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1. Preprocessing 

The MEG data underwent artifact reduction using Matlab (The MathWorks, Inc., Natick, MA, 

USA) and Fieldtrip routines (Oostenveld et al., 2011). Independent component analysis (ICA) was 

used to separate cerebral from non-cerebral activity using the extended Infomax algorithm as 

implemented in EEGLAB (Delorme and Makeig, 2004). The data were whitened and reduced in 

dimensionality using principal component analysis with a threshold set to 95% of the total variance 

(Delorme and Makeig, 2004, Escudero et al., 2011). Kurtosis, Rényi entropy, and skewness values of 

each independent component were used to identify and remove ocular and cardiac artifacts. A given 

component was considered artifactual if, after normalization to zero mean and unit variance, more 

than 20% of its values exceeded 2 SDs from the mean (Escudero et al., 2011, Dimitriadis et al., 2013a, 

Antonakakis et al., 2013, 2015). Axial gradiometer recordings were transformed to planar 

gradiometer field approximations using the sincos method implemented in Fieldtrip (Oostenveld et 

al., 2011).  

 

2. Intra and Inter-Frequency Coupling Estimators and statistical filtering 

The center of the sliding window moved forward at 0.1-sec steps and the set of, were re-estimated 

leading to a series of 900 functional connectivity graphs (TVFCGs) each representing a snapshot of 

the spatial profile of each connectivity index during the recording session.  

Surrogate data were generated by cutting at a single random time point of each time series and 

swapping the two resulting time courses (Dimitriadis et al. 2013). This approach was chosen over the 

shuffling-based surrogate analysis which significantly alters the spectrum of the time series and also 

impairs the non-stationarity of brain activity. Here we assessed determinism/stochastisity and 

linearity/nonlinearity of the surrogate time series using the Delay Vector Variance (DVV) method 

which relies on signal predictability in phase space to characterize the time series (Dimitriadis et al., 

2017b). Preliminary analyses using DVV indicated that the surrogate data produced in this method 

displayed similar frequency composition and stationarity as compared to the recorded time-series. 

 

2.1. Amplitude Envelope Correlation (AEC) 

Surrogate data analyses ensured that significant observed AEC values could not have emerged 

from time series with zero amplitude envelope coupling. The final AEC data set consisted of the 

highest, significant correlations across all frequencies and frequency pairs (if more than two 

frequencies or pairs of frequencies were significant for a given pair of sensors we selected the one 

with the maximum AEC value). Finally, the significant, dominant AEC values for each pair of sensors 

and across sliding windows were integrated into a 4D graph (TVAEC 4D array of size [900 x 248/275 

x 248/275]). In this array significant AEC interactions were indicated by a value of 1, with zeros 

indicating non-significant AEC interactions. 

 

2.2. Phase-to-amplitude Cross-Frequency Coupling (CFC, cross-frequency iPLV) 

Let x(isensor, t), be the MEG activity recorder at the isensor-th site, and t=1, 2,.... T the successive 

time points. Given two band-limited signals x(isensor,t) and x(jsensor,t), cross-frequency coupling was 

estimated by allowing the phase of the lower frequency (LF) oscillation to modulate the amplitude of 

the higher frequency (HF) oscillation. The complex analytic representations of each signal zLF(t) and 

zHF(t) were derived via the Hilbert transform (HT[.]). 

http://www.sciencedirect.com/science/article/pii/S0167876016300198#bb0160
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Next, the envelope of the higher-frequency oscillation AHF(t) was bandpass-filtered within the range 

of the LF oscillation and the resulting signal was submitted to an additional Hilbert transform to 

derive its phase dynamics component φ'(t): 

 

 

which expresses the modulation of the amplitude of the HF oscillation by the phase of the LF 

oscillation. Phase consistency between the two timeseries, corresponding to PAC strength, was 

measured by means of the imaginary portion of the Phase Locking Value (iPLV; Lachaux et al., 1999) 

defined as follows: 

 

𝒊𝑷𝑳𝑽 =
𝟏

𝑻
∗ |𝒊(∑ 𝒆𝒊(𝝋𝒊(𝒕) −𝝋𝒋(𝒕))

𝑻

𝒕=𝟏

)| 

 

The imaginary portion of PLV is considered to be less susceptible to volume conduction in 

assessing CFC interactions and was used in all subsequent analyses. While iPLV is not affected by 

volume conduction, it may be sensitive to changes in the angle between two signals, which do not 

necessarily imply a PLV change. In general, iPLV is only sensitive to non-zero-phase lags and is thus 

resistant to instantaneous self-interactions associated with volume conduction (Nolte et al., 2004).  

This procedure, the implementation details of which can be found elsewhere (Dimitriadis et al., 

2010a), resulted in 900 time-varying PAC graphs per participant, each serving as an instantaneous 

snapshot of the surface network. There were 86, 82, 80, 77, 70, 60, and 40 (=455) possible pairs in 

the δ, θ, α1, α2, β1, β2, and γ1 bands, respectively. For instance, using 1Hz frequency bins there were 

90-4 = 86 interacting pairs for δ phase.  

