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Abstract: Brain–computer interface (BCI) is a technology used to convert brain signals to control
external devices. Researchers have designed and built many interfaces and applications in the last
couple of decades. BCI is used for prevention, detection, diagnosis, rehabilitation, and restoration
in healthcare. EEG signals are analyzed in this paper to help paralyzed people in rehabilitation.
The electroencephalogram (EEG) signals recorded from five healthy subjects are used in this study.
The sensor level EEG signals are converted to source signals using the inverse problem solution.
Then, the cortical sources are calculated using sLORETA methods at nine regions marked by
a neurophysiologist. The features are extracted from cortical sources by using the common spatial
pattern (CSP) method and classified by a support vector machine (SVM). Both the sensor and the
computed cortical signals corresponding to motor imagery of the hand and foot are used to train
the SVM algorithm. Then, the signals outside the training set are used to test the classification
performance of the classifier. The 0.1–30 Hz and mu rhythm band-pass filtered activity is also
analyzed for the EEG signals. The classification performance and recognition of the imagery
improved up to 100% under some conditions for the cortical level. The cortical source signals at the
regions contributing to motor commands are investigated and used to improve the classification of
motor imagery.

Keywords: EEG; motor imagery; somatomotor area; brain–computer interface (BCI)

1. Introduction

The brain is one of the most complex organs in the body, as it controls our biological functions and
mental tasks simultaneously. Advances in medicine, physiology, engineering, and neuroimaging
have helped scientists understand the brain. In the last couple of decades, it has been shown
that external devices can be controlled via EEG signals acquired by sensors, by using signal
processing and classification algorithms. In the literature, the brain–machine interface, neural
interface, neural prosthetics, and neural engineering terms are also used for brain–computer interfaces
(BCIs). Researchers have shown that a person can control cursor movement on a screen or control
a robotic or prosthetic arm or leg by using brain signals. The design and implementation of BCI is
a multidisciplinary field in which physicians, psychologists, and engineers work together to develop
better BCIs. Engineers use advanced signal processing techniques to both filter and extract features
and machine learning methods for better signal analysis. A large number of BCI applications have
been developed recently, and there has been an increasing amount of interest in this area [1]. Research
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on how the brain stores information and processes both stored and sensory inputs to generate motor
functions has contributed a vast amount of knowledge on the matter, thanks to the availability of
low cost and high-performance hardware, as well as open-source software. Engineers use machine
learning methods to better learn from a limited number of features and accurately classify signals.

Researchers have proposed advanced signal amplifiers, filters, A/D converters, recording devices,
and embedded computers to run new machine learning and artificial intelligence algorithms. A general
BCI scheme is given in Figure 1.

Figure 1. A brain–computer interface (BCI) system.

There are some restrictions on using BCIs in daily life. Even though a BCIs’ EEG signal classification
accuracy cannot reach 100%, several methods have been proposed to improve the accuracy and reliability
of BCIs. BCIs are not easy to use, as patients do not feel comfortable. Moreover, sometimes BCIs can
be dangerous due to misclassified signals. BCIs are still not permitted in daily life, except in research
centers where they are tested in a controlled environment. The number of successful applications must
increase for manufacturers to meet the demand for cost-effective BCIs. The proposed method aims to
improve the classification accuracy for non-invasive BCIs. There are also invasive and semi-invasive BCI
systems, but non-invasive EEG signal acquisition remains better for patients’ health and relaxation. One
of the aims of EEG studies is to obtain information without using expensive radiodiagnosis techniques,
which are not included in this study. Better success can be achieved with the support of radiodiagnosis
data, such as fMRI or MEG, which we plan to use for future work.

BCI technology is used to control prosthetic devices by transforming motor imagery thoughts
into motor functions to help paralyzed patients and amputees. It is important for a successful BCI to
interpret precisely what the subject imagines by analyzing his or her brain waves. BCI techniques are
used for control, assessment, and rehabilitation. Thus, both engineers and neuroscientists are working
together to interpret thoughts by using brain signal analysis.

Motor imagery signals have been classified using various methods in the literature.
Murguialday [2] used 8–13 Hz (µ) band activity for BCI control in 2013. Yuan [3] reviewed sensorimotor
rhythms on BCIs in 2014. Handiru et al. [4] studied right and left-hand motor imagery on cortical
levels in 2015. Ang and Guan [5] studied the control and rehabilitation potential of BCIs on stroke
patients in 2017. Xia et al. [6] moved an on-screen cursor in two dimensions in 2017. In 2018, Li et al. [7]
studied motor imagery tasks with the same dataset used in this work and showed that source domain
analysis outperforms sensor domain analysis. Alazrai et al. [8] reported success in finger movements,
Lu et al. [9] controlled a vehicle using EEG signals, and Xygonakis et al. [10], in 2018, studied four-class
motor imagery in the EEG source space and improved its accuracy compared to the sensor data analysis.
Qingsong et al. [11] analyzed four-task motor imagery in 2019, while Zhang et al. [12] reported in 2019
that children can successfully use BCIs.

In this work, both the acquired sensor and computed source space signals are used for improved
classification of motor imagery using EEG signal analysis. EEG signals are first transformed to sources
using inverse problem solution methods. The obtained cortical signals and sensor EEG signals are used
together for improved classification. It is shown that augmenting the sensor signals via somatomotor
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region sources yields better results than those of similar studies reported in the literature. Our aim is to
develop a BCI for paralyzed and disabled people, to transform their motor imagery thought signals to
motor signals to control external devices. The selected somatomotor area signals improve classification
success, as shown in the results. Successful BCIs will soon be able to be designed by interpreting not
only the sensor but also the source signals. Furthermore, the known motor signal generating regions
of the brain are tested for the improved classification of motor imagery.

