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Abstract: Strenuous exercise induces organ damage, inflammation and oxidative stress. To prevent
exercise-induced organ damage, inflammation and oxidative stress, rehydrating may be an effective
strategy. In the present study, we aimed to examine whether beverage intake after exhaustive
exercise to recover from dehydration prevents such disorders. Thirteen male volunteers performed
incremental cycling exercise until exhaustion. Immediately after exercise, the subjects drank an
electrolyte containing water (rehydrate trial: REH) or did not drink any beverage (control trial:
CON). Blood samples were collected before (Pre), immediately (Post), 1 h and 2 h after exercise.
Urine samples were also collected before (Pre) and 2 h after exercise. We measured biomarkers of
organ damage, inflammation and oxidative stress in blood and urine. Biomarkers of muscle, renal
and intestinal damage and inflammation increased in the blood and urine after exercise. However,
changes in biomarkers of organ damage and inflammation did not differ between trials (p > 0.05). The
biomarker of oxidative stress, thiobarbituric acid reactive substances (TBARS), in plasma, showed
different changes between trials (p = 0.027). One hour after exercise, plasma TBARS concentration
in REH had a higher trend than that in CON (p = 0.052), but there were no significant differences
between Pre and the other time points in each trial. These results suggest that beverage intake after
exercise does not attenuate exercise-induced organ damage, inflammation or oxidative stress in
healthy males. However, rehydration restores exercise-induced oxidative stress more quickly.

Keywords: acute exercise; organ damage; inflammation; oxidative stress; beverage intake; endotoxin

1. Introduction

Strenuous exercise induces not only muscle damage, but also internal organ dam-
age [1–3]. Muscle damage decreases muscle strength [4], and intestinal damage results
in gastrointestinal bleeding, diarrhea and abdominal pain [5,6]. Severe renal damage
also results in acute kidney injury (AKI) [7]. Strenuous exercise perturbs the immune
system’s homeostasis through conditions such as leukocytosis, hypercytokinemia, systemic
inflammatory response and immune suppression [1–3,5,8,9]. Furthermore, severe systemic
inflammatory response is one of the pathologies of heat stroke [10,11]. Increased oxidative
stress is also a major characteristic of strenuous exercise [1], and severe oxidative stress
results in cellular/tissue damage [12]. Therefore, it is crucial to prevent exercise-induced
organ damage, inflammation and oxidative stress.
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Numerous approaches to prevent exercise-induced organ damage, inflammation
and oxidative stress (e.g., pre-exercise cooling, nutritional interventions and other ap-
proaches) have been investigated [1]. Among them, rehydrating via beverage intake
may be a particularly effective strategy against such disorders. For example, glucose or
polyphenol/phytochemical-containing beverage intake attenuates exercise-induced organ
damage, inflammation and oxidative stress [13–20]. Furthermore, several studies suggest
that hydration only to prevent dehydration may also attenuate such disorders [21,22].
These previous studies have examined the effects of beverage intake before and during
exercise. However, few studies have focused on the effects of beverage intake after exer-
cise to recover from dehydration on exercise-induced organ damage, inflammation and
oxidative stress.

Although beverage intake before exercise attenuates exercise-induced organ dam-
age and inflammation [21,22], the mechanisms of these preventing effects are not clear.
Gut-derived endotoxins are one of the candidates of a trigger of exercise-induced inflam-
mation [1,5]. Strenuous exercise induces gastrointestinal ischemia, intestinal damage
and hyperpermeability of the intestine, which results in the leakage of endotoxins [1,5].
Therefore, post-exercise beverage intake may attenuate exercise-induced inflammation via
gut-derived endotoxins.

Therefore, we hypothesized that rehydration after exercise attenuates exercise-induced
endotoxemia, and as a result, rehydration attenuates exercise-induced organ damage,
inflammation and oxidative stress. The purpose of this study is to investigate whether
beverage intake after incremental exercise to recover from dehydration prevents organ
damage, inflammation and oxidative stress via endotoxemia as a trigger of inflammation
in healthy males.