For each pair of sensors, in each sliding window and for each subject, the maximum PAC score 

was determined for each combination of modulating frequency bands (fφ; from δ to γ) and modulated 

frequencies (fa; ranging from 1 to 90Hz in 1Hz steps) using the following equation: 

 

( 𝑓∧
𝜑, 𝑓∧

𝛼) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑓𝜑−𝑓𝛼

(𝑃𝐴𝐶(𝑓𝜑, 𝑓𝛼)) (1) 

 In this manner we determined if the prominent CFC interaction (indexed by the maximum 

PAC value), and specifically the frequency of the low-frequency phase, was associated with the 

frequency of maximum power. If the two frequencies were identical this would imply that the 

observed prominent CFC interaction was driven by the power of the dominant frequency and not its 

phase. In order to ensure that we did not include in further analyses CFC interactions of this type, we 

required a minimum frequency difference of 1Hz distance between the two frequencies (frequency 

of the low-frequency phase, frequency of the higher power), the one identified by equation 1 

(maximum PAC value) and the one associated with the maximum spectral power, within the range 

of high amplitude. Surrogate data analyses further ensured that a very low p value associated with a 

given observed PAC indicated that it could not have emerged from time series with zero cross-

frequency phase-amplitude coupling. To be included in surrogate analyses a given PAC value would 

have to meet an additional criterion, namely that the frequency of the modulated HF should be distinct 

     e (t)z'e (t)z' ]  (t)  HT[(t)z'
)( i)(' i

LFHF,
HFLFHF tt
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from the frequency associated with maximum power. Here, we adopted a criterion of at least 1 Hz 

difference between the two frequencies.  

 The dominant PAC values for each pair of sensors and across sliding windows were integrated 

across frequency bins yielding 28 possible pairwise PAC estimates among the eight frequency bands. 

For each participant the resulting TVPAC profiles constituted two 4D arrays of size [28 (pairs of 

frequencies) x 900 (time windows) x 248/275 (sensors) x 248/275 (sensors)]. The first array contained 

the PAC values, and the second array the corresponding p-value. In a third array of size [2 x 900 x 

248/275 x 248/275], dICMs were integer-coded (e.g., 1 for δ, 2 for θ,…., 11 for δα, 18 for θβ1). 

 

2.3. Intra-Frequency Phase-to-Phase Coupling (same-frequency iPLV) 

Intra-frequency phase coupling was estimated using the Hilbert phase transform implemented 

in the following formula adapted from the following equation: 

𝒊𝑷𝑳𝑽 =
𝟏

𝑻
∗ |𝒊(∑ 𝒆𝒊(𝝋𝒊(𝒕) −𝝋𝒋(𝒕))

𝑻

𝒕=𝟏

)| 

Based on surrogate data analyses an p value was assigned to each observed iPLV value, with very 

low p values suggesting that the observed iPLV could not have emerged from time series with zero 

phase coupling. Finally, the dominant iPLV mode for each sensor pair was determined based on the 

highest, statistically significant iPLV value. The significant, dominant iPLV values for each pair of 

sensors and across sliding windows were integrated into two 4D arrays (TViPLV) of size [8 x 900 x 

248/275 x 248/275]). The first array contained the iPLV values and the second array the 

corresponding p-value. In a third array of size [2 x 900 x 248/275 x 248/275], the dICMs were integer-

coded (e.g., 1 for δ, 2 for θ,…., 11 for δα, 18 for θβ1). 

 

2.4. Delay Symbolic Transfer Entropy (dSTE) 

In principle, asymmetric dependences between coupled systems can be detected with measures of 

mutual information (Dimitriadis et al., 2010) taking into account the dynamics of information 

transfer. Transfer entropy (Shannon & Weaver, 1949), which is related to Granger causality (Granger, 

1969), was introduced in order to distinguish the driving and responding elements within a network. 

Through proper conditioning of transition probabilities this quantity has been shown to be superior 

to the standard time-delayed mutual information, which fails to distinguish information, which is 

actually exchanged, from shared information due to common history and input signals. Various 

techniques have been proposed to estimate transfer entropy from observed data. Most techniques, 

however, make great demands on the data, require fine-tuning of parameters, and are highly sensitive 

to noise contributions, which limits the use of transfer entropy to field applications (Granger, 1969, 

Verdes, 2005). 

The algorithmic steps employed to transcribe the temporal dynamics of each pair of sensors into 

two distinct symbolic timeseries that share a common codebook (set of symbols) are described below. 

The size and content of the codebook is data-dependent and estimated causal relationships are to be 

inferred from a different pair of recorded signals each time. The unsupervised nature of the algorithm 

reduces computational burden (Dimitriadis et al., 2016a,c,d). Given signals Axt and Bxt recorded from 

sensors A and B, respectively, time-delay vectors are first reconstructed from each time series. These 

vectors take the form of },...,,{ ))1(()(   mttt xxxtx , where m  is the embedding dimension,   denotes 



6 
 

the time lag and t=1,2,..,T  runs over the time points. Then, the two individual sequences of time-

delay vectors are collectively gathered in data matrices in the form of: 

 

  ]|  ...   ||[    &    ]|  ...   ||[    21m][T21m][T T
BBBB

T
AA

xxxXxxxX
AA         

 

Next, the two trajectories are brought to a common reconstructed state space by forming the 

overall data matrix  

 

  ]  |   [    m][2T XXX
A BAB     (2) 

 

Partitioning all the tabulated m-dimensional vectors into groups of homogenous patterns is the 

most direct way to summarize the temporal variations in the two time series and describe them with 

a common vocabulary. In our approach, a codebook of k  code vectors is designed by applying the 

