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Abstract: Alzheimer’s disease (AD) is currently ranked as the sixth leading cause of death in the
United States and recent estimates indicate that the disorder may rank third, just behind heart disease
and cancer, as a cause of death for older people. Clearly, predicting this disease in the early stages
and preventing it from progressing is of great importance. The diagnosis of Alzheimer’s disease
(AD) requires a variety of medical tests, which leads to huge amounts of multivariate heterogeneous
data. It can be difficult and exhausting to manually compare, visualize, and analyze this data due to
the heterogeneous nature of medical tests; therefore, an efficient approach for accurate prediction of
the condition of the brain through the classification of magnetic resonance imaging (MRI) images
is greatly beneficial and yet very challenging. In this paper, a novel approach is proposed for the
diagnosis of very early stages of AD through an efficient classification of brain MRI images, which uses
label propagation in a manifold-based semi-supervised learning framework. We first apply voxel
morphometry analysis to extract some of the most critical AD-related features of brain images from
the original MRI volumes and also gray matter (GM) segmentation volumes. The features must
capture the most discriminative properties that vary between a healthy and Alzheimer-affected brain.
Next, we perform a principal component analysis (PCA)-based dimension reduction on the extracted
features for faster yet sufficiently accurate analysis. To make the best use of the captured features,
we present a hybrid manifold learning framework which embeds the feature vectors in a subspace.
Next, using a small set of labeled training data, we apply a label propagation method in the created
manifold space to predict the labels of the remaining images and classify them in the two groups
of mild Alzheimer’s and normal condition (MCI/NC). The accuracy of the classification using the
proposed method is 93.86% for the Open Access Series of Imaging Studies (OASIS) database of MRI
brain images, providing, compared to the best existing methods, a 3% lower error rate.

Keywords: Alzheimer’s disease; early diagnosis; semi-supervised manifold learning; label propagation;
voxel-based morphometry; medical image analysis ; image classification

1. Introduction

Alzheimer’s is a progressive disease where dementia symptoms gradually worsen over time.
It destroys brain cells over time, causing memory and thinking skill losses. In early stages, also known
as mild cognitive impairment (MCI), memory loss is mild, but with late-stage Alzheimer’s, the patient
loses the ability to even carry on a conversation and respond to their environment. Alzheimer’s is
the sixth leading cause of death in the United States. The estimated number of affected people will
double for the next two decades so that one out of 85 persons will have Alzheimers disease (AD)
by 2050 [1]. Those with Alzheimer’s live an average of eight years after their symptoms become
noticeable. Although the greatest known risk factor for Alzheimer’s disease is aging and the majority
of the patients are 65 and older, Alzheimer’s is not just a disease of old age. Up to 5 percent of people
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with the disease have early-onset Alzheimer’s, which often appears when someone is in their 40s
or 50s. In Alzheimer’s disease, the hippocampus and cerebral cortex shrink while the ventricles enlarge
in the brain. If the patient is in advanced stages of AD, these effects can be recognized in magnetic
resonance imaging (MRI) images rather easily, though in the early stages it is a challenging task,
with a high risk of a wrong prediction of the patient’s condition. Moreover, some of the symptoms
found in the AD imaging data are also captured in imaging data of healthy aging people (age ≥75).
Therefore, identifying the visual distinction between brain MRI images of older subjects with normal
aging effects and those affected by AD, especially in mild stages, requires extensive knowledge and
expertise. The diagnosis of Alzheimer’s disease requires a variety of medical tests which leads to
huge amounts of multivariate heterogeneous data. It can be difficult and exhausting to manually
compare, visualize, and analyze this data due to the heterogeneous nature of medical tests. Therefore,
an efficient approach for accurate prediction of the condition of the brain through the classification
of MRI images is greatly beneficial and yet very challenging. Additionally, in most cases, diagnosis
based on MRI images must later be combined with additional clinical results for reliable classification
of data. The reason that early diagnosis of AD is of great importance is that the clinical therapies given
to patients are much more effective in slowing down disease progression and helping preserve some
cognitive functions of the brain if the patients are in the early stages of their disease.