Since most of the cortical studies in the literature achieved better results than the sensor level
studies, we used cortical level signals in this work. Moreover, the sLORETA approach, which yields
superior accuracy performance than the other methods, was selected to map the EEG signals to the
cortical ROIs. Our aim is to find the most relevant ROIs for the right hand and right foot motor imagery
in order to develop a BCI to transform motor imagery signals to control external devices. The main
novelty of our study to improve the accuracy of the right hand and right foot imagery classification
problem using only nine ROIs, excluding those not relevant to the chosen motor imagery tasks (i.e., the
primary lip motor area (M1L), somatosensory association cortex (SAC), and secondary somatosensory
area (S2)). We analyzed the recorded EEG signals using a 10–5 system with 118 channels. We used
more channels, as suggested by many researchers, to achieve a better inverse solution.

2. Materials and Methods

2.1. BCI Competition Dataset

The BCI competition dataset IVa for the BCI competition III is used in this study [13]. There are
recordings of five healthy subjects in this dataset. The subjects sat in a comfortable armchair and
performed the imagery tasks shown by the cues. Subjects were given three motor imagery duties,
(L) left hand, (R) right hand, and (F) right foot. Visual cues were indicated for 3.5 s. The EEG signals
were sampled at 1000 Hz and then down-sampled to 100 Hz. Only the right hand and right foot signals
were used for competition. Many training and test sets were made, each with a different number of
samples. One of the aims in the competition was to achieve successful classification with the test sets
while using small training sets. Two-second motor imagery time slice recordings are also used in this
work. There were a total of 280 training and test sets and 118 channels used for recording the EEG
data. The number of training and test trials are listed in Table 1 for each subject in the dataset.

Table 1. Subjects in the dataset and the number of training and testing signals.

Number of Training Samples Number of Test Samples

aa 168 112
al 224 56
av 84 196
aw 56 224
ay 28 252

Flow diagram of this work is given in Figure 2.

Figure 2. Flow diagram of this work.
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2.2. Preprocessing

Because motor imagery is one of the important ERPs (event-related potentials), the EEG signals
are sampled at 100 Hz. The motor-related µ rhythms at 8 to 13 Hz are filtered from the raw EEG signals
by a band-pass filter. Signals in the 0.1–30 Hz delta, theta, alpha, and beta rhythms and 8–13 Hz µ

rhythms are used to compare and determine the most relevant regions. In the results section, the results
for both 0.1–30 Hz and the µ band analysis are given.

2.2.1. Head Model

We assumed head tissue conductivity values of 1 S/m for both the scalp and brain and 0.0125 S/m
for the skull, as suggested by Liu et al. [14] for the layer conductivity values.

2.2.2. Number of Electrodes and Locations

The coordinates of the EEG measurement electrodes must be known to determine the potentials
at the electrode locations by

W = L ∗ S, (1)

where L is the lead-field matrix, S is the sources, and W is the measurements.

2.3. Electrode to Source Signal (Inverse) Modeling

Inverse modeling is the most important process, since improved classification performance
using the cortical sources computed from electrode measurements is our goal. Since the sources
outnumber the electrodes, we must set constraints and assume a head model or source to solve this
problem. The scalp EEG signals are converted to cortical sources using the Brainstorm software from
The Biomedical Imaging Group of the University of Southern California [15] using Standardized
low-resolution brain electromagnetic tomography (sLORETA) [16]. This method calculates the
noise-normalized solution.

2.4. Region of Interest (ROI) Selection for Motor Imagery

The brain has cortical areas responsible for specific tasks. The subjects performed motor imagery
tasks during their recordings in the dataset used for training and tests. The somatosensory cortical
areas responsible for the tasks to be classified are included in the feature vectors (as in [10]) to improve
classification performance. Region of interest areas are shown in Figure 3.

1. somatosensory association cortex (SAC),
2. primary foot somatosensory area (S1F),
3. primary hand somatosensory area (S1H),
4. secondary somatosensory area (S2),
5. cingulate motor area (CMA),
6. primary foot motor area (M1F),
7. primary hand motor area (M1H),
8. primary lip motor area (M1L),
9. supplementary motor area (SMA),

10. presupplementary motor area (pSMA),
11. dorsal premotor cortex (PMd),
12. ventral premotor cortex (PMv) areas.
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(a) (b)

Figure 3. Selected brain regions: (a) top view, (b) midline surface.

The analysis was performed inside these regions, except for the first, fourth, and eighth regions
because these ROIs are not related to programming.

2.5. CSP Features

Extracting meaningful information from raw data to reduce the dimension or number of inputs to
a classifier is called feature extraction. Features represent raw data and should not include redundant
information. The raw data in this paper comprise EEG signals recorded using 118 electrodes on the
scalp. Common spatial pattern (CSP) features are extracted both from the recorded EEG and from the
computed cortical signals.

The most commonly used method to classify EEG signals, such as those observed during motor
imagery, is the CSP. These are optimal spatial filters that maximize the differences of variance
between two classes [17]. In the literature, CSP features have been successfully applied to EEG
signal classification for two-class problems [18]. This method uses class labels (in this study, right
hand and right foot) and forms spatial filters so that the variance of the filtered data of one class is
maximized, while the variance of the filtered data from the other classes is minimized [19]. Thus,
the resulting feature vectors enhance the discriminability between two classes. CSP feature vectors are
given to an SVM classifier to train and then tested to evaluate their performance.