NG algorithm to the data matrix described by Eq. 2. The NG algorithm is an artificial neural network 

model, which converges efficiently to a small number Tk   of codebook vectors ki :1}{ iM  using a 

stochastic gradient descent procedure with a soft-max adaptation rule that minimizes the average 

distortion error (Martinetz et al., 1993). In the encoding stage, each of the 2T  vectors was assigned 

to the nearest code vector. By replacing the original vectors with the assigned code vectors, the two 

vectorial time series can be reconstructed with a measurable error. If we denote the reconstructed (i.e. 

decoded) version of the vectorial time series as )(tAB rec
x , the fidelity of the overall encoding 

procedure can be estimated via the index described in the following equation, which reflects the total 

distortion error divided by the total dispersion of the original vectors: 
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The smaller the Distortionn , the better the encoding. This index becomes smaller as k increases, and 

reaches a plateau at a relatively small value of k . In the present study, we considered encoding to be 

acceptable if it was produced by the smallest k  and if Distortionn  was less than 5%. The NG algorithm 

was repeatedly applied at progressively higher k values to determine the optimal 0k , which in turn 

identified the codebook to use in the subsequent symbolization scheme. At the vector-quantization 

stage, each AX and BX vector was assigned (according to the nearest-prototype rule) to the most 

similar among the derived code-vectors koi :1}{ iM . This step completed the mapping of the recorded 

time series to corresponding symbolic time series Ast and Bst, 1, 2,t T , which in mathematical 

notation reads as follows: 

 

 

},..,2,1{   j , j    ,   (t)j       ,   (t)j

,}{  M         ,}{  M   

  ] ,[ 

2121

1j1j

2

21

ot
B

t
B

t
A

t
A

m
i

k
ii

VQBm
i

k
ii

VQ

t
B

t
A

ksxsx

RMMRMM

Rxx

oo







 tt
A

xx    

  



7 
 

In the derived symbolic time series, the temporal dynamics of a pair of neural subsystems are 

encoded as transitions among adaptively-defined (i.e. data-dependent) symbols. We adopted the 

Ragwitz criterion for optimizing the embedding dimension d and the embedding delay τ. Optimality 

of the embedding dimension refers to minimal prediction error for future samples of the time series. 

The Ragwitz criterion predicts the future of a signal based on estimates of the probability densities of 

future values of its nearest neighbors after embedding. The adopted method was based on the 

minimization of mean squared prediction error (Ragwitz and Kantz, 2002; Lindner et al., 2011).

  

dSTE as an index of Effective Connectivity. Given a pair of symbolic sequences Ast and Bst, the 

relative frequency of occurrence of symbols can be used to estimate joint and conditional 

probabilities, and to define symbolic transfer entropy (STE) as follows   

 


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where the sum runs over all symbols and δ denotes a time step.  

Effective connectivity is defined as “the influence one system exerts over another” (Granger, 

1969; Ito et al., 2011). In the context of brain networks, effective interactions are directed from one 

sensor location to another. To account for the time-delay between neuromagnetic signals recorded 

from different sensors, Eq. 3 was adapted as follows: 
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where d  is the time delay between the driving and the driven time series.  

A log of base 2 is used so that STEBA is expressed in bits. STEAB is defined in complete analogy. 

The directionality index dSTEAB=dSTEAB-dSTEBA quantifies the preferred direction of information 

flow taking up positive values for a unidirectional coupling, with time series A as the driver, and 

negative values for time series B driving A. For symmetric bidirectional couplings dSTE 

approximates zero. The formulation of transfer entropy with a time delay has been validated in a 

recent study, which presented a robust method for neuronal interaction delays (Wibral et al., 2013). 

The significance of a particular type of interaction between two sensors was assessed through 

surrogate data (1000 time series of sensor B created through permutation of the elements of the 

symbolic time series Bst). A one-sided p-value was computed that corresponded to the percentage of 

surrogate dSTEBA values that were higher than the observed dSTEBA. The final dSTE data set 

contained the strength, direction and delay of the significant and dominant pair of frequencies for 

each sensor. If more than two dSTE frequencies or frequency pairs were significant, the one with the 

maximum dSTE value was selected. For each participant the resulting TVdSTE profiles constituted 

two 4D arrays of size [28 (pairs of frequencies) x 900 (time windows) x 248/275 (sensors) x 248/275 

(sensors)]. The first array contained the dSTE values and the second array the corresponding p-value. 

In a third array of size [2 x 900 x 248/275 x 248/275], the dominant dSTE interactions were integer-

coded (e.g., 1 for δ, 2 for θ,…., 11 for δα, 18 for θβ1). 

 

2.5. Directed Phase Lag Index (dPLI) 
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Τhe dPLI quantifies the phase difference between two time series A and B which can be 

classified as follows:  

a) Signal A is consistently leading signal B in the phase domain (dPLI > 0.5), if the majority of 

phase differences fall within  )(0 t  

b) Inconclusive causality between A and B in either direction, if the phase difference of the two 

signals averages π radians  

c) Signal B is consistently leading signal A in the phase domain (dPLI < 0.5), if the majority of 

phase differences fall within 0)(  t .   

Significant, causal phase relationships for every pair of sensors were determined via surrogate data 

analyses to ensure that a very low p value indicated that the observed dPLI could not have emerged 

from time series lacking directed phase interactions. The highest, significant dPLI values for each 

pair of sensors, frequencies and sliding windows were stored in two TVdPLI 4D array of size [36 

(within and between frequencies) x 900 (time windows) x 248/275 (sensors) x 248/275 (sensors)]. 