When relying on clinical evaluations which are based on cognitive measures, low sensitivity and
specificity scores are obtained in early diagnosis of AD most of the time. Hence, in recent years some
computer-aided approaches have been developed for low-cost, faster and more accurate diagnosis of
AD. Various machine learning methods have been developed to predict AD. In previous works [2,3],
deep learning was applied to capture high-level latent features from the images. The extracted features
are later used for AD/MCI classification or just AD/normal condition (NC) classification in the method
introduced by Sarraf et al. [4]. Furthermore, in a previously proposed method [5], a deep learning
structure is used to extract features containing supplementary information and then a zero-masking
strategy for data fusion is performed on multiple data modalities for this cause. To continue with this
trend and in order to improve classical applications of deep learning, another previous effort [6] used
the dropout technique. In another group of studies [7,8] linear support vector machines (SVM) are
used for AD/NC classification of MRI images. Also, more recently a deep three-dimensional (3D)
convolutional neural network was applied [9,10] to predict AD in its early or severe stages.

In this paper, we first start by selecting some of the most critical and drastic AD-related features
using voxel-based morphometry (VBM) [11]. In order to discover voxel clusters which aid us to
distinguish between AD patients and healthy subjects, Statistical Parametric Mapping software
(SPM8) [12], was used to compute VBM. The dataset that we have used consists of two groups
of subjects: (1) normal condition; and (2) subjects who were diagnosed with very mild to mild AD,
all of whom were aged between 65 and 96 years old. The purpose of this work is to accurately
distinguish between these two groups of subjects whose brain images are visually very similar in some
cases. In the proposed MCI/NC classification method, after extracting a number of most informative
features and for a faster and more efficient method, principal component analysis (PCA) [13] is
performed to exploit an even more specific and effective subset of features that will help the computer
get a more clear vision of the differences we are looking for between the two classes of subjects.
Next, we continue by performing semi-supervised learning of the captured features. Finally, we carry
out label propagation [14,15] from our training data to the rest of the dataset for an accurate prediction
of the unknown labels.

Diagnosis of very early AD progression is intended to aid both researchers and clinicians
to develop or test new treatments and monitor their effectiveness more easily. It is stated that
AD pathologies could be detected in MRI images up to 3 years earlier than the actual clinical
diagnosis [16]. Therefore, a machine learning method can be of great benefit for helping physicians
make an accurate early diagnosis. On the other hand, the expected increasing costs of caring for
AD patients, the workload of radiologists, and the limited number of available radiologists further
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demonstrate the necessity of having a computer-aided system for early, fast, and precise diagnosis and
also for improving quantitative evaluations [17,18]. Furthermore, all previous efforts in the field as
well as in the present study, when directed into a computer system, can be used as a second opinion
by a physician to either verify their own diagnosis and increase its reliability or improve their final
decision by getting help from the computer output in cases when they are less confident about their
own diagnosis. Moreover, the possibility and benefits of practical usage of computer-aided diagnosis in
clinical situations have been also the subject of a number of studies [19]. For instance, the radiologists’
performance while detecting clustered microcalcifications, which are small calcium deposits in breast
soft tissue, both with and without the computer output has been observed and compared in one of
these studies. It was proven in this study that the radiologists’ performance was improved significantly
when computer output was also available. As a result of these studies, computer-aided diagnosis
has recently become an important part of the routine clinical process for breast cancer detection in
mammograms in the United States [20].

2. Theoretical Backgrounds

In the following sections we discuss the background relevant to this work. First of all we use
G = (V, E) to denote a graph, where V = (v1, v2, . . . , vN) is the set of nodes and E = {ei,j} is the set of
edges. The edge ei,j indicates a connection between two nodes vi and vj.