2. Materials and Methods
2.1. Subjects

This study is an extension of a previously published investigation, utilizing the same
participants as described below [23]. This study included thirteen healthy males (age,
22 ± 4 years (mean ± SD); height, 175 ± 6 cm; body mass, 68 ± 9 kg). None of the subjects
had documented autonomic dysfunction, cardiovascular or ocular disorders, or took any
medications. The Academic Research Ethics Committee of Waseda University approved
this protocol, which was carried out in compliance with the Declaration of Helsinki. Be-
fore the research began, all subjects signed declarations of informed consent. Before the
experiments, the researchers familiarized the experimental protocol to each subject.

2.2. Exercise Protocol

As an extension of our previous study, the exercise protocol in this study is also the
same [23]. Briefly, the subjects were not allowed to drink caffeinated beverages or perform
strenuous exercise for 6 h, nor eat for at least 2 h before the experiment. On arrival at
the laboratory, the subjects were instructed to empty their bladder, and their body mass
was measured. After a 10 min rest period, the subjects started cycling at 40 W, which was
gradually raised by 20 W every 3 min until the subjects could no longer sustain a 60 rpm
pedaling cadence. Immediately after the exhaustive exercise, subjects drank 500 mL of
electrolyte-containing isotonic water (OS-1, Otsuka Pharmaceutical Factory Inc., Tokyo,
Japan) (rehydrate trial: REH) or rested for 1 min without drinking (control trial: CON). The
order of trials was randomized, and subjects completed both the REH and CON protocols
1 week apart. Both protocols were carried out under controlled temperatures and humidity
(REH: 23.0 ± 0.1 ◦C, 49.9 ± 0.1% relative humidity (rh), CON: 23.1 ± 0.1 ◦C, 49.8 ± 0.2% rh).

2.3. Blood and Urine Sampling

Blood samples were obtained before (Pre), immediately (Post), 1 h and 2 h after the
exercise from the right brachial vein using vacutainers containing no additive or ethylene-
diaminetetraacetic acid (EDTA)-Na2 to obtain serum and plasma samples, respectively.
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The serum separation vacutainers were left to clot at room temperature for 30 min and then
centrifuged at 1400× g for 10 min. Vacutainers containing EDTA for plasma separation
were immediately centrifuged at 1400× g for 10 min. The percentage change in plasma
volume was calculated from hemoglobin and hematocrit in the blood [24]. Hemoglobin
levels, hematocrit levels and the number of total leukocytes in the blood were determined
in EDTA-treated venous whole blood samples using an automatic blood cell counter (pocH-
100i, Sysmex Co., Kobe, Japan). Serum and plasma samples were divided into small
aliquots, stored at −80 ◦C for later analyses, and freeze-rethaw cycles were avoided.

The urine samples were obtained before (Pre) and 2 h after exercise. The subjects were
instructed to empty their bladder 2 h before Pre sampling. The collected samples were
centrifuged at 1400× g for 10 min and sediments were removed. The supernatants were
also divided into small aliquots, stored at −80 ◦C for later analyses, and freeze-rethaw
cycles were avoided.