The first array contained the dPLI values and the second array the corresponding p-value. In a third 

array of size [2 x 900 x 248/275 x 248/275] the identity of dominant dPLI interactions was indicated 

by a numeric (integer) code. 

 

3. Topological Filtering based on Orthogonal Minimal Spanning Tress (OMSTs) 

The general concept of the OMST method can be described as follows: The initial (1st) MST 

connects all the V sensors through V-1 edges. Then, the V-1 connections of the 1st MST were 

substituted with zeros and a 2nd MST was estimated that connected all of the V sensors with minimal 

total distance, satisfying the constraint that it was orthogonal—i.e. it shared no common edges—with 

the 1st MST. Next, the V-1 connections of the 2nd MST were substituted with zeros and a 3rd MST was 

estimated that connected the sensors with the minimal total weight, subject to the constraint that it was 

orthogonal to the previous two constructed MST's (1st and 2nd). In general, an m-MST is orthogonal 

to all the previous (m-1) MST's, having exactly m(N-1) edges. The OMST method was applied as 

follows: 

For each added N-1 edges correspond to a single OMST across multiple round OMTS, the 

objective function of Global Cost Efficiency (GCE) = GE-Cost was estimated, where Cost denotes the 

ratio of the total weight of the selected edges, over multiple iterations of OMST, divided by the total 

strength of the original full-weighted graph. The values of this formula range within the limits of an 

economical small-world network for healthy control participants. The network which is considered as 

functionally optimal is the one associated with the maximum value of the following quality formula: 

𝐽𝐺𝐶𝐸
𝑂𝑀𝑆𝑇𝑠 = 𝐺𝐸 − 𝐶𝑜𝑠𝑡

 

Topological filtering was applied next in order to reduce the spatial density of the sensor 

network featuring dICM weights. The curve maximum in the following Figure illustrates the 

optimization of the OMST algorithm for a healthy participant from the first temporal segment.  
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4. Supplementary metrics of brain activity & connectivity 

 

 For comparison purposes two well-established measures of brain activity and sensor 

interdependence were also computed, namely relative power spectrum and coherence. In contrast to 

dICM indices they provide static representations of the strength of oscillatory activity and within-

frequency phase coupling, respectively.  

 

4.1 Power Spectrum Analysis (RP) 

Relative power was calculated to assess the relative contribution of each of the eight 

oscillatory components (0.5-4, 4-8, 8-10, 10-13, 13-15, 15-19, 20-29, and 30-45Hz corresponding to 

δ, θ, α1, α2, β1, β2, β3, and γ bands) to global MEG signal power (Leuchter et al., 1993; Rodriguez et 

al., 1999). The MEG signals were converted to the frequency domain using the Welch periodogram 

in MATLAB R2012a (window length = 128 samples; window overlap = 64 samples; nfft = 128; 

sample frequency = 1024 Hz).  

 

4.2 Imaginary Coherence between sensors (ImCOH) 

 Coherence is a widely used measure of linear dependence and phase consistency between two 

time series. Let si(f) and sj(f) represent the complex Fourier transforms of two time series xi(t) and 

xj(t). For each of N epochs of the segmented time series, the cross-spectral density function Sij(f) of i 

and j is defined as: 

 

𝑆𝑖𝑗𝑛 = 𝑠𝑖𝑛(𝑓)𝑠𝑗𝑛
∗ (𝑓)  

 

and the single epoch power spectrum (auto-spectral density) as: 

 

𝑆𝑖𝑛 = 𝑠𝑖𝑛(𝑓)𝑠𝑖𝑛
∗ (𝑓)  
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where * indicates the complex conjugate. The coherency across n epochs is defined as the cross-

spectrum normalized by the auto spectral density functions xi(t) and xj(t): 

 

𝐶
∧

𝑖𝑗(𝑓) =
|𝑠𝑖𝑗(𝑓)| 

(𝑆𝑖(𝑓)𝑆𝑗(𝑓))1/2
  

 

Coherence is defined as the absolute value of coherency, i.e. the normalized amplitude of the complex 

cross-spectrum value: 

 

𝐶𝑜ℎ𝑖𝑗(𝑓) = |𝐶𝑖𝑗(𝑓)|
 

 

In the present study we adopted the imaginary portion of coherence (Nolte et al., 2004) corresponding 

to the perpendicular presented to the real axis values of a complex number, positively increasing in 

magnitude to the left. In this manner, when two time series are completely simultaneous, i.e. they 

have zero-lag oscillatory activity, the value of ImCoh is zero: 

 

𝑰𝒎 𝑪 𝒐𝒉𝒊,𝒋
𝒇

= 𝕽[𝑺𝒊,𝒋(𝒇)] + 𝒊𝕴[𝑺𝒊,𝒋(𝒇)]
 

 

Thus ImCoh reflects only non-zero time-lag correlations which are presumably caused by interactions 

between distinct neuronal populations rather than common interference sources.  