The adjacency matrix for a weighted graph is defined as a matrix A where [A]ij = wij if and only
if nodes vi and vj are connected by an edge with weight wij and [A]ij = 0 if they are not connected by
an edge. The degree of a node vi, denoted by d(vi), is:

d(vi) = ∑
j
[A]ij (1)

and the degree matrix D is defined as the following diagonal matrix, where the i-th diagonal element
is d(vi):

D = diag[d(v1), d(v2), . . . , d(vN)] (2)

2.1. Random Walk on a Graph

Random walk has been a subject of intensive study in the past decades and has been found useful
in solving problems such as ranking [21], clustering [22,23], modeling diffusion processes [24,25] and
synchronization [26,27]. Today it has become an important class of probabilistic models. In this section,
we will briefly explain how a random walker navigates on a graph.

In a random walk, the walker currently at node v can move from v to any of its neighbouring
nodes with a probability proportional to the weight of the edge between them.

The probability of the walker stepping into node vj from vi is denoted by P(vj|vi). Therefore,
the stochastic process of the random walk is characterized by this transition matrix P. Each element of
P follows the following equation:

[P]ij =
[A]ij
[D]ii

= P(vj|vi) (3)

where A is the adjacency matrix and D the degree matrix defined in the previous section. Hence, P can
be written as:

P = D−1A (4)

Let Pt be the t-th power of P. Then, [Pt]ij represents the probability of the walker to arrive at node
vj after exactly t steps, starting from node vi.

2.2. Semi-Supervised Learning

Machine learning is a type of artificial intelligence that gives computers the ability to
learn without being explicitly programmed. Evolved from the study of pattern recognition and
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computational learning theory in artificial intelligence, machine learning explores the study and
construction of algorithms that can learn from and make predictions on data [28]. Utilizing machine
learning, computer programs can be developed that can change when exposed to new unknown data.
Machine learning uses that data to detect patterns in data and adjust program actions accordingly.
From one perspective machine learning problems are categorized as being supervised, semi-supervised,
or unsupervised. Here we want to briefly introduce semi-supervised learning.

In a semi-supervised method, feature vectors from unlabeled data are also used in the learning
process in addition to the labels and feature vectors from the labeled ones. The information extracted
from these unlabeled data will be beneficial for determining an approximation of the dispersion of
data in the feature space. Before performing a semi-supervised learning algorithm, we need to make
one important assumption:

• if two members of the dataset are located in a dense region and are close to each other in the
feature space, their labels will also be close to each other.

In this work, our goal is to label data with maximum accuracy knowing the labels of only a small
number of images. We should acknowledge that, especially for a rather large dataset, labeling these
images manually can be a tedious and difficult job. In particular, in mild stages, this diagnosis
requires high-level proficiency. Therefore, it can now be understood why we have chosen to use
a semi-supervised algorithm and how beneficial and also necessary a computer-based precise diagnosis
can be.

2.3. Manifold Learning

Manifold learning [29] has always been of great interest for utilizing latent structural information
from a dataset in a semi-supervised learning approach.

A manifold is a topological space that locally resembles Euclidean space near each point.
A k-dimensional manifold in an m dimensional space is a surface in that space, such that for each point
on this manifold, there exists a radial neighborhood consisting of a set of points on the manifold which
have the following property: they can be mapped to a closed region in a k-dimensional linear space
using a diffeomorphism, which is an invertible smooth function with a smooth inverse, that maps one
differentiable manifold to another.

When applying manifold-based approaches to a specific learning problem, a dataset which is
commonly expressed in an m dimensional space is indeed located in a non-linear subspace, or more
specifically, on a k-dimensional manifold where k� m.

Next, we are going to discuss two basic assumptions that we will completely fulfill as we go on.

• Considering the fundamental assumption mentioned in the previous section, in a semi-supervised
algorithm similar to the one we are aiming to apply to our problem, we will need to compute the
distance between different data. Noticing that the data are now located on a manifold, it can be
explicitly recognized that for a more effective result, rather than computing the Euclidean distance,
we will need to define the forenamed distance on the manifold itself. This means calculating the
geodesic distance which is the number of edges in the shortest path connecting them.