2.4. Assays for Biochemistry, Organ Damage Markers, Inflammatory Mediators and
Oxidative Stress

The concentrations of creatinine, blood urea nitrogen (BUN), derivatives of reactive
oxygen metabolites (d-ROMs), biological antioxidant potential (BAP), cystatin-C, myo-
globin, insulin, growth hormone, glucose, free fatty acid (FFA), uric acid, urine protein,
albumin, N-acetyl-β-D-glucosaminidase (NAG) and osmolality were measured by Koutou-
Biken Co. (Tsukuba, Japan). Plasma and urinary tumor necrosis factor (TNF)-α, IL-6 and
granulocyte colony-stimulating factor (G-CSF) concentrations were measured using a Quan-
tikine high-sensitivity enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems,
Minneapolis, MN, USA). Plasma and urinary IL-1 receptor antagonist (IL-1ra), monocyte
chemoattractant protein (MCP)-1, macrophage colony-stimulating factor (M-CSF), retinol
binding protein 4 (RBP4), IL-18 and IL-18 binding protein α (IL-18BPa) concentrations were
measured using a Quantikine ELISA kit (R&D Systems, Minneapolis, MN, USA). Plasma
and urinary intestine-fatty acid binding protein (I-FABP) concentrations were measured
using a Duoset ELISA kit (R&D Systems, Minneapolis, MN, USA). Plasma and urinary IL-2,
IL-4, IL-10 and complement (C) 5a concentrations were measured using an OptEIA ELISA
Kit (Beckton Dickinson Biosciences, San Diego, CA, USA). Plasma and urinary myeloper-
oxidase (MPO) and calprotectin concentrations and plasma lipopolysaccharide binding
protein (LBP) concentrations were measured using ELISA kits from Hycult Biotech (Uden,
The Netherlands). Plasma neutrophil gelatinase-associated lipocalin (NGAL) concentration
was measured using a Quantikine ELISA kit (R&D Systems, Minneapolis, MN, USA), and
urinary NGAL concentration was measured using BioPorto® NGAL ELISA Kits (Enzo
Life Sciences, Farmingdale, NY, USA). Plasma and urinary ileal-bile acid binding protein
(I-BABP) concentrations were measured using a FABP6 ELISA kit (BioVendor Laboratory
Medicine, Brno, Czech Republic). Plasma and urinary kidney injury molecule 1 (KIM-1)
and cortisol concentrations were measured using an ELISA kit (Enzo Life Sciences). Plasma
and urinary liver-fatty acid binding protein (L-FABP) were measured using a Human
FABP1 Wide-range ELISA Kit (Uscn Life Science, Wuhan, China). Plasma aldosterone
concentration was measured using an ELISA kit (Enzo Life sciences, Farmingdale, NY,
USA), and urinary aldosterone concentration was measured using an Aldosterone Parame-
ter Assay Kit (R&D Systems, Minneapolis, MN, USA). Plasma and urinary nitrotyrosine
concentrations were measured using an ELISA Kit (StressMarq Biosciences, Victoria, BC,
USA). Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) concentration was measured using
an ELISA Kit (StressMarq Biosciences, Victoria, BC, USA). Plasma endotoxin concentration
was measured via PYROGENT™-5000 Kinetic Turbidimetric LAL Assay test (LONZA,
Walkersville, MD, USA). When we measured endotoxins, we used endotoxin-free tubes,
tips, reservoirs and microplates. The absorbance was measured spectrophotometrically
on a VersaMax Microplate Reader (Molecular Devices Inc., San Jose, CA, USA) or Spectra
Max iD5 (Molecular Devices Inc., San Jose, CA, USA). Plasma and urinary thiobarbituric
acid reactive substances (TBARS) concentrations were measured fluorescently using a
TBARS Assay Kit (Cayman Chemical Co., Ann Arbor, MI, USA). The fluorescence was
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measured on a FLUOstar Optima plate reader (BMG Labtech Ltd., Ortenberg, Germany).
The concentrations of each parameter were calculated by comparison with the standard
curve established in the same measurement.

Plasma and serum parameters (except serum osmolality) were adjusted according
to the percentage change in plasma volume calculated from hemoglobin and hematocrit
levels [24]. Urinary parameters were adjusted as the gross amount per minute (raw concen-
tration × urine volume/time) to correct urine condensation as previously described [7].

2.5. Statistics

The sample size was calculated using the program G*power [25]. Thirteen subjects
were required to detect an effect size of f = 0.34 for the within-between interaction, with a
power of 0.8 and a significance level of 0.05 under the assumption of a correlation coefficient
among repeated measures r = 0.5, and a nonsphericity correction of ε = 1. The data are
shown as mean ± standard error (SE). The Shapiro-Wilk test was used to determine the
normality of the data distribution. Prior to analysis, non-normally distributed data were
log-transformed. Two-way repeated-measures analysis of variance (ANOVA) was used to
analyze the data. When significant time effects were evident, a Bonferroni post hoc test
was used to identify the significant differences among mean values. When a significant
time × trial interaction was evident, a paired t-test with Holm correction was used to
identify the significant differences. These statistical analyses were performed with SPSS
version 26.0 (IBM Corp., Armonk, NY, USA). Statistical significance was defined as p < 0.05.

