under-
standing the chemistry of the mechanisms, advantages, and limitations of the methods is
critical for the proper selection of techniques for the valid assessment of antioxidant activity
in specific samples or conditions. A number of chemical assays and food and biological
model systems have been developed to determine the radical scavenging capacity, reducing
power, and other specific attributes of antioxidants at the molecular or cellular level in
addition to the overall oxidation inhibition in more complex food and biological systems.
The antioxidant potential can be determined by various assays with specific mechanisms of
action, including hydrogen atom transfer, single electron transfer, and targeted scavenging
activities. These methods vary in terms of the antioxidant mechanism, substrate type, oxi-
dation initiator, resulting expression, and ease of operation. The selection of an appropriate
method or combination of assays is essential for valid assessment of antioxidant activity
and eventually the potential of antioxidants as health-promoting agents or preservative
food additives.
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5. Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical

Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64, 997–1027. [CrossRef] [PubMed]
6. Carocho, M.; Ferreira, I.C.F.R. A Review on Antioxidants, Prooxidants and Related Controversy: Natural and Synthetic Com-

pounds, Screening and Analysis Methodologies and Future Perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [CrossRef]
7. Hadidi, M.; Orellana-Palacios, J.C.; Aghababaei, F.; Gonzalez-Serrano, D.J.; Moreno, A.; Lorenzo, J.M. Plant By-Product Antioxi-

dants: Control of Protein-Lipid Oxidation in Meat and Meat Products. LWT 2022, 169, 114003. [CrossRef]
8. Wiseman, A. Dietary Alkyl Thiol Free Radicals (RSS) Can Be as Toxic as Reactive Oxygen Species (ROS). Med. Hypotheses 2004, 63,

667–670. [CrossRef]
9. Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases.

Indian J. Clin. Biochem. 2015, 30, 11–26. [CrossRef]

http://doi.org/10.1016/j.meatsci.2014.01.023
http://www.ncbi.nlm.nih.gov/pubmed/24583332
http://doi.org/10.15406/mojcsr.2018.05.00118
http://doi.org/10.1016/0959-8049(95)00531-5
http://doi.org/10.5772/intechopen.82879
http://doi.org/10.1021/acs.jafc.5b04739
http://www.ncbi.nlm.nih.gov/pubmed/26728425
http://doi.org/10.1016/j.fct.2012.09.021
http://doi.org/10.1016/j.lwt.2022.114003
http://doi.org/10.1016/j.mehy.2004.03.021
http://doi.org/10.1007/s12291-014-0446-0


Antioxidants 2022, 11, 2213 29 of 33

10. Hayat, K.; Hussain, S.; Abbas, S.; Farooq, U.; Ding, B.; Xia, S.; Jia, C.; Zhang, X.; Xia, W. Optimized Microwave-Assisted Extraction
of Phenolic Acids from Citrus Mandarin Peels and Evaluation of Antioxidant Activity in Vitro. Sep. Purif. Technol. 2009, 70, 63–70.
[CrossRef]

11. Halliwell, B. Antioxidants: The Basics—What They Are and How To. In Antioxidants in Disease Mechanisms and Therapy:
Antioxidants in Disease Mechanisms and Therapeutic Strategies; Academic Press: Cambridge, MA, USA, 1996; Volume 38, p. 3.

12. Halliwell, B. How to Characterize a Biological Antioxidant. Free Radic. Res. 1990, 9, 1–32. [CrossRef]
13. Arias, A.; Feijoo, G.; Moreira, M.T. Exploring the Potential of Antioxidants from Fruits and Vegetables and Strategies for Their

Recovery. Innov. Food Sci. Emerg. Technol. 2022, 77, 102974. [CrossRef]
14. Gueffai, A.; Gonzalez-serrano, D.J.; Christodoulou, M.C.; Orellana-palacios, J.C.; Ortega, M.L.S.; Ouldmoumna, A.; Kiari, F.Z.;

Ioannou, G.D.; Kapnissi-christodoulou, C.P.; Moreno, A.; et al. Phenolics from Defatted Black Cumin Seeds (Nigella Sativa L.):
Ultrasound-Assisted Extraction Optimization, Comparison, and Antioxidant Activity. Biomolecules 2022, 12, 1311. [CrossRef]
[PubMed]

15. Haghani, S.; Hadidi, M.; Pouramin, S.; Adinepour, F.; Hasiri, Z.; Moreno, A.; Munekata, P.E.S.; Lorenzo, J.M. Application of
Cornelian Cherry (Cornus Mas L.) Peel in Probiotic Ice Cream: Functionality and Viability during Storage. Antioxidants 2021, 10,
1777. [CrossRef] [PubMed]

16. Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of Plant Extracts to Meat and Meat
Products to Extend Shelf-Life and Health-Promoting Attributes: An Overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [CrossRef]

17. Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review.
Antioxidants 2017, 6, 70. [CrossRef] [PubMed]

18. De Falco, B.; Grauso, L.; Fiore, A.; Bonanomi, G.; Lanzotti, V. Metabolomics and Chemometrics of Seven Aromatic Plants: Carob,
Eucalyptus, Laurel, Mint, Myrtle, Rosemary and Strawberry Tree. Phytochem. Anal. 2022, 33, 696–709. [CrossRef]

19. Gregoriou, G.; Neophytou, C.M.; Vasincu, A.; Gregoriou, Y.; Hadjipakkou, H.; Pinakoulaki, E.; Christodoulou, M.C.; Ioannou,
G.D.; Stavrou, I.J.; Christou, A.; et al. Anti-Cancer Activity and Phenolic Content of Extracts Derived from Cypriot Carob
(Ceratonia siliqua L.) Pods Using Different Solvents. Molecules 2021, 26, 5017. [CrossRef]

20. Hesami, S.; Safi, S.; Larijani, K.; Badi, H.N.; Abdossi, V.; Hadidi, M. Synthesis and Characterization of Chitosan Nanoparticles
Loaded with Greater Celandine (Chelidonium Majus L.) Essential Oil as an Anticancer Agent on MCF-7 Cell Line. Int. J. Biol.
Macromol. 2022, 194, 974–981. [CrossRef]

21. Halliwell, B.; Aeschbach, R.; Löliger, J.; Aruoma, O.I. The Characterization of Antioxidants. Food Chem. Toxicol. 1995, 33, 601–617.
[CrossRef]

22. Gilgun-Sherki, Y.; Melamed, E.; Offen, D. Oxidative Stress Induced-Neurodegenerative Diseases: The Need for Antioxidants That
Penetrate the Blood Brain Barrier. Neuropharmacology 2001, 40, 959–975. [CrossRef]

23. Moon, J.K.; Shibamoto, T. Antioxidant Assays for Plant and Food Components. J. Agric. Food Chem. 2009, 57, 1655–1666.
[CrossRef] [PubMed]

24. Huang, D.; Boxin, O.U.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856.
[CrossRef] [PubMed]

25. Wang, C.; Chen, R.; Zhang, R.; Zhang, N. Simple Spectrophotometric Determination of Sulfate Free Radicals. Anal. Methods 2018,
10, 3470–3474. [CrossRef]

26. Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22,
3380. [CrossRef] [PubMed]

27. Shahidi, F.; Zhong, Y. Measurement of Antioxidant Activity. J. Funct. Foods 2015, 18, 757–781. [CrossRef]
28. Riley, P.A. Free Radicals in Biology: Oxidative Stress and the Effects of Ionizing Radiation. Int. J. Radiat. Biol. 1994, 65, 27–33.

[CrossRef]
29. Giles, G.I.; Jacob, C. Reactive Sulfur Species: An Emerging Concept in Oxidative Stress. Biol. Chem. 2002, 383, 375–388. [CrossRef]
30. Rahman, K. Studies on Free Radicals, Antioxidants, and Co-Factors. Clin. Interv. Aging 2007, 2, 219–236.
31. Inoue, M.; Sato, E.F.; Nishikawa, M.; Park, A.-M.; Kira, Y.; Imada, I.; Utsumi, K. Mitochondrial Generation of Reactive Oxygen

Species and Its Role in Aerobic Life. Curr. Med. Chem. 2005, 10, 2495–2505. [CrossRef]
32. Okamoto, T.; Akaike, T.; Sawa, T.; Miyamoto, Y.; van der Vliet, A.; Maeda, H. Activation of Matrix Metalloproteinases by

Peroxynitrite-Induced Protein S-Glutathiolation via Disulfide S-Oxide Formation. J. Biol. Chem. 2001, 276, 29596–29602. [CrossRef]
33. Abedinzadeh, Z. Sulfur-Centered Reactive Intermediates Derived from the Oxidation of Sulfur Compounds of Biological Interest.