Since in machine learning problems, we often possess only a limited number of training and test
data, it is usually not possible to solve the manifold equation precisely. As a result, a graph is
built up of an existing dataset as an approximation for the original manifold. After this graph
is formed, considering k-nearest neighbor graphs corresponding to each node, we can assume
that the Euclidean distance between two nodes connected with an edge approximately equals
their geodesic distance. Also, regarding nodes which are not directly connected with an edge,
the length of the minimum distance between them in the graph is a fair approximation of their
geodesic distance.
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• Moreover, keeping in mind that the fundamental assumption about semi-supervised algorithms
also applies on this manifold, it can easily be concluded that the items of data which are located
in dense areas on the manifold have similar labels. This implies that if a path exists between two
members of the dataset which completely passes through the most probable and dense regions of
the manifold, they will certainly have very close labels.
Therefore, when using a graph as an approximation for such a manifold, it needs to have properties
that also meet the above condition.

Manifold learning can be employed in various fields such as clustering, labeling, and also
dimension reduction [30]. In this effort, our main purpose is to label data using a semi-supervised
manifold learning. However, this specific method of labeling also requires an adequate dimension
reduction which keeps the important latent structural information from all data while reducing very
large dimensions to a convenient size.

2.4. Labeling Based on Manifold Learning

Let us assume we have a set of data with size N consisting of v1, v2, . . . , vN which belong to c
different classes and we have been given the labels for the first l members of this set. This means that
we know exactly what classes these l members belong to. We denote these labels with y1, y2, . . . , yl .
Our goal is to accurately find the labels for the rest of the dataset. In a manifold-based approach,
to solve a classification problem with c different classes, we break it into c distinctive two-class problems
in such a way that in each one of them the labeled data of a specific class have the label +1 where the
rest of labeled data belonging to any of the other classes are labeled with –1. Therefore, what we are
facing here is again a classification problem with just two classes. There are two different approaches
to solving this type of classification problems. In the first method, a regression problem is defined
where each item of unlabeled data is appointed a real number. These numbers are then compared to
each other for each item of data in all c defined classification problems. Eventually, that specific item of
data is given the label of the class that it has been assigned the largest number of times in the problem
related to that specific class. In the second approach, according to the probabilities of each item of data
belonging to each class in the corresponding defined classification problem, each unlabeled item of
data will eventually belong to the class where it had been assigned the highest value probability.

Both these approaches must comply with all the manifold-related conditions and assumptions
which were mentioned in the previous sections. Thus, in all these methods, the weights on the edges
in the corresponding created graph, which we call G, are an appropriate function of the Euclidean
distance between nodes as expressed below:

[A]ij = wij =


e
−||vi−vj ||

2

2σ2 i = j or vi←→vj

0 otherwise

(5)

where A is the corresponding adjacency matrix of graph G, vi and vj are two arbitrary nodes in this
graph, and vi←→vj indicates that vi and vj are connected with an edge. σ is the tuning parameter
which will be set efficiently using cross validation. This procedure will be further discussed in the
following sections. Here, we will briefly introduce a group of labeling methods based on random walks.

Random Walk-Based Labeling Approaches

In this section, we present a category of labeling methods which mainly rely on the second
assumption made in Section 2.3. This assumption illustrates that if a pair of nodes is located in a dense
region of the manifold and are close to each other, there is a high possibility of reaching the second
node in a short time, starting a random walk from the first one. Based on this fact, a class of label
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propagation [14] methods has been developed, which can be explained in more detail as follows. In the
first step, each labeled item of data acting as a labeled node in the graph has its own label with a weight
which equals 1. Next, in each step, the labeled nodes distribute their labels among all their neighbors,
giving their label to each neighboring node with a weight equal to the normalized weight of the edge
between them. At the end of each step, the primarily labeled data gain back their own original label
while the unlabeled data now have new sets of labels on them for continuing the process. This iterative
procedure goes on until reaching a stationary state for the labels on all the nodes.