Because we could not obtain enough plasma samples from some subjects to measure
all parameters, the sample size of the measurement of plasma G-CSF, C5a, KIM-1 was
n = 11, n = 11 and n = 9, respectively.

3. Results
3.1. Exercise Duration and Hydration Status

There was no difference in the exercise duration to exhaustion in either trial (REH:
26.8 ± 2.0, CON: 27.2 ± 2.0 min, p = 0.1) [23]. To investigate the effects of beverage
intake on dehydration, we measured the percentage change of plasma volume (∆PV)
and serum osmolality. In CON, ∆PV decreased immediately after exercise in both trials
(Figure 1A) [23]. In CON, ∆PV remained lower at the end of the trial, whereas REH did
not change (Figure 1A) [23]. Serum osmolality increased immediately after exercise and
showed different changes between trials (interaction; p = 0.046). However, no significant
difference was observed between trials at either time point (Figure 1B). These results
indicate that beverage intake after exercise restored exercise-induced dehydration.
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3.2. Exercise-Induced Organ Damage

To evaluate renal damage/dysfunction, we measured BUN, creatinine, cystatin-C,
L-FABP, NGAL, KIM-1 and RBP4 in blood and urine. Serum BUN and creatinine concentra-
tions decreased immediately after exercise and increased 1 h after exercise (Table 1). Plasma
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cystatin-C concentration increased 1 h after exercise (Table 1). Urine protein, NAG and
albumin concentrations increased after exercise (Table 1). Plasma L-FABP concentration in-
creased 1 h and 2 h after exercise, as did urinary L-FABP concentration (Figure 2A). Plasma
NGAL concentration increased immediately, 1 h and 2 h after exercise, and urinary NGAL
concentration increased after exercise (Figure 2B). Plasma KIM-1 and RBP4 concentrations
did not change after exercise, whereas urinary KIM-1 and RBP4 concentrations increased
(Figure 2C,D). However, the changes to the renal damage/dysfunction markers did not
differ between trials (interaction; p > 0.05).

To evaluate intestinal damage, we measured I-FABP and I-BABP in plasma and urine.
A significant time effect was observed in plasma I-FABP concentrations, whereas I-FABP
concentration trended to be higher at 1 h and 2 h compared with Pre (p = 0.073 and
p = 0.069 respectively; Figure 2E). Urinary I-FABP concentration did increase after exercise
(Figure 2E). Plasma I-BABP concentration increased 1 h after exercise, and urinary I-BABP
concentration increased after exercise (Figure 2F). Plasma endotoxin concentration was
under detection limit (Table 1). Plasma LBP concentration, an indirect marker of endotoxin
exposure [26], decreased immediately after exercise (Figure 2G). However, the changes to
the intestinal damage markers did not differ between trials (interaction; p > 0.05).

Table 1. Changes in organ damage markers in serum (S)/plasma (P) and urine (U).

Unit Trial Pre Post 1h 2h Trial Time Interaction

BUN-S mg/dL
**

0.907 <0.001 0.902REH 18.88 ± 1.05 17.76 ± 1.12 19.80 ± 1.12 18.90 ± 1.16
CON 19.02 ± 1.23 17.67 ± 1.12 20.05 ± 1.47 19.13 ± 1.36

Creatinine-S mg/dL
** **

0.429 <0.001 0.105REH 0.92 ± 0.03 0.84 ± 0.03 0.98 ± 0.03 0.92 ± 0.03
CON 0.95 ± 0.04 0.88 ± 0.03 0.98 ± 0.03 0.93 ±0.04

Cystatin C-P mg/mL
***

0.232 <0.001 0.326REH 0.74 ± 0.01 0.72 ± 0.01 0.80 ± 0.01 0.76 ± 0.02
CON 0.74 ± 0.01 0.71 ± 0.02 0.77 ± 0.02 0.73 ± 0.02