3. Results

Most of the studies reported in the literature focused on sensor-based BCIs. First, raw sensor data
are filtered into two groups in this study: 0.1–30 Hz and µ rhythm (8–13 Hz).

Table 2 lists the classification success of sensor data for 118 channels. Classification performance
is determined by true/false predictions for each case to determine the success of the predictions, which
is calculated by

Classification performance =
Number of correct predictions

Total number of predictions
∗ 100 (2)

The sensor data analysis resulted in a success ratio of 59.82%, 87.50%, 60.71%, 54.46%, and 51.59%
for recordings from five subjects using a 0.1–30 Hz frequency range. Even though the performance was
satisfactory, some imagery motor commands of the subjects were misclassified. Since the µ rhythm
(8–13 Hz) is related to motor activities, the successful performance of the µ rhythm signals was 69.64%,
100%, 71.43%, 76.34%, and 50.4%.
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Table 2. Sensor level classification accuracies.

Sensor Data 0.1–30 Hz (118 Electrodes) µ Band (118 Electrodes)

aa 59.82 69.64
al 87.50 100
av 60.71 71.43
aw 54.46 76.34
ay 51.59 50.40

In this study, cortical sources were calculated using the sLORETA inverse problem solution. Then,
a classification of the same dataset was performed using neural sources transformed from scalp EEG
electrodes. The analysis is categorized into three main groups: a left lobe analysis, a right lobe analysis,
and an analysis of the combined (left + right) lobes to understand the motor imagery activations in the
brain and better understand which regions of the brain have more information about the right hand
or right foot motor imagery. These analyses were carried out for both the 0.1–30 Hz and µ frequency
bands. The results are computed using a subset of nine areas, including (S1F), (S1H), (CMA), (M1F),
(M1H), (SMA), (pSMA), (PMd), and (PMv). The left lobe results are calculated 29 times for all possible
subsets and run with a number of CSP filter pairs.

The best results are given for the sources in the selected set of ROIs in Table 3. The “left lobe max”
column presents the best results achieved from all subsets of the sources in nine ROIs (29 times) using
different CSP filter pair parameters. The third column lists the best results for subsets of three elements
in the left lobe, the fourth column lists the best results for all possible subsets of the right lobe, the fifth
column lists the best results for subsets of the three elements in the right lobe, and the sixth column
lists the best results for the subsets of six elements of all 18 ROIs from both the right and left lobes
using six pairs of CSP filters.

Table 3. Accuracy (acc), sensitivity (sens) and specificity (spec) of all combinations for 0.1–30 Hz range.

0.1–30 Hz Criteria Left Lobe
Max

Left Lobe
3 Regions

Right
Lobe Max

Right Lobe
3 Regions

Left and Right
Lobe 6 Regions

aa

acc 67.86 63.39 66.96 63.39 68.75

sens 67.65 75.68 79.49 70.21 79.07

spec 68.18 57.33 60.27 58.46 62.32

al

acc 92.86 85.71 89.29 83.93 98.21

sens 100 85.71 89.29 91.30 100

spec 87.50 85.71 89.29 78.79 96.55

av

acc 61.73 58.67 64.80 62.24 64.80

sens 60.55 57.94 67.06 59.23 63.81

spec 63.22 59.55 63.06 68.18 65.93

aw

acc 78.57 75.45 75.00 68.30 79.46

sens 75.41 69.78 74.55 64.03 82.00

spec 82.35 84.71 75.44 75.29 77.42

ay

acc 60.71 57.94 59.92 55.95 66.27

sens 56.42 54.71 55.07 52.56 60.11

spec 71.23 64.63 82.22 75.68 82.61

Average

acc 72.35 68.23 71.19 66.76 75.50

sens 72.01 68.76 73.09 64.47 77.00

spec 74.50 70.39 74.06 71.28 76.97
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Sensitivity (sens) and specificity (spec) measures are also calculated. The right hand is selected
as a positive case and the right foot as a negative case for the calculation of the sensitivity and
specificity values.

sensitivity =
Number of true positives

Number of true positives + Number of false negatives
=

TP
TP + FN

(3)

specificity =
Number of true negatives

Number of true negatives + Number of false positives
=

TN
TN + FP

(4)

The ROIs in the left lobe has a higher overall classification accuracy, as shown in Table 3. A slight
classification degradation of 4% is observed using only 3 ROIs compared to all the ROI combinations
from a single lobe. A maximum classification accuracy of 75.5% was achieved using combinations of
six ROIs from the two lobes on average. This result is 7% higher than that of the 3 ROIs from the left
lobe and 9% higher than that of the 3 ROIs from the right lobe. Also, this result was 3% and 4% better
than that of the left and right lobes’ maximum classification accuracy, respectively. Subject al has the
best imagery performance (98.21%), whereas subject av has the worst, with only 64.80%, as seen in
the table. Average accuracy in six regions from both lobes are higher than that of the accuracy of all
other combinations. Subject al achieved maximum sensitivity and specificity. Although sensitivities
are lower than accuracy in some local regions, specificities are higher. Similarly, sensitivities are high
for low specificities.

In Table 4, the most successful areas are given in the related Table 3 results.