3. Methods and Materials

3.1. Dataset

The Open Access Series of Imaging Studies, OASIS (http://www.oasis-brains.org/app/template/
Index.vm) [31], is a series of magnetic resonance imaging datasets from 416 subjects aged between 18
and 96 years, and includes a cross-section of the studied population. One hundred of the included
subjects older than 60 years have been clinically diagnosed with very mild to moderate Alzheimer’s
disease. The subjects are from both genders and are all right-handed. A rigid imaging protocol is
strictly followed in the OASIS database in order to avoid any problems due to protocol variations while
performing image normalization. Using a 1.5-T Vision scanner, in just a single imaging session, three to
four T1-weighted magnetization-prepared rapid gradient echo (MP-RAGE) images were captured
from every subject. In this study, we will exploit the averaged MP-RAGE image for each subject which
is obtained through registration. First, for minimizing the variance between the first MP-RAGE image
and the atlas target, which has been described in detail by Marcus et al. [31], a 12-parameter affine
transformation was computed. Then a single, high-contrast, averaged MP-RAGE image was produced
in atlas space by registering the remaining MP-RAGE images to the first one (in-plane stretch allowed)
and resampling via transform composition into a 1-mm isotropic image in atlas space. This process is
also discussed in more detail previously [31]. For gray–white contrast, MP-RAGE parameters were
then optimized in several trials. The MRI acquisition details are reported in Table 1.

Table 1. Magnetic resonance imaging (MRI) acquisition details

Sequence MP-RAGE
TR (ms) 9.7
TE ( ms) 4

Flip Angle (◦) 10
TI (ms) 20
TD (ms) 200

Orientation Sagittal
Thickness, gap (mm) 1.25, 0

Slice No. 128
Resolution 256 × 256

ms: milliseconds

For this study, similar to the choice of other previous efforts [32–34], we selected 98 subjects with
complete demographic, clinical or derived anatomic volume information, 49 of whom were diagnosed
with very mild to mild AD, and the other half are healthy subjects. The additional information on
the subjects is provided in Table 2. We have also reported the CDR score in the table. The CDR
is a dementia staging instrument which gives ratings to each subject for impairment in each of the
following six categories: memory, orientation, judgment, and problem-solving, function in community
affairs, home and hobbies, and personal care. The global CDR is derived from individual ratings in
each category. A global CDR equal to 0 means no dementia and numbers 0.5, 1,2 and 3 represent very
mild, mild, moderate and severe stages, respectively.

As our future work, we aim to apply our method to another well-known data base: the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (www.loni.ucla.edu/ADNI) as well.

http://www.oasis-brains.org/app/template/Index.vm
http://www.oasis-brains.org/app/template/Index.vm
www.loni.ucla.edu/ADNI
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Table 2. Summary of subject demographics and dementia status.

Condition No. Gender Education Socioeconomic Status
Age CDR MMSE

Range Mean 0 0.5 1 2 Range Mean

Very mild to mild AD 49 Both 2.63 2.94 66–96 78.08 0 31 17 1 15–30 24
Normal condition 49 Both 2.87 2.88 65–94 77.77 49 0 0 0 26–30 28.96

AD: Alzheimer’s disease; Levels of education are described as 1: Less than high school; 2: High school graduate;
3: Some college; 4: College graduate; 5: Beyond college. Categories of socioeconomic status are from 1 (highest
status) to 5 (lowest status); MMSE (Mini-Mental State Examination) score ranges from 0 (worst) to 30 (best); CDR is
a dementia staging instrument which gives ratings to different subjects for impairment in one of the discussed
six categories.

3.2. Method

3.2.1. Summary of the Method

Here, we will have an overlook on the main steps of our method. In this paper, we propose
a novel approach for MCI/NC classification as the most crucial and beneficial type of classifier in AD
diagnosis. We use a semi-supervised learning method for this goal. After extracting feature vectors
containing high-level information using a method based on VBM, we attempt to conduct a label
propagation method on a graph which is built as an approximation of these high-dimensional feature
vectors. Figure 1 illustrates the different steps of the proposed method. In the following sections,
we will completely discuss the introduced approach in detail.