Urine
Protein-U

µg/min
**

0.528 0.001 0.183REH 41.08 ±10.48 73.23 ± 6.93
CON 26.31 ± 5.84 75.10 ± 8.93

NAG-U mU/min
**

0.930 0.001 0.624REH 29.88 ± 7.05 54.77 ± 6.13
CON 26.52 ± 7.26 56.82 ± 6.68

Alubmin-U mU/min
***

0.609 <0.001 0.469REH 43.82 ± 11.29 338.26 ± 67.74
CON 47.80 ± 12.31 386.24 ± 74.32

Endotoxin-P IU/mL
REH ND ND ND ND
CON ND ND ND ND

Values are presented as mean ± SE. ** p < 0.01, *** p < 0.001 vs. Pre. BUN, blood urea nitrogen; NAG, N-acetyl-β-D-glucosaminidase; ND,
not detected; REH, rehydrate trial; CON, control trial.
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and (H) myoglobin. Values are presented as mean ± SE. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. Pre. † p < 0.05 REH vs.
CON in each time point. L-FABP, liver-fatty acid binding protein; NGAL, neutrophil gelatinase-associated lipocalin; KIM-1,
kidney injury molecule 1; RBP-4, retinol binding protein 4; I-FABP, intestine-fatty acid binding protein; I-BABP, ileal-bile
acid binding protein; LBP, lipopolysaccharide binding protein; REH, rehydrate trial; CON, control trial.

To evaluate muscle damage, we measured serum myoglobin concentration. Myo-
globin decreased immediately after exercise and increased 1 h after exercise, and the
myoglobin changes trended to differ between trials (interaction; p = 0.073, Figure 2H).
Immediately after exercise, serum myoglobin concentration in CON was higher than that
in REH. Pre exercise, serum myoglobin concentration in CON had a higher trend than
that in REH (Figure 2H). These results indicate that beverage intake did not influence
exercise-induced renal, intestinal and muscle damage, and this exercise mode did not
induce endotoxemia.

3.3. Exercise-Induced Inflammation

To evaluate exercise-induced inflammation, we measured the total leukocytes in whole
blood, TNF-α, IL-1ra, IL-2, IL-4, IL-6, IL-10, IL-18, IL-18BPa, C5a, MCP-1, G-CSF, M-CSF,
MPO and calprotectin in plasma and urine. The total leukocytes increased immediately,
1 h and 2 h after exercise (Figure 3A). Plasma IL-6 concentration increased immediately,
1 h and 2 h after exercise, and urinary IL-6 concentration also increased after exercise
(Figure 3B). Plasma IL-1ra concentration increased 1 h and 2 h after exercise and urinary
IL-1ra concentration also increased after exercise (Figure 3C). Plasma MCP-1 concentration
decreased immediately and 2 h after exercise. However, urinary MCP-1 concentration
increased after exercise (Figure 3D). Plasma C5a concentration decreased immediately
after exercise. However, urinary C5a concentration increased after exercise (Figure 3E).
Plasma M-CSF, MPO and calprotectin concentrations increased immediately after exercise.
Urinary M-CSF and calprotectin concentrations increased after exercise, whereas urinary
MPO concentration was under the detection limit (Figure 3F–H). Plasma and urinary
IL-10 and IL-18BPa concentrations did not change after exercise (Table 2). Plasma G-CSF
concentration did not change after exercise and urinary G-CSF concentration was under
the detection limit (Table 2). Plasma and urinary TNF-α, IL-2, IL-4 and IL-18 concentrations
were under the detection limit (Table 2). The changes in the above inflammatory parameters
did not differ between trials (interaction; p > 0.05). These results indicate that beverage
intake did not influence exercise-induced inflammation.
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Figure 3. (A) Change in the number of total leukocytes in whole blood. Changes in (B) IL-6, (C) IL-1ra, (D) MCP-1,
(E) C5a, (F) M-CSF, (G) MPO and (H) calprotectin in plasma (P) and urine (U). Values are presented as mean ± SE.
* p < 0.05, ** p < 0.01, *** p < 0.001 vs. Pre. IL-6, interleukin-6; IL-1ra, interleukin-1 receptor antagonist; MCP-1, monocyte
chemoattractant protein 1; C5a, complement 5a; M-CSF, macrophage colony-stimulating factor; MPO, myeloperoxidase;
REH, rehydrate trial; CON, control trial.