Table 4. The Most successful ROIs for 0.1–30 Hz signals: primary foot somatosensory area (S1F),
primary hand somatosensory area (S1H), cingulate motor area (CMA), primary foot motor area (M1F),
primary hand motor area (M1H), supplementary motor area (SMA), presupplementary motor area
(pSMA), dorsal premotor cortex (PMd), ventral premotor cortex (PMv). Subscript L indicates left lobe,
Subscript R indicates right lobe.

0.1–30 Hz Left Lobe
Max

Left Lobe
3 Regions

Right Lobe
Max

Right Lobe
3 Regions

Left and Right
Lobe 6 Regions

aa
S1FL, S1HL,

CMAL, M1FL,
M1HL, SMAL

CMAL,
M1FL,
SMAL

S1FR, CMAR,
M1FR, SMAR,

pSMAR,
PMdR, PMvR

CMAR,
M1FR,
M1HR

S1FL, CMAL,
SMAL, S1FR,

M1HR, pSMAR

al
S1HL, CMAL,
M1FL, PMdL,

PMvL

M1HL,
SMAL,
PMdL

S1HR, CMAR,
M1FR, M1HR,
SMAR, PMvR

S1HR,
M1HR,
SMAR

M1HL, PMdL,
S1FR, S1HR,

M1HR, SMAR

av

S1HL, CMAL,
M1FL, M1HL,

SMAL,
pSMAL,

PMdL, PMvL

CMAL,
M1FL,
SMAL

CMAR,
M1FR, M1HR,

pSMAR,
PMdR

S1FR,
M1HR,
pSMAR

S1FL, M1FL,
M1HL, pSMAL,

S1FR, CMAR

aw
S1FL, S1HL,

M1FL, M1HL,
PMdL

S1HL,
M1HL,
PMvL

S1FR, S1HR,
CMAR,

M1HR, PMdR

SMAR,
pSMAR,
PMvR

S1FL, S1HL,
M1FL, M1HL,
SMAR, PMvR

ay
S1HL, CMAL,
M1FL, M1HL,

PMvL

S1FL,
CMAL,
PMvL

S1FR, CMAR,
M1FR, PMvR

S1FR,
CMAR,
PMvR

S1FL, M1FL,
PMvL, S1FR,

CMAR, M1HR

The regions corresponding to the best classification results of Table 3 are given in Table 4 as
the contributing ROIs at the cortical level. Unfortunately, the regions are not the same for different
subjects. The first column of Table 4 indicates that the S1HL and M1FL regions appeared five times,
and CMAL and M1HL regions appeared four times, in the set of regions corresponding to the best
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results. The second column indicates that CMAL and SMAL appear three times in the three-region
sets corresponding to the best results.

On the other hand, the right lobe results are more interesting, as the CMAR region was observed
five times, and the M1FR region appeared four times, in the best results. This shows that the right
lobe can be as active as the left lobe, which was unexpected. Lastly, the ROIs at the cortical level of six
regions from both lobes are listed in the last column corresponding to the best results. The S1FL and
S1FR regions provide the best results for the 0.1–30 Hz filtered data.

The regions and their occurrence numbers from Table 4 for each subject with unique colors are
shown to indicate the subjects’ and regions’ contributions to the best results in Figure 4.

Figure 4. The 0.1–30 Hz ROI occurrence chart: primary foot somatosensory area (S1F), primary hand
somatosensory area (S1H), cingulate motor area (CMA), primary foot motor area (M1F), primary hand
motor area (M1H), supplementary motor area (SMA), presupplementary motor area (pSMA), dorsal
premotor cortex (PMd), ventral premotor cortex (PMv), _L indicates the left lobe, _R indicates the
right lobe.

The µ band results are given in Table 5. The “Left lobe max” column presents the best results
achieved from all subsets of the sources in the nine ROIs (29 times) using different CSP filter pair
parameters. The third column lists the best results for subsets of the three elements in the left lobe,
the fourth column lists the best results for all possible subsets of the right lobe, the fifth column lists
the best results for subsets of the three elements in the right lobe, and the sixth column lists the best
results for subsets of the six elements of all 18 ROIs from both the right and left lobes using six pairs of
CSP filters.

The µ band analysis results are given in Table 5. Filtering signals out of the µ band improved the
classification accuracy, sensitivity and specificity compared to the 0.1–30 Hz band signal results, which
supports Table 3. The left lobe accuracy is better than the right lobe accuracy, as seen in Table 5. Here,
a slight classification degradation of 3% and 7.5% can be achieved using only three ROIs in the left
lobe and right lobe, respectively, compared to the best average results of all ROI combinations for one
lobe. The maximum classification accuracy can be achieved using ROIs from two lobes. This accuracy
is 5% and 13% better than that using only three ROIs from the left and right lobes. This accuracy is
also 2% and 5% better than that of the best results from all ROI combinations from the left and right
lobes. The subject-based results are similar to those in Table 3, as the subject al has the best imagery
performance at 100% classification accuracy, and subject av has the worst performance at only 67.86%.

Best sensitivity and specificity are achieved in six regions from both lobes. Sensitivity and
specificity achieved from the left lobe is better than that of those from the right lobe. Subject al achieved
100% sensitivity and specificity whereas Subject av achieved 69.23% sensitivity and 66.67% specificity.
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Table 5. Accuracy (acc), sensitivity (sens) and specificity (spec) of all combinations for µ band signals.