Subject s GM

VBM Analysis 

Using SPM

Voxel Values

Dimension 

Reduction Using 

PCA

Forming a Graph 

with Specified 

Edge Weights

Random Walk on 

the Graph

Obtaining the 

Transition 

Matrix

Label Propagation

Classified Data 

Set

Figure 1. Block diagram of the proposed method. PCA: principal component analysis; VBM: voxel-based
morphometry; SPM: statistical parametric map; GM: gray matter.

3.2.2. Image Processing and Feature Extraction

The process of extracting and then selecting high-level features that contain the most latent and
crucial information, which can properly feed an accurate classifier, is an essential step that requires
attention. Low-level or primitive features of an image are actually the visual content of the image
which can be easily captured. These visual features include color and shape. On the other hand,
there are high-level and latent features which are mostly texture-based and not very simple to capture.
These are the features we are most interested in for the present work. The texture can be characterized
by structure (spatial relationship) and also tone (intensity property).
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3.2.3. Voxel-based Morphometry (VBM)

Morphometry analysis has become a strong tool for carrying out quantitative measurements of
the form and structural differences throughout the entire brain. Voxel-based morphometry (VBM)
is a computational approach which performs a comparison on voxels of different brain images and
then quantifies differences between local concentrations of brain images [35]. Recently, VBM has been
applied in various studies in different fields. For instance, it can be used to perform a thorough study
on the volumetric atrophy of the gray matter (GM) that exists in areas of neocortex in the brain and
can be used to discriminate AD patients from healthy subjects [36,37].

Inspired by the method proposed in [11], we start the feature extraction process. This procedure
includes four major phases. The first step requires the spatial normalization of all images before any
further analysis is carried out. Now that all images are placed in a standard space, in the second phase,
tissue classes are segmented using a priori probability map. Next, in order to perform smoothing
via correcting any disruptive noise or small variations, the extracted information is convolved with
a Gaussian kernel. The full width at half maximum (FWHM) of the applied Gaussian is set for
any arbitrary problem accordingly. Finally, the last step is the voxel-wise statistical tests. In this
phase, to express our data in terms of experimental and confounding effects and residual variability,
the general linear model (GLM) [38] is utilized. Eventually, in order to build a statistical parametric
map (SPM) [39], we need the computed contrast which is given by the GLM estimated regression
parameters. The map is then thresholded according to the random field theory [40,41]. Figure 2
illustrates the different steps for performing VBM analysis.

Original Normalized GM Segment Modulated GM Smoothed GM

Template GM prior Gaussian Kernel

Segmentation Modulating SmoothingNormalization

Figure 2. Voxel-based morphometry pre-processing overview.

3.2.4. Image Processing and VBM in the OASIS Database

In this study, we aim to perform VBM as a method for investigating neuroanatomical differences
in vivo. We exploit the average MRI volume reported for each subject in the OASIS dataset. Our goal
is to benefit from the VBM method to obtain the proper spatial masks that we need for capturing the
classification features. Here, we are specifically interested in GM and the information which lies in
this tissue because experimental research suggests that the network within the gray matter, which is
responsible for many of the higher order functions in the brain, is much more vulnerable to Alzheimer’s
disease. This leads us to perform the VBM analysis on GM to distinguish between the regional
concentration of GM among different subjects while ignoring global brain shape differences. We apply
Statistical Parametric Mapping software (SPM8) [12], for this purpose which works in a right-handed
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coordinate system and therefore while pre-processing our data, we reorient all images to such a system.
To start the process, we first need to notice that, as reported in previous effort in detail [31], all the
images in this dataset are already registered and also re-sampled to 1-mm isotropic resolution in the
target atlas space which has been biased already. Hence, no further spatial normalization will be
needed. In the next step, tissue segmentation is achieved by combining probability maps and mixture
model cluster analysis. No bias correction is required while performing tissue segmentation. As the last
step, a spatial smoothing is essential before any statistical analysis is performed on voxels. A Gaussian
kernel is applied at this point and the FWHM is manually set to 10 mm isotropic as suggested in past
studies [11]. Smoothing is done mainly for increasing the signal to noise ratio and making up for any
probable data loss that might have occurred while performing spatial normalization.