Table 2. Changes in the biomarkers of inflammation in plasma (P) and urine (U).

Unit Trial Pre Post 1h 2h Trial Time Interaction

TNF-α-P pg/mL REH ND ND ND ND
CON ND ND ND ND

TNF-α-U pg/mL REH ND ND
CON ND ND

IL-2-P pg/mL REH ND ND ND ND
CON ND ND ND ND

IL-2-U pg/mL REH ND ND
CON ND ND

IL-4-P pg/mL REH ND ND ND ND
CON ND ND ND ND

IL-4-U pg/mL REH ND ND
CON ND ND

IL-10-P pg/mL REH 5.96 ± 1.00 5.61 ± 0.89 5.78 ± 0.64 4.64 ± 0.66
0.540 0.091 0.655CON 5.34 ± 0.73 5.74 ± 1.07 6.61 ± 0.91 5.61 ± 0.98

IL-10-U pg/min REH 9.85 ± 1.33 13.83 ± 1.19
0.006 0.214 0.707CON 7.98 ± 2.18 7.84 ± 0.83
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Table 2. Cont.

Unit Trial Pre Post 1h 2h Trial Time Interaction

IL-18-P pg/mL REH ND ND ND ND
CON ND ND ND ND

IL-18-U pg/mL REH ND ND
CON ND ND

IL-18BPa-P ng/mL REH 79.53 ± 11.01 79.56 ± 11.55 66.39 ± 12.52 75.52 ± 11.94
0.904 0.146 0.683CON 74.10 ± 10.17 81.61 ± 11.93 70.10 ± 9.19 72.63 ± 5.25

IL-18BPa-U ng/min REH 94.55 ± 21.41 133.49 ± 30.00
0.025 0.287 0.838CON 62.17 ± 24.42 52.75 ± 11.45

G-CSF-P pg/mL REH 14.17 ± 2.62 12.69 ± 2.30 14.41 ± 2.32 13.16 ± 2.23
0.789 0.292 0.246CON 13.49 ± 2.53 12.32 ± 2.01 15.37 ± 2.15 13.36 ± 2.08

G-CSF-U pg/mL REH ND ND
CON ND ND

MPO-U ng/mL REH ND ND
CON ND ND

Values are presented as mean ± SE. IL, interleukin; IL-18BPa, IL-18 binding protein α; G-CSF, granulocyte colony-stimulating factor; MPO,
myeloperoxidase; ND, not detected; REH, rehydrate trial; CON, control trial.

3.4. Exercise-Induced Oxidative Stress and Antioxidant Substances

We measured d-ROMs, BAP, uric acid, nitrotyrosine and TBARS in serum, plasma
and urine to evaluate oxidative stress and antioxidant substances. Serum d-ROMs and
BAP concentrations did not change after exercise (Table 3). Serum uric acid concentration
decreased immediately after exercise and increased 1 h and 2 h after exercise (Table 3).
Urinary uric acid concentration increased after exercise (Table 3). Plasma and urinary
nitrotyrosine concentrations did not change after exercise (Figure 4A). Plasma TBARS
concentration showed different changes between trials (interaction; p = 0.027). Immediately
after exercise, plasma TBARS concentration in REH decreased compared to Pre. One hour
after exercise, plasma TBARS concentration in REH had a higher trend than that in CON
(p = 0.052) (Figure 4B). Urinary TBARS and 8-OHdG concentrations increased after exercise
(Figure 4B,C). Except for plasma TBARS, the changes of the oxidative stress markers did
not differ between trials (interaction; p > 0.05). These results indicate that beverage intake
quickly restored oxidative stress concentration in plasma.