8–13 Hz Criteria Left Lobe
Max

Left Lobe
3 Regions

Right Lobe
Max

Right Lobe
3 Regions

Left and Right
Lobe 6 Regions

aa

acc 66.96 62.50 69.64 61.61 74.11

sens 69.49 65.52 74.07 71.79 80.39

spec 64.15 59.26 65.52 56.16 68.85

al

acc 100 98.21 94.64 91.07 100

sens 100 96.55 90.32 87.10 100

spec 100 100 100 96.00 100

av

acc 66.84 60.71 66.33 62.24 67.86

sens 65.71 60.40 67.39 63.33 69.23

spec 68.13 61.05 65.38 61.32 66.67

aw

acc 87.05 84.38 86.16 80.80 90.18

sens 85.84 83.78 89.11 81.90 90.74

spec 88.29 84.96 83.74 79.83 89.66

ay

acc 86.11 86.11 75.00 58.73 86.11

sens 81.29 81.29 67.05 55.06 80.85

spec 92.04 92.04 92.41 67.57 92.79

Average

acc 81.39 78.38 78.35 70.89 83.65

sens 80.47 77.51 77.59 71.84 84.24

spec 82.52 79.46 81.41 72.18 83.59

In Table 6, the most successful areas are given in the related Table 5 results.

Table 6. Most successful ROIs for µ band signals: primary foot somatosensory area (S1F), primary
hand somatosensory area (S1H), cingulate motor area (CMA), primary foot motor area (M1F), primary
hand motor area (M1H), supplementary motor area (SMA), presupplementary motor area (pSMA),
dorsal premotor cortex (PMd), ventral premotor cortex (PMv). Subscript L indicates left lobe, subscript
R indicates right lobe.

8–13 Hz Left Lobe Max Left Lobe
3 Regions Right Lobe Max Right Lobe

3 Regions
Left and Right
Lobe 6 Regions

aa
S1FL, S1HL,

M1FL, SMAL,
pSMAL

CMAL,
M1HL, PMdL

S1FR, S1HR,
CMAR, M1FR,
M1HR, SMAR,

pSMAR, PMdR,

CMAR,
SMAR
pSMAR

S1HL, M1HL,
SMAL, PMdL,
SMAR, PMdR

al S1HL, M1FL,
M1HL, SMAL,

S1HL, M1HL,
SMAL,

M1FR, M1HR,
SMAR, pSMAR,

PMdR,

M1HR,
SMAR,
pSMAR

S1FL, S1HL,
CMAL, M1FL,
M1HL, M1FR,

av
S1FL, S1HL,

CMAL, M1HL,
SMAL, PMvL,

S1FL, pSMAL,
PMvL

S1FR, S1HR,
pSMAR, PMdR

S1FR, S1HR,
PMdR

S1FL, S1HL,
CMAL, SMAL,
M1HR, SMAR

aw S1HL, M1FL,
M1HL, SMAL

S1FL, S1HL,
CMAL,

S1FR, S1HR,
M1HR, pSMAR,

PMdR,

S1HR,
CMAR,
M1HR

S1HL, M1FL,
M1HL, SMAL,
SMAR, PMdR,

ay S1HL, SMAL,
PMdL, PMvL

S1HL, PMdL,
PMvL

S1FR, S1HR,
CMAR, M1FR,
M1HR, SMAR,
pSMAR, PMvR

M1HR,
SMAR,
pSMAR

CMAL, M1HL,
PMdL, PMvL,
PMdR, PMvR
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The left lobe µ band analysis indicates that the S1HL and SMAL regions appeared for all subjects, but
the M1FL and M1HL regions appeared three times in the best results. For the three-region combinations
of subsets, the S1HL region was observed three times in the best results.

The right lobe µ band analysis indicates the pSMAR region five times and the S1FR, S1HR, M1HR
and PMdR regions four times in the best results. For the three-region combinations of subsets, M1HR,
SMAR and pSMAR appear three times in the best results. The best classification results for all tests
were achieved using both the right and left lobes in the µ band. The S1HL and M1HL regions appeared
four times, but SMAR and PMdR appeared three times in the best results.

The regions and their occurrence numbers from Table 6 for each subject with unique colors are
shown to indicate the subjects’ and regions’ contributions to the best results in Figure 5.

Figure 5. µ band ROI occurrence chart: Primary foot somatosensory area (S1F), primary hand
somatosensory area (S1H), cingulate motor area (CMA), primary foot motor area (M1F), primary
hand motor area (M1H), supplementary motor area (SMA), presupplementary motor area (pSMA),
dorsal premotor cortex (PMd), ventral premotor cortex (PMv). _L indicates left lobe, _R indicates
right lobe.

4. Discussion

This study aimed to find the most relevant cortical regions of the brain responsible for motor
imagery of the right foot and right hand. EEG electrode signals were first transformed into cortical
source signals by an inverse solution, and an SVM classifier was then trained to classify all subsets
of the cortical sources to find those that contribute the most to the motor imagery of the right hand
and right foot. In the tables, the most accurate results and related regions are given. The classification
accuracies listed in the Tables revealed that the accuracy varies for each group and region, so the best
accuracy is different for each subject. Also, the band-pass frequency of the signals in 0.1–30 Hz delta,
theta, alpha, and beta rhythms and 8–13 Hz µ rhythms were used to compare and determine the most
relevant regions and achieve success for each group.