Can. J. Physiol. Pharmacol. 2001, 79, 166–170. [CrossRef]
34. Møller, P.; Loft, S. The Role of Antioxidants in the Prevention of Oxidative Damage to Nucleic Acids. In Oxidative Damage to

Nucleic Acids; Springer: New York, NY, USA, 2007; pp. 207–223. [CrossRef]
35. Nguyen, T.; Brunson, D.; Crespi, C.L.; Penman, B.W.; Wishnok, J.S.; Tannenbaum, S.R. DNA Damage and Mutation in Human

Cells Exposed to Nitric Oxide in Vitro. Proc. Natl. Acad. Sci. USA 1992, 89, 3030–3034. [CrossRef] [PubMed]
36. Vona, R.; Pallotta, L.; Cappelletti, M.; Severi, C.; Matarrese, P. The Impact of Oxidative Stress in Human Pathology: Focus on

Gastrointestinal Disorders. Antioxidants 2021, 10, 201. [CrossRef] [PubMed]
37. Schuman, E.M.; Madison, D. V Nitric Oxide And. Am. J. Physiol. 1994, 272, 31–35.
38. Nordberg, J.; Arnér, E.S.J. Reactive Oxygen Species, Antioxidants, and the Mammalian Thioredoxin System. Free Radic. Biol. Med.

2001, 31, 1287–1312. [CrossRef]

http://doi.org/10.1016/j.seppur.2009.08.012
http://doi.org/10.3109/10715769009148569
http://doi.org/10.1016/j.ifset.2022.102974
http://doi.org/10.3390/biom12091311
http://www.ncbi.nlm.nih.gov/pubmed/36139150
http://doi.org/10.3390/antiox10111777
http://www.ncbi.nlm.nih.gov/pubmed/34829648
http://doi.org/10.1016/j.cofs.2020.03.003
http://doi.org/10.3390/antiox6030070
http://www.ncbi.nlm.nih.gov/pubmed/28914764
http://doi.org/10.1002/pca.3121
http://doi.org/10.3390/molecules26165017
http://doi.org/10.1016/j.ijbiomac.2021.11.155
http://doi.org/10.1016/0278-6915(95)00024-V
http://doi.org/10.1016/S0028-3908(01)00019-3
http://doi.org/10.1021/jf803537k
http://www.ncbi.nlm.nih.gov/pubmed/19182948
http://doi.org/10.1021/jf030723c
http://www.ncbi.nlm.nih.gov/pubmed/15769103
http://doi.org/10.1039/C8AY01194J
http://doi.org/10.3390/ijms22073380
http://www.ncbi.nlm.nih.gov/pubmed/33806141
http://doi.org/10.1016/j.jff.2015.01.047
http://doi.org/10.1080/09553009414550041
http://doi.org/10.1515/BC.2002.042
http://doi.org/10.2174/0929867033456477
http://doi.org/10.1074/jbc.M102417200
http://doi.org/10.1139/y00-085
http://doi.org/10.1007/978-0-387-72974-9_16
http://doi.org/10.1073/pnas.89.7.3030
http://www.ncbi.nlm.nih.gov/pubmed/1557408
http://doi.org/10.3390/antiox10020201
http://www.ncbi.nlm.nih.gov/pubmed/33573222
http://doi.org/10.1016/S0891-5849(01)00724-9


Antioxidants 2022, 11, 2213 30 of 33

39. Xu, Q.; Huang, Y. Lipid Metabolism in Alzheimer’s and Parkinson’s Disease. Future Lipidol. 2006, 1, 441–453. [CrossRef]
40. Porter, N.A.; Caldwell, S.E.; Mills, K.A. Mechanisms of Free Radical Oxidation of Unsaturated Lipids. Lipids 1995, 30, 277–290.

[CrossRef]
41. Barrera, G. Oxidative Stress and Lipid Peroxidation Products in Cancer Progression and Therapy. ISRN Oncol. 2012, 2012, 137289.

[CrossRef]
42. Flieger, J.; Flieger, W.; Baj, J. Antioxidants: Classification, Natural Sources, Activity/Capacity. Materials 2021, 14, 4135. [CrossRef]
43. Munekata, P.E.S.; Pateiro, M.; Zhang, W.; Dominguez, R.; Xing, L.; Fierro, E.M.; Lorenzo, J.M. Health Benefits, Extraction and

Development of Functional Foods with Curcuminoids. J. Funct. Foods 2021, 79, 104392. [CrossRef]
44. López-Fernández, O.; Bohrer, B.M.; Munekata, P.E.S.; Domínguez, R.; Pateiro, M.; Lorenzo, J.M. Improving Oxidative Stability of

Foods with Apple-Derived Polyphenols. Compr. Rev. Food Sci. Food Saf. 2022, 21, 296–320. [CrossRef]
45. Munekata, P.E.S.; Yilmaz, B.; Pateiro, M.; Kumar, M.; Domínguez, R.; Shariati, M.A.; Hano, C.; Lorenzo, J.M. Valorization of

By-Products from Prunus Genus Fruit Processing: Opportunities and Applications. Crit. Rev. Food Sci. Nutr. 2022. [CrossRef]
[PubMed]
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