 

4.3 Multiscale Entropy (MSE) 

Multiscale entropy (Costa et al., 2002, 2005) is a novel method to estimate the complexity of a 

finite length time series. For the purposes of the present study an MSE algorithm was developed for 

neuromagnetic time series using sample entropy (Richman and Moorman, 2000). Sample Entropy 

reflects the probability that sequences that match each other on the first two data points will also 

match on the next point (Costa et al., 2002). Assuming a time-series of length 
}x,...,x,x,x{N N321

 

with a constant time interval τ, we define a template vector of length m, such that 

}x,...,x,x,x{)i(X 1mi2i1iim 
 and the Chebyshev distance function 

)]j(X),i(X[d mm  (i≠j). The 

number of vector pairs in template vectors of length m and m+1 is then counted having 

r)]j(X),i(X[d mm 
 and denote it by B and A, respectively. Sample entropy is defined as follows: 

 

𝑆𝑎𝑚𝑝𝐸𝑛 = − 𝑙𝑜𝑔
𝐴

𝐵
  

where 

A = number of template vector pairs having 
r)]j(X),i(X[d

1m1m 
  of length  m+1 

B = number of template vector pairs having 
r)]j(X),i(X[d mm 

 of length m 

 

In contrast to traditional entropy indices, MSE provides a more direct and accurate measure 

of complexity by overcoming key limitations of the former, such as their susceptibility to bias 

introduced by surrogate data comparisons. The MSE method involves two steps: 

https://en.wikipedia.org/wiki/Time-series
https://en.wikipedia.org/wiki/Vector_(mathematics_and_physics)
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1. A coarse-grained procedure is first applied to the time series. For a given time series, multiple 

coarse-grained time series are constructed by averaging the data points within non-overlapping 

windows of increasing length τ (see Figure S1). Each element of the coarse-grained time series, 
)(

jy 

, is calculated according to the equation:  

 

 y
𝑗

(𝜍)
=

1

𝜏
  ∑ 𝑥𝑖

𝑗𝜏

𝑖=(𝑗−1)𝜏+1

  

 

where τ represents the scale factor and 1≤j≤N/τ.  The length of each coarse-grained time series is N/τ. 

For scale value = 1, the coarse-grained time series simply corresponds to the original time series. 

2. Sample Entropy is then plotted as a function of scale values. As a “regularity statistic” SampEn 

searches for patterns within a time series and quantifies its degree of predictability or regularity (see 

Figure S2). Here, we estimated MSE separately for each participant, frequency band, and lobar 

section of the sensor array. 

 

 
Figure S1: Schematic illustration of the coarse-grained procedure for scales 2 and 3. Adapted from 

Costa et al., 2002. 
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Figure S2: A simulated time series u[1], . . . , u[n] is shown to illustrate the procedure for calculating 

Sample Entropy for pattern length, m, of size 2, adopting a similarity criterion of r = 20 (r is a positive 

real number that is typically chosen to be between 10% and 20% of the sample deviation of the time 

series). Dotted horizontal lines around data points u[1], u[2] and u[3] represent u[1] ± r , u[2] ± r , 

and u[3] ± r , respectively. Two data values are considered indistinguishable if their absolute 

difference is ≤ r. Green data points match data point u[1]. Similarly, all red and blue points match 

data points u[2] and u[3], respectively. Consider the 2- component green-red template sequence (u[1], 

u[2]) and the 3-component green-red-blue (u[1], u[2], u[3]) template sequence. For the segment 

shown, there are two green-red sequences, (u[13], u[14]) and (u[43], u[44]), that match the template 

sequence (u[1], u[2]) but only one green-red-blue sequence that matches the template sequence (u[1], 

u[2], u[3]). Therefore, in this case, the number of sequences matching the 2-component template 

sequences is 2 and the number of sequences matching the 3-component template sequence is 1. These 

calculations were repeated for the next 2-component and 3-component template sequence: (u[2], u[3]) 

and (u[2], u[3], u[4]), respectively. The numbers of sequences that matched each of the 2- and 3-

component template sequences were again counted and added to the previous values. This procedure 

was repeated for all other possible template sequences, (u[3], u[4], u[5]), . . . , (u[N-2], u[N-1], u[N]), 

to determine the ratio between the total number of 2-component template matches and the total 

number of 3-component template matches. Sample Entropy is the natural logarithm of this ratio and 

reflects the probability that sequences that match each other for the first two data points will also 

match for the next point (Costa et al., 2002). 

 

 

5. Modelling Participant Age through Individual FI values 

5.1.  Prediction of participant age using Support Vector Regressors (SVR) 

Drucker et al. (1997) extended the Support Vector Machine method to SVR in order to make 

continuous real-valued predictions. SVR retains some of the main features of SVM classification, 

although in the former method misclassified cases are penalized, whereas in SVR a penalty is served 

only for cases associated with extreme distances from the regression line in high-dimensional space 

(Dosenbach et al., 2010). Epsilon-insensitive SVR defines a tube of width ε, which is user defined, 

around the regression line in high-dimensional space. Any points within this tube carry no loss. In 

essence, SVR performs linear regression in high-dimensional space using epsilon-insensitive loss. 

The C parameter in SVR controls the trade-off between how strongly points beyond the epsilon-

insensitive tube are penalized and the flatness of the regression line (larger values of C allow the 

regression line to be less flat; Dosenbach et al., 2010). SVR predictions described in the present 

analyses used epsilon-insensitive SVRs carried out in the Spider Machine Learning environment 

(Weston et al., 2005), as well as custom scripts run in MATLAB (R2010a; MathWorks, Natick, MA, 

USA). The parameters C and ε were tuned using a holdout subset of the respective dataset. An 

important feature of SVR is that it allows determination of the most important model features in 

predicting participant age, according to their corresponding weights. 
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5.2.  Prediction of participant age group using Multi-class Support Vector Machines (MC-SVM) 

Multi-class Support Vector Machines represent an extension of Support Vector Machines which are 

appropriate for binary classification (k = 2). Multi-Class pattern recognition (k>2 classes) are usually 

solved using a voting scheme based on combining many binary classification functions simultaneously. 