Table 3. Changes in oxidative stress and antioxidant substances in serum (S) and urine (U).

Unit Trial Pre Post 1h 2h Trial Time Interaction

d-ROMs-S U-CARR
REH 237.77 ± 10.67 234.38 ± 10.36 237.37 ± 10.64 233.00 ± 11.37

0.138 0.327 0.567CON 230.00 ± 9.50 218.87 ± 9.87 224.70 ± 10.90 227.84 ± 10.73

BAP-S mmol/L
REH 2.28 ± 0.05 2.32 ± 0.05 2.31 ± 0.07 2.36 ± 0.06

0.218 0.343 0.474CON 2.20 ± 0.05 2.26 ± 0.04 2.32 ± 0.06 2.23 ± 0.03

Uric Acid-S mg/dL
*** *** **

0.427 <0.001 0.602REH 5.43 ± 0.35 5.11 ± 0.34 7.01 ± 0.58 6.52 ± 0.52
CON 5.76 ± 0.29 5.26 ± 0.26 7.04 ± 0.35 6.65 ± 0.37

Uric Acid-U µg/min
*

0.229 0.025 0.994REH 564.32 ± 86.24 775.35 ± 80.89
CON 445.87 ± 19.81 658.69 ± 68.15

Values are presented as mean ± SE. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. Pre. d-ROMS, derivatives of reactive oxygen metabolites; BAP,
biological antioxidant potential; REH, rehydrate trial; CON, control trial.
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Figure 4. Changes in (A) nitrotyrosine, (B) TBARS and (C) 8-OHdG in plasma (P) and urine (U). Values are presented
as mean ± SE. * p < 0.05, ** p < 0.01 vs. Pre. TBARS, thiobarbituric acid reactive substances; 8-OHdG, 8-hydroxy-2′-
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3.5. Hormones, Glucose and FFA

We measured hormones to evaluate the stress response. Plasma growth hormone
concentration increased immediately and 1 h after exercise (Figure 5A). Plasma insulin
concentration decreased 1 h and 2 h after exercise (Figure 5B). Plasma aldosterone con-
centration increased immediately after exercise and urinary aldosterone concentration
did not change (Figure 5C). Plasma cortisol concentration increased immediately after
exercise, whereas urinary cortisol concentration did not change (Figure 5D). Serum FFA
concentration increased 2 h after exercise (Figure 5E). Serum glucose concentration did
not change after exercise (Figure 5F). The changes in the above parameters did not differ
between trials (interaction; p > 0.05). These results indicate that beverage intake did not
affect hormonal responses.
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Figure 5. Changes in (A) growth hormone, (B) insulin, (C) aldosterone, (D) cortisol, (E) FFA and (F) glucose in plasma (P),
serum (S) and urine (U). Values are presented as mean ± SE. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. Pre. FFA, free fatty acid;
REH, rehydrate trial; CON, control trial.

4. Discussion

In the present study, plasma TBARS concentration showed different changes between
trials. Furthermore, plasma TBARS concentration in REH decreased immediately after
exercise and tended to be higher than CON 1 h after exercise. This result suggests that
rehydration restores the decreased oxidative stress by exercise more quickly. One possi-
ble interpretation is that rehydration may promote exercise adaptation because exercise-
induced oxidative stress contributes to exercise adaptation [27]. In contrast to TBARS,
other oxidative stress markers and antioxidants, d-ROMS, nitrotyrosine, 8-OHdG, BAP
and uric acid were not influenced by beverage intake. These differences may be due to
the differences in the oxidized metabolites detected. However, we could not elucidate
the mechanisms of this phenomenon. Endurance exercise induces oxidative stress in vari-
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ous organs such as muscle and liver [1,13–15]. As a source of oxidative stress, it may be
important to investigate the effects of rehydration on oxidative stress in each organ.