The left lobe analysis for the 0.1–30 Hz band provided better results than the right lobe.
Competition database maintainers replied to our request to supply hand preferences of subjects.
They are all right-handed except Subject al. Foot preferences of the subjects are not specified in the
dataset. The dominant hemisphere may have a better result depending on one’s preference for the
right or left extremity. Since there is only one left-handed Subject in the dataset, the comparison may
not be accurate. The regions M1FL, M1HL, S1FR, CMAR and M1HR in the 0.1–30 Hz band and S1HL,
M1HL, SMAL and SMAR in the µ band were the most dominant among the results. The S1F, S1H,
M1H, and M1F regions were observed in the most successful classification results. Our findings show
that these regions are related to motor imagery. In 2011, Pelgrims et al. [20] studied the primary motor
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cortex’s contribution to motor imagery and showed the relationship between these tasks. In 2006,
Neuper et al. [21] stated that preparation, execution, and imagination activate sensorimotor areas in
the µ band.

The SMAL region is among the most successful regions in µ band analysis. This is in good
agreement with the study published in 2015 by Dalla–Corte [22], which observed SMA activity while
performing right and left-handed motor tasks. This result was also confirmed by an fMRI analysis of
these regions. SMA activity was also observed during motor imagery tasks in the same study. The SMA
and pSMA regions have a relationship with motor function planning, processing, and execution [23,24].

CMA is one of the most successful regions in 0.1–30 Hz band analysis, as shown in Figure 4.
The study of Athanasiou et al. [25] presented an analysis of the motor execution of α and β band
connectivity. Their findings show that CMA has connections with premotor areas. The S1H region is
common for all subjects in µ band analysis for the left lobe. The M1FL and M1HL regions are activated
in subject al and subject aw where the accuracy is higher compared to subject aa and subject av, in both
the current study and in the literature. More interestingly, the accuracy does not drop below 87%
when regions M1FL and M1HL appear at the same time. Most of the time, the left hemisphere gives
more accurate results, as expected. It is known that right-handed or right-armed people use the left
hemisphere. In µ rhythm activations, the left lobe is more successful than the right lobe, and in the
0.1–30 Hz band, the Subject av’s right lobe gives better results than the left lobe.

In the literature and the BCI Competition III Dataset IVa results page, we see that Subject aa
and Subject av’s success is lower, despite having more training data compared to Subject aw and
Subject ay. Subject ay has only 28 training data, and its accuracy is higher. In addition to the cortex,
subcortical areas also contribute to the programming of motor function for classic information. There
is no direct record of the EEG data for subcortical fields. In this study, the primary motor areas, as
well as the premotor areas and supplementary areas, were included in the selection of the cortex areas.
Selecting the areas of the primary motor areas M1FL and M1HL increased the accuracy of the subjects
(subjects who could increase their activity in areas with M1FL and M1HL motor movements achieved
higher accuracy).

Lastly, we analyzed two lobes. For better analysis, we restricted the study to 6 regions to determine
the most important areas. This was done to determine if using only the left areas could achieve better
accuracy than using both lobes. The classification accuracy was increased compared to single lobe
calculations. In this analysis, four occurrences of the regions S1FL and S1FR are in the best results,
and also four occurrences of S1HL and M1HL are in the best results of µ band analysis which ensure
commonality between the subjects.

It was surprising that the results for every subject using the left and right lobe together were
better compared to those using left lobes only. In 2004, Hoshi and Tanji [26] stated that the PMd and
PMv areas are related to planning and execution. The successful regions found in our work based on
differentiating signals are similar to the areas in this previous study. A left lobe of 0.1–30 Hz S1HL
and M1FL, for the µ band region S1HL most commonly appeared in the successful results. The right
lobe CMAR appeared more at 0.1–30 Hz and pSMAR for the µ band. The best results were obtained
using two lobes. The S1FL and S1FR pair had the most successful ROIs in 0.1-30 Hz and for the µ band
S1HL-M1HL, and SMAR-PMdR gave the best results.

Motor imagery EEG signals from a dataset are classified at the sensor level and the cortical
level. Special attention is given to the comparison of the classification accuracy results of the cortical
source level and the corresponding ROIs in this manuscript. Using cortical sources to classify motor
imagery improves performance. The cortical sources in some regions can be used for successful BCI,
even though the inverse problem must be solved to compute the cortical sources. The recorded right
hand and right foot motor imagery EEG signals were used and successfully classified. The source
space classification performance is promising, even though source signal computation is based on
an inverse problem solution. The classification accuracy of motor imagery based BCI was improved
using source space. The neurophysiological constraints while processing data not only improved



Brain Sci. 2019, 9, 372 12 of 14

the calculation time but also increased classification success. Using the source space via an inverse
problem solution and biophysical knowledge to select the regions associated with motor functions
improved the classification accuracy of the BCI technology.

There are many parameters, such as filter, head model, and source assumptions, that impact the
inverse solution for computing cortical sources while processing EEG signals. Invasive BCIs are not
applicable because many situations that threaten human health can occur during such operations.
Semi-invasive BCIs can be used for some applications that control basic devices but can cause infections.
Non-invasive BCIs based on EEG recordings do not pose any risk, and research has lately been focused
on improving the performance of BCIs. Successful BCIs have been designed and built by teams
over the last few decades. Even though the results given in this manuscript are promising, there are
some limitations to this analysis. The dataset, for example, contained EEGs recorded from only five
healthy subjects.

Future research should increase the number of subjects and trials and use real patients’ data
(e.g., amputees or paralyzed patients) to confirm the findings reported here. Another limitation is that
the real MRIs of subjects are not given. A template head model was used for the subjects. It is known
that the cortical regions can be expanded or become narrower depending on the dominant usage of
specific regions because the brain possesses neural plasticity. Therefore, interdisciplinary studies in the
neurophysiology and neuroengineering fields could provide a significantly better understanding of
brain activities.