Here, we used a linear MC-SVM which involved training on all six age groups simultaneously, in order 

to build a unique decision function for each group (Crammer and Singer, 2001 and implemented in 

(http://www.cs.cornell.edu/people/tj/svm_light/svm_multiclass.html). Briefly, this method constructs 
𝑘(𝑘−1)

2
 hyperplanes (1-against-1), each separating a given class from every other and applying a voting 

scheme for classification. The expected error probability in the test set was bounded by the ratio of the 

expected number of support vectors to the number of vectors in the training set: 

 

𝐸[𝑃(error)] =
𝐸[number of support vectors]

(number of training vectors) − 1
 

 

5.3. Cross Validation of SVRs and MC-SVMs 

Cross validation of the age prediction and classification, respectively, was performed using 

three complementary schemes with each tool. In the first two, data from one MEG system were used 

to train the SVR and data from the second MEG system served as the testing set. The third scheme was 

applied to data aggregated across both MEG datasets. The prediction/classification capacity of each 

scheme was assessed using two alternative procedures: 5-fold cross-validation and leave-one-out-

cross-validation (LOOCV; a method associated with the most unbiased test error estimates; Hastie et 

al., 2001). On each LOOCV round, one case is left out and the remaining cases are used as the training 

set. During each SVR round (LOOCV) or fold, the correlation between each feature and the dependent 

variable (age) was computed, and the features that had the highest absolute correlation values were 

selected for inclusion in the final prediction model.  

 

 

6. Results 

 

6.1. Identifying age-related neuromagnetic features  

S.Table 1 presents results of various cross-validation schemes in the context of Support Vector 

Regression in predicting participant age based on the combination of 22 optimal features characterizing 

the short-term persistence of dICMs in 12 subnetworks (as defined by Mean Subgraph Strength) and 

10 subnetworks (as defined by Fractional Occupancy). S.Table 1 illustrates the 22 optimal features that 

classify correct each participant to each age group based on Mean Subgraph Strength (MSS) and 

Fractional occupancy (FO). This model was able to predict participant age with a reasonable degree of 

accuracy according to the following regression equation: Predicted Age = 1.01 x Actual Age - 0.78 

(R2=0.893, p < 2× 10−9; Fig. S3). Corresponding results using Multi-Class Support Vector Machines 

to predict the correct age group of each participant are shown in S.Table 2. The most robust age 

prediction was achieved using the 5-fold cross validation method with data aggregated across both 

systems (as indicated by the capacity of the Support Regression model to account for 90% of individual 

variability in participant age and by 89% correct classification of participants to the appropriate age 
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group). Moreover, the comparability among the two data sets (Magnes-248, CTF-275) is evident by 

the high rates of successful age and age-group prediction when the Support Vectors were trained with 

the same set of dICM features from one system and tested with corresponding features from the other 

system.  

 

S.Table 1. Support Vector Regressor results in predicting participant chronological age.  

Data set Features 

Training Testing dICM RP, ImCOH, and MST 

  LOOCV 5-fold LOOCV 5-fold 

CTF-275 Magnes-248  

 

R2=0.865 

p  < 7.1× 10−6 

R2=0.876 

p  < 1.8× 10−7 

R2=0.789  

p  < 2.4× 10−6 

R2=0.779 

p  < 1.8× 10−5 

Magnes-248 CTF-275 R2=0.834 

p  < 2.4× 10−5 

R2=0.869 

p  < 3.5× 10−7 

R2=0.812 

p  < 1.8× 10−7 

R2=0.801 

p  < 6.4× 10−6 

Mixed Mixed R2=0.887 

p  < 5.1× 10−8 

R2=0.893 

p  < 2× 10−9 

R2=0.792 

p  < 7.8× 10−6 

R2=0.812 

p  < 2.2× 10−7 

 

S.Table 2. Percent classification of participants to the correct age group using Multi-Class Support 

Vector Machines.  

Data set Features 

Training Testing dICM RP, ImCOH, and MST 

  LOOCV (%) 5-fold (%) LOOCV (%) 5-fold (%) 

CTF-275 Magnes-248 17.634.87   03.609.86   67.539.65   69.12 ± 5.45 

Magnes-248 CTF-275 13.556.85   77.565.86   17.619.67   78.654.68   

Mixed Mixed 15.4677.87   45.512.89   89.618.67   15.705.69   
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Figure S3. (Upper panel) Least squares regression of predicted over actual participant age in years 

based on Mean Subgraph Strength and Fractional Occupancy in 12 and 10 lobar subnetworks, 

respectively (listed in S.Table 2). (Lower panel) The distribution of model regression residuals as a 

function of participant age.   

 

6.2. Age-Related Differences based on Dominant Intrinsic Coupling Modes (dICMs) 

The spatial layout of dICMs which contributed significantly to the prediction of participant age is 

shown in the upper panels of Figures 1 and S4-14. The relative contribution of each of the 22 dICM 

features in the significant classification of participants to their correct age group through SVR is shown 

in the upper panel of S16. The prediction accuracy of participant age for each of the 22 features is 

displayed in the lower panel of S16. 