Now to create a GM mask, we compute the average of GM segmentation volumes from all subjects.
The average GM segmentation is thresholded to obtain a binary mask including the voxels which have
a probability greater than 0.1 in the average GM segmentation volume. Although the interpretation is
not completely true due to the previously performed modulation, it is sufficiently accurate. Eventually,
SPM8 employs GLM and carries out the required independent statistical tests to extract statistical
parametric maps that clearly demonstrate areas of significant differences or correlations among subjects.
In this last phase, while performing the statistical analysis, we design a two-sample t-test with the first
group corresponding to AD patients. To obtain higher precisions in our statistical analysis, a threshold
of zero adjacent voxels is applied in the two-sample comparison. The SPM8 software parameters are
set as also suggested in a previous effort [11]. Figure 3 illustrates the selected clusters by the VBM
analysis for one sample subject with mild AD and one sample subject affected with moderate AD.

a) Mild AD

b) Moderate AD

VBM findings 

Figure 3. Statistical parametric maps for a subject with (a) mild AD and (b) moderate AD. The overlays
show the selected clusters of features and are displayed on a sample-averaged magnetization-prepared
rapid gradient echo (MP-RAGE) image on sagittal, coronal and axial sections. The color overlays show
regions of statistically significant (p-value < 0.05) differences in rates of change compared to controls.

After taking all the above steps, we have collected the clusters detected by the VBM that are
required for the feature selection in the classification procedure. These detected clusters are then
applied to the GM density volumes which are the results of the segmentation step of the above
procedure. These clusters are actually considered as masks to specify the voxel positions. To obtain
the final desired feature vectors, all the GM segmentation values for the voxel positions which are
included in each one of the detected clusters, are computed. These values are then ordered in very high
dimensional vectors according to the coordinate lexicographical ordering. We have now achieved our
main purpose of performing this analysis which was to obtain the feature vectors containing highly
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important and beneficial features for our classification task. Although these vectors contain high-level
features, which have the properties we are interested in for our classification model, they are very
high-dimensional and quite costly to use. This is the primary reason which leads us to reduce the
dimension of the vectors. We will discuss this process in detail in the following section.

3.2.5. Dimension Reduction Using Principal Component Analysis (PCA)

PCA [13] is one of the best and most used tools for data representation in the least square sense
for classical recognition. Commonly it is applied to decrease the dimensionality of images and still get
almost all the important information embedded in the images. While performing PCA, the main focus
is on finding an orthonormal set of axes which point at the direction of maximum covariance in the
data. The solution is to extract the orthonormal basis vectors that are the eigenvectors of the covariance
matrix of a set of images where each image is treated as a single point in a high-dimensional space.
The most significant and distinguished variations between images are then mapped with these vectors.
When the eigenvalues and eigenvectors of the covariance matrix are calculated, the most effective
components can be chosen to form the new feature vectors with a much lower dimension. PCA is
a very powerful and reliable tool for data analysis. As explained above, once the specific pattern in the
data is found, they can be compressed into lower dimensions with us being confident that no valuable
information will be lost.

Now that we have found and formed these very significant and beneficial feature vectors, they can
be exposed to our model for a careful classification of images. Figure 4 is an illustration of the reduced
feature vectors lying in the new low-dimensional space.

Figure 4. Presenting the extracted low-dimensional feature vectors from MRI images.