5. Conclusions

Accurate BCI design remains an active research area. Developments in both hardware and
software help designers to improve BCIs beyond imagination. Future BCIs are expected to have
better classification accuracy compared to the BCIs of today and will be used in daily life. Improved
classification performance is possible using information from Physiology to focus on cortical sources
in relevant brain regions. Advances in BCI design will certainly improve the quality of the lives of
amputees and paralyzed people and let them interact successfully with their environment. Our findings
showed that the activity of the cortical regions can vary slightly among subjects. Using both M1FL and
M1H regions in a 0.1–30 Hz range and using M1H, S1HL, and SMA regions in µ band signals achieved
better classification accuracy. For a successful BCI, one needs to choose cortical regions carefully in
order to include relevant regions and not to include regions that degrade classification.
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Abbreviations

The following abbreviations are used in this manuscript:

BCI Brain–computer interface
EEG Electroencephalogram
sLORETA Standardized low-resolution brain electromagnetic tomography
CSP Common spatial patterns
SVM Support vector machine
MEG Magnetoencephalography
fMRI Functional Magnetic Resonance Imaging
ROI Region of Interest
SAC somatosensory association cortex
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S1F primary foot somatosensory area
S1H primary hand somatosensory area
S2 secondary somatosensory area
CMA cingulate motor area
M1F primary foot motor area
M1H primary hand motor area
M1L primary lip motor area
SMA supplementary motor area
pSMA presupplementary motor area
PMd dorsal premotor cortex
PMv ventral premotor cortex
TP True positive
TN True negative
FP False positive
FN False negative
acc accuracy
sens sensitivity
spec specificity

References

1. Bockbrader, M.A.; Francisco, G.; Lee, R.; Olson, J.; Solinsky, R.; Boninger, Mi.L. Brain Computer Interfaces in
Rehabilitation Medicine. PM&R 2018, 10, 233–243. [CrossRef]

2. Ramos-Murguialday, A.; Broetz, D.; Rea, M.; Laer, L.; Yilmaz, O.; Brasil, F.L.; Liberati, G.; Curado, M.R.;
Garcia-Cossio, E.; Vyziotis, A.; et al. Brain machine interface in chronic stroke rehabilitation: A controlled
study. Ann. Neurol. 2013, 74, 100–108. [CrossRef] [PubMed]

3. Yuan, H.; He, B. Brain Computer Interfaces Using Sensorimotor Rhythms: Current State and Future
Perspectives. IEEE Trans. Biomed. Eng. 2014, 61, 1425–1435. [CrossRef] [PubMed]

4. Handiru, V.S.; Vinod, A.P.; Guan, C. Cortical Source Localization for Analysing Single-Trial Motor Imagery
EEG. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong
Kong, China, 9–12 October 2015; pp. 3146–3151. [CrossRef]

5. Ang, K.K.; Guan, C. EEG-Based Strategies to Detect Motor Imagery for Control and Rehabilitation.
IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 392–401. [CrossRef]

6. Xia, B.; Cao, L.; Maysam, O.; Li, J.; Xie, H.; Su, C.; Birbaumer, N. A binary motor imagery tasks based
brain-computer interface for two-dimensional movement control. J. Neural Eng. 2017, 14, 066009. [CrossRef]

7. Li, M.A.; Zhang, C.; Jia, S.; Sun, Y. Classification of Motor Imagery Tasks in Source Domain. In Proceedings
of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China,
5–8 August 2018; pp. 83–88.

8. Alazrai, R.; Alwanni, H.; Daoud, M.I. EEG-based BCI system for decoding finger movements within the
same hand. Neurosci. Lett. 2019, 698, 113–120. [CrossRef]

9. Lu, Y.; Bi, L. EEG Signals-Based Longitudinal Control System for a Brain-Controlled Vehicle. IEEE Trans.
Neural Syst. Rehabil. Eng. 2019, 27, 323–332. [CrossRef]

10. Xygonakis, I.; Athanasiou, A.; Pandria, N.; Kugiumtzis, D.; Bamidis, P.D. Decoding Motor Imagery through
Common Spatial Pattern Filters at the EEG Source Space. Comput. Intell. Neurosci. 2018, 2018, 7957408.
[CrossRef]

11. Ai, Q.; Chen, A.; Chen, K.; Liu, Q.; Zhou, T.; Xin, S.; Ji, Z. Feature extraction of four-class motor imagery
EEG signals based on functional brain network. J. Neural Eng. 2019, 16, 026032. [CrossRef]

12. Zhang, J.; Jadavji, Z.; Zewdie, E.; Kirton, A. Evaluating If Children Can Use Simple Brain Computer
Interfaces. Front. Hum. Neurosci. 2019, 13, 24. [CrossRef]