 

 
Figure S4. Dominant inter- and intra-hemispheric Phase-Amplitude Coupling (PAC) between frontal 

and temporal sensors in the θ and γ2 bands, respectively. A) Topographical layout of statistically 

significant sensor pairs for the six age groups. B) Mean Subgraph Strength and C) Fractional 

Occupancy (FO) derived from PAC across the six age groups. Significant differences between 

successive age groups are marked by brackets (p < .0001). 
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Figure S5. Dominant inter- and intra-hemispheric coupling between frontal and parietal sensors 

indexed by delay Symbolic Transfer Entropy (dSTE) in the θ and α2 bands, respectively. A) 

Topographical layout of statistically significant sensor pairs for the six age groups. B) Mean Subgraph 

Strength and C) Fractional Occupancy (FO) derived from dSTE across the six age groups. Significant 

differences between successive age groups are marked by brackets (p < .0001). 

 

 

 
Figure S6. Dominant inter-hemispheric coupling between parietal and occipital sensors indexed by 

imaginary Phase Locking (iPLV) in the α1 band. A) Topographical layout of statistically significant 

sensor pairs for the six age groups. B) Mean Subgraph Strength and C) Fractional Occupancy (FO) 

derived from iPLV across the six age groups. Significant differences between successive age groups 

are marked by brackets (p < .0001). 
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Figure S7. dICM reflecting within-hemisphere phase coupling (imPLV) involving sensors located 

over the frontal lobes in the θ band. A) Topographic layout of the statistically significant sensor pairs 

for the six age groups. B) Mean subgraph strength and C) Fractional Occupancy (FO) across the six 

age groups. 

 

 

 
Figure S8. dICM reflecting phase-to-amplitude coupling (PAC) between left temporal sensors in the 

δ band and bilateral frontal sensors in the β band. A) Topographic layout of the statistically significant 

sensor pairs for the six age groups. B) Mean subgraph strength and C) Fractional Occupancy (FO) 

across the six age groups. 
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Figure S9. dICM reflecting phase-to-amplitude coupling (PAC) between right temporal sensors in the 

δ band and bilateral frontal sensors in the γ2 band. A) Topographic layout of the statistically significant 

sensor pairs for the six age groups. B) Mean subgraph strength and C) Fractional Occupancy (FO) 

across the six age groups. 
 

 

 
Figure S10. dICM reflecting intra- and inter-hemispheric coupling between bilateral parieto-occipital 

(bPO) sensors as indexed by the imaginary portion of Phase Locking Value (imPLV) in the α1 band. 

A) Topographic layout of the statistically significant sensor pairs for the six age groups. B) Mean 

subgraph strength and C) Fractional Occupancy (FO) across the six age groups. 
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Figure S11. dICM reflecting inter-hemispheric coupling between parieto-occipital sensors as indexed 

by amplitude envelope correlation (AEC) in the β band. A) Topographic layout of the statistically 

significant sensor pairs for the six age groups. B) Mean subgraph strength and C) Fractional Occupancy 

(FO) across the six age groups. 
 

 

 
Figure S12. dICM reflecting intra- and inter-hemispheric coupling between right temporal and parieto-

occipital sensors (PO) indexed by the imaginary portion of Phase Locking Value (imPLV)in the γ1 

band. A) Topographic layout of the statistically significant sensor pairs for the six age groups. B) Mean 

subgraph strength and C) Fractional Occupancy (FO) across the six age groups. 
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Figure S13. dICM reflecting interhemispheric interactions between temporal sensors indexed by 

amplitude envelope correlation (AEC) in the β band. A) Topographic layout of the statistically 

significant sensor pairs for the six age groups. B) Mean subgraph strength and C) Fractional Occupancy 

(FO) across the six age groups. 
 

 

 
Figure S14. dICM reflecting interhemispheric interactions between occipital sensors indexed by 

phase-to-amplitude coupling (PAC) in the α2 and γ1 bands, respectively. A) Topographic layout of 

statistically significant sensor pairs for the six age groups. B) Mean subgraph strength and C) Fractional 

Occupancy (FO) across the six age groups. 

 



21 
 

  
Figure S15. (A) Relative weights for Mean Subgraph Strength (MSS; “Strength”) and Fractional 

Occupancy (FO) for 12 and 10 sub-networks, respectively, representing lobar dynamic connectivity 

estimates (dICMs) in the prediction of participant age. (B) Prediction accuracy of participant age 

achieved by each of the 22 features. 

 

6.3. Age-Related Differences based on supplementary indices 

 

6.3.1. Relative Power  

Figure S16 displays average RP values at each frequency band across the six age groups. The 

prediction of age though a linear combination of 12 RP features was significant, albeit considerably 

poorer than the prediction using dICM features (R2=0.430, p < 3.1 x 10-4, see Figure S17). The most 

consistent age-related features corresponded to data from 12 sensors located over Frontal and Parieto-

Occipital regions, the individual contribution of which to the prediction of participant age is shown in 

Figure S18.  
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Figure S16. Mean Relative Power (RP) across age groups (rows) and frequency bands (columns). 
 