In the present study, the biomarkers of inflammation and organ damage increased fol-
lowing exercise. However, the changes in these biomarkers did not differ between trials.
These results suggest that beverage intake after exercise for rehydration does not prevent
organ damage and inflammation. There are two possible reasons for the above results. One
reason is the amount of ingested carbohydrates (CHO). A lot of studies have reported that
CHO-containing drinks attenuate endurance exercise-induced inflammation [16,17] and mus-
cle and intestinal damage [18–20]. In the present study, we used beverages containing some
CHO. However, plasma glucose did not increase in the REH trial. Therefore, the amount of in-
gested CHO may be too small to attenuate exercise-induced organ damage and inflammation.
Another reason for the results achieved is the timing of the beverage intake. Water, isotonic
sports drink or CHO-containing beverage intake before and during exercise attenuates en-
durance exercise-induced muscle and intestinal damage and inflammation [16–22]. However,
CHO-containing beverage intake after endurance exercise did not attenuate muscle dam-
age and inflammation [28]. Similarly, the research of Tanisawa et al. [28] reported that
beverage intake after exercise for rehydration did not attenuate exercise-induced muscle
damage and inflammation. However, several studies have reported that CHO-containing
beverage intake after exercise augments eccentric exercise-induced inflammation [29–31].
Therefore, the effects of beverage intake after exercise on exercise-induced organ damage
and inflammation may depend on the exercise mode. Considering these studies and our
results, beverage intake before and during exercise may effectively prevent endurance
exercise-induced organ damage and inflammation.

In the present study, the plasma endotoxin concentration was undetermined. How-
ever, plasma LBP concentration, an indirect marker of endotoxin exposure [26], did not
increase. These results suggest that our exercise protocol did not increase plasma endotoxin
concentration, which is consistent with a previous review which found that exercise under-
taken for less than 2 h does not increase plasma endotoxin concentration [26]. Intestinal
permeability is an important factor for exercise-induced endotoxemia [1,5]. However,
1 h of exercise induces intestinal hyperpermeability and damage but does not result in
endotoxemia [32]. Furthermore, high-intensity interval training (HIIT) induces intestinal
hyperpermeability and damage [33]. These results suggest that exercise lasting less than 2 h
does not induce endotoxemia but may induce intestinal hyperpermeability. Gut-derived
endotoxins in the portal vein are removed by phagocytosis of Kupffer cells, and acute
exercise increases the phagocytotic ability of these cells [34]. Therefore, if endotoxin leak-
age in the gut is within the phagocytotic ability of Kupffer cells, endotoxins in the portal
vein may not enter into systemic circulation. In the present study, we hypothesized that
exercise induces inflammation via gut-derived endotoxins. However, our results suggest
that after short-duration exercise, factors other than endotoxins trigger exercise-induced
inflammation. Organ damage itself and stress hormones (e.g., cortisol, catecholamines
and growth hormone) are the other triggers of exercise-induced inflammation [1,9,35]. In
the present study, organ damage and stress hormones may induce inflammation inde-
pendently of gut-derived endotoxins. Because beverage intake did not influence organ
damage and stress hormones in the present study, beverage intake may not influence
exercise-induced inflammation.

5. Limitation

This study was limited to men to avoid the effects of menstrual cycles on exercise-
induced inflammation [36,37]. Therefore, the results of this study cannot be generalized
because the effects of post-exercise beverage intake may be different in women.

In this study, we measured many cytokines in plasma and urine. However, several
parameters were under the detection limit. Therefore, we could not evaluate the effects of
post-exercise rehydration on several cytokines. Generally, cytokine concentrations in body
fluids are very low, and some cases are expected to be under the detection limit in healthy
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subjects [8,38]. Therefore, it is necessary to identify such low-concentration substances to
assess physiological stress to exercise using more sensitive assays.

6. Conclusions

Beverage intake after exercise to recover from dehydration did not attenuate exercise-
induced organ damage, inflammation and oxidative stress in healthy males, and exercise
induced inflammation independently of gut-derived endotoxins. However, rehydration
restored exercise-induced oxidative stress more quickly.
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