13. Blankertz, B.; Muller, K.; Krusienski, D.J.; Schalk, G.; Wolpaw, J.R.; Schlogl, A.; Pfurtscheller, G.; Millan, J.R.;
Schroder, M.; Birbaumer, N. The BCI competition III: Validating alternative approaches to actual BCI problems.
IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 153–159. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.pmrj.2018.05.028
http://dx.doi.org/10.1002/ana.23879
http://www.ncbi.nlm.nih.gov/pubmed/23494615
http://dx.doi.org/10.1109/TBME.2014.2312397
http://www.ncbi.nlm.nih.gov/pubmed/24759276
http://dx.doi.org/10.1109/SMC.2015.546
http://dx.doi.org/10.1109/TNSRE.2016.2646763
http://dx.doi.org/10.1088/1741-2552/aa7ee9
http://dx.doi.org/10.1016/j.neulet.2018.12.045
http://dx.doi.org/10.1109/TNSRE.2018.2889483
http://dx.doi.org/10.1155/2018/7957408
http://dx.doi.org/10.1088/1741-2552/ab0328
http://dx.doi.org/10.3389/fnhum.2019.00024
http://dx.doi.org/10.1109/TNSRE.2006.875642
http://www.ncbi.nlm.nih.gov/pubmed/16792282


Brain Sci. 2019, 9, 372 14 of 14

14. Liu, Q.; Balsters, J.H.; Baechinger, M.; Groen, O.; Wenderoth, N.; Mantini, D. Estimating a neutral reference
for electroencephalographic recordings: The importance of using a high-density montage and a realistic
head model. J. Neural Eng. 2015, 12, 1–13. [CrossRef] [PubMed]

15. Tadel, F.; Baillet, S.; Mosher, J.C.; Pantazis, D.; Leahy, R.M. Brainstorm: A User-Friendly Application for
MEG/EEG Analysis. Comput. Intell. Neurosci. 2011, 2011, 879716. [CrossRef] [PubMed]

16. Pascual-Marqui, R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical
details. Methods Find. Exp. Clin. Pharmacol. 2002, 24 (Suppl. D), 5–12.

17. Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during
imagined hand movement. IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [CrossRef]

18. Lotte, F.; Guan, C. Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and
New Algorithms. IEEE Trans. Biomed. Eng. 2011, 58, 355–362. [CrossRef]

19. Belhadj, S.A.; Benmoussat, N.; Krachai, M.D. CSP features extraction and FLDA classification of EEG-based
motor imagery for Brain-Computer Interaction. In Proceedings of the 2015 4th International Conference on
Electrical Engineering (ICEE), Boumerdes, Algeria, 13–15 December 2015; pp. 1–6. [CrossRef]

20. Pelgrims, B.; Michaux, N.; Olivier, E.; Andres, M. Contribution of the primary motor cortex to motor imagery:
A subthreshold TMS study. Hum. Brain Mapp. 2011, 32, 1471–1482. [CrossRef]

21. Neuper, C.; Wortz, M.; Pfurtscheller, G. ERD/ERS patterns reflecting sensorimotor activation and deactivation.
In Event-Related Dynamics of Brain Oscillations; Progress in Brain Research; Neuper, C., Klimesch, W., Eds.;
Elsevier: Amsterdam, The Netherlands, 2006; Volume 159, pp. 211–222. [CrossRef]

22. Dalla-Corte, A.; das Neves, C.M.M.; Anes, M.; Portuguez, M.W.; Dacosta, J.C. The Effect of Handedness on
Supplementary Motor Area Activation during Complex Motor Tasks. J. Behav. Brain Sci. 2015, 5, 458–469.
[CrossRef]

23. Hoshi, E.; Tanji, J. Distinctions between dorsal and ventral premotor areas: Anatomical connectivity and
functional properties. Curr. Opin. Neurobiol. 2007, 17, 234–242. [CrossRef]

24. Ruan, J.; Bludau, S.; Palomero-Gallagher, N.; Caspers, S.; Mohlberg, H.; Eickhoff, S.B.; Seitz, R.J.; Amunts, K.
Cytoarchitecture, probability maps, and functions of the human supplementary and pre-supplementary
motor areas. Brain Struct. Funct. 2018, 223, 4169–4186. [CrossRef]

25. Athanasiou, A.; Klados, M.A.; Styliadis, C.; Foroglou, N.; Polyzoidis, K.; Bamidis, P.D. Investigating the
Role of Alpha and Beta Rhythms in Functional Motor Networks. Neuroscience 2018, 378, 54–70. [CrossRef]
[PubMed]

26. Hoshi, E.; Tanji, J. Functional specialization in dorsal and ventral premotor areas. In Brain Mechanisms for the
Integration of Posture and Movement; Elsevier: Amsterdam, The Netherlands, 2004; Volume 143, pp. 507–511.
[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/1741-2560/12/5/056012
http://www.ncbi.nlm.nih.gov/pubmed/26305167
http://dx.doi.org/10.1155/2011/879716
http://www.ncbi.nlm.nih.gov/pubmed/21584256
http://dx.doi.org/10.1109/86.895946
http://dx.doi.org/10.1109/TBME.2010.2082539
http://dx.doi.org/10.1109/INTEE.2015.7416697
http://dx.doi.org/10.1002/hbm.21121
http://dx.doi.org/10.1016/S0079-6123(06)59014-4
http://dx.doi.org/10.4236/jbbs.2015.510044
http://dx.doi.org/10.1016/j.conb.2007.02.003
http://dx.doi.org/10.1007/s00429-018-1738-6
http://dx.doi.org/10.1016/j.neuroscience.2016.05.044
http://www.ncbi.nlm.nih.gov/pubmed/27241945
http://dx.doi.org/10.1016/S0079-6123(03)43047-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	BCI Competition Dataset
	Preprocessing
	Head Model
	Number of Electrodes and Locations

	Electrode to Source Signal (Inverse) Modeling
	Region of Interest (ROI) Selection for Motor Imagery
	CSP Features

	Results
	Discussion
	Conclusions
	References