 

Figure S17. (Upper panel) Least squares regression of predicted over actual participant age (in years) 

based on Relative Power (RP). (Lower panel) The distribution of model regression residuals as a 

function of participant age.   
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Figure S18. Relative weight (absolute values; upper panel) and individual prediction accuracy (lower 

panel) of participant age for each of the 12 RP features derived from Frontal (F) and Parieto-Occipital 

sensors (PO) in the final Support Vector Regression model. 

 

6.3.2. Imaginary Coherence 

Figure S19 displays Mean Subgraph Strength values within and between lobar regions in each 

frequency band. Figure S20 illustrates the significant prediction of age via linear SVR (R2=0.53, p < 

1.9 x 10-6) based on 10 ImCOH features. The relative contribution of individual features significantly 

contributing to the SVR classification model is shown in Figure S21. 
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Figure S19. Mean Subgraph Strength reflecting lobar inter- and intra-hemispheric interactions for 

imCOH across the 6 age groups in eight different frequency bands ranging from δ (top panel) to γ2 

(bottom panel). Abbreviations; L/R: Left/Right hemispheres; F/T/P/O: Frontal/ Temporal/ Parietal/ 

Occipital lobes. 
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Figure S20. (Upper panel) Least squares regression of predicted over actual participant age in years 

based on imCOH. (Lower panel) The distribution of model regression residuals as a function of 

participant age.   
 

 

Figure S21. Relative weights for the prediction of participant age for each of the 10 ImCoh features in 

the final Support Vector Regression model reflecting coherence in various frequency bands between 

the lobar regions listed in the inset.   

 

6.3.3. Multiscale Entropy 

Figure S22 demonstrates the lobe-averaged MSE profile for each age group and frequency band. 

Figure S23 shows the 4 features that significantly correlated with age and, combined, resulted in the 

prediction of age via linear SVR (R2=0.71, p < 2.9 x 10-6) demonstrated in Figure S24. The relative 

contribution of individual features significantly contributing to the SVR classification model is shown 

in Figure S25. 
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Figure S22. MSE profiles through development. Age-specific MSE profiles across frequency band 

and lobes (* p < 0.001, ANOVA, Bonferroni corrected). Colored lines correspond to one of the six age 

groups listed in the inset. Abbreviations; L/R: Left/Right hemispheres; F/T/P/O: 

Frontal/Temporal/Parietal/Occipital lobes.  

 

 
Figure S23. Four features extracted that correlated with age (* p < 0.001, ANOVA, Bonferroni 

corrected; across frequency bands and lobes). 

 

Figure S24. (Upper panel) Least squares regression of predicted over actual participant age in years 

based on the four MSE features shown in Figure S23. (Lower panel) Distribution of model regression 

residuals as a function of participant age.   
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Figure S25. Relative contribution of each of the four MSE features to the linear kernel SVR predictor. 

 

6.3.4. Prediction of participant age using RP, ImCoh and MSE features combined 

 By comparison the capacity of supplementary metrics (RP, ImCoh, and MSE combined) to 

predict age via regression analysis demonstrated similar results (R2=0.812, p < 2.2× 10−7; Fig. S26 & 

S.Table 1). 

 

 
Figure S26. (Upper panel) Least squares regression of predicted over actual participant age in years 

based on RP, MSE and ImagCoh features combined. (Lower panel) Distribution of model regression 

residuals as a function of participant age. 

 

6.4. MEG system equivalence 

 Results from the cross-validation schemes using dICM-based features derived from one MEG 

system to train the Support Vector Regressor and Multi-Class Support Vector Machine, revealed 

performance that was comparable, albeit somewhat lower, than the performance obtained when using 

mixed data sets for training and testing. The prediction of age was similar across systems using the 

same set of features each time: R2=0.876, p < 1.8× 10−7 when using data from the Magnes-248 system 

as training-set and R2=0.869, p < 3.5× 10−7when using data from the CTF-275 as training set (S.Table 

1).  

 Moreover, classification of participants to the correct age group averaged %77.565.86   when 

using data from the Magnes-248 system as the training set, and %03.609.86   when using data from 

the CTF-275 system as the training set (S.Table 2). The similarity of subnetwork topography and age 
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trends across systems is illustrated in Figure S27 using the dCIM between Frontal lobes as example. 

Estimates of FI were also comparable across systems as demonstrated by the close similarity of the 

maturation curves in Figure S28.  

 

 
 

 
Figure S27. dICM reflecting interhemispheric interactions between frontal sensors as indexed by 

amplitude envelop correlation in the δ band (AEC). A) Topographical layout of the statistically 

significant sensor pairs for 4 age groups (overlapping age range between the two MEG systems). B) 

Mean subgraph strength and C) Fractional Occupancy (FO) across the four age groups. The upper half 

of the figure presents data recorded on the Magnes-248 system and the lower half displays data 

recorded on the CTF-275 system.  
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Figure S28. Functional brain maturation curves based on the Flexibility Index (FI) computed for data 

obtained on the Magnes-248 (A; n=81 aged 6-59 years) and CTF-275 MEG systems (B; n=97 aged 18-

60 years). Chronological age is shown on the x axis. The best-fitting curves for the data for each system 

are shown by the blue lines.  

 

6.5. Reliability of the Flexibility Index 

One-week test-retest assessment of FI values indicated excellent reliability (r = 0.94) with 

average test-retest differences = 0.027±0.015, range 0.012-0.029 (see Figure S29).  

 

 
Figure S29. Test-retest Flexibility Index (FI) values as a function of participant age (n=10). 
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