3.2.6. Label Propagation

After taking the very fundamental step of selecting and extracting the required feature vectors,
we can now continue on building up our model to reach the ultimate goal of labeling each one of the
images as accurately and carefully as possible. Here, we will demonstrate the proposed approach for
performing the classification in detail.

First, let us assume we have n different images in our dataset meaning we have extracted n
different feature vectors each corresponding to an image. Let us assume that the number of training
data items in the study equals l meaning we only know the labels of l images. Following the previously
proposed method [14], first we define an n× n matrix Y with the first l rows corresponding to the
labeled data and each column corresponding to one of the classes. One should notice that in the case
of our current work, which is a classification problem with c (c = 2) classes, the matrix can be defined
as an n× c matrix causing no problem in the overall procedure. In a more general case this method
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can work with up to n different classes in a dataset of n subjects and that is why we have used Y as an
n× n matrix. Also notice that here, the rest of the columns in matrix Y will not affect our results or be
used or considered as a part of the required answer to the problem. This implies that the proposed
method can easily be applied to any arbitrary dataset with any number of classes. In this study our
main purpose is to classify the images which belong to two classes of very mild to mild AD and
healthy subjects since this is the most crucial case for an efficient diagnosis of AD in order to prevent
the patient’s condition from getting worse and more severe. Next, in matrix Y for every row i, where
1 ≤ i ≤ l, we place 1 in the column corresponding to the class of ith labeled data and the rest of the
elements will be zero. In fact, this matrix indicates the probability of each data belonging to each of the
existing classes in the dataset. Next, we continue with creating matrix T as:

Tij =
wij

∑n
k=1 wkj

(6)

where wij is defined in Equation (5). Hence, replacing Equation (5) in Equation (6), we obtain the final
definition of T:

Tij =
e
−||vi−vj ||

2

2σ2

∑n
k=1 e

−||vk−vj ||
2

2σ2

(7)

We still need to exactly determine the process of choosing the adequate value for parameter σ.
As previously mentioned in Section 2.4, we use cross validation for this cause. First, a rational range
of (0, 10) is chosen for σ to perform a 6-fold cross validation. Next, a set of 30 subjects is chosen for
this purpose and then divided into 6 groups of 5. In each step one of these groups is selected as the
validation data and the remaining 25 will be used as the training data. Finally, the best σ is chosen for
the best performance through this procedure.

Now that we have specifically described matrix T, we need to follow the following steps:

1. Construct matrix Y and repeat the next three steps until Y converges.
2. Replace matrix Y with TY.
3. Normalize the rows of Y so that the sum of each row equals 1.
4. In the end of each iteration, update matrix Y such that for every row i, where 1 ≤ i ≤ l, replace 1

in the column corresponding to the class of ith labeled data and the rest of the elements in these
rows will be equal to zero.

Eventually, in each row of matrix Y, the element with maximum value defines the class of the data.
Now if we consider graph G, which was explained in Section 2.3 and defined in Equation (5),

and then normalize the weights of all existing edges for each node, we obtain matrix T. T is indeed the
transition matrix of the created graph. Now the labels are in fact spreading randomly on the graph
with T as the transition matrix considering that after each step all the labels on nodes are normalized
and the labels of the l labeled training data are reset to the initial state. Figure 5 represents the different
stages of this process.
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t = 0 t = 𝑡1 t = 𝑡2

Figure 5. Different steps of label propagation in a fully connected graph with different edge weights
which are represented with different edge widths. Each one of the green and purple colors represents
the label corresponding to one of the existing classes in the dataset. The white color indicates the data
being unlabeled.

As proved earlier by Xiaojin et al. [14], Y in the explained algorithm will definitely converge to
a specific value. Let YL and YU indicate the first l rows and the remaining rows of Y, respectively,
and let T to be written as:

T =

[
TLL TLU

TUL TUU

]
(8)

where TLL indicates a fraction of T which includes the first l rows and columns of it. Then, it can be
proved that YU, which is in fact the required label matrix, is obtained from the following equation:

YU = (1− TUU)
−1TULYL (9)

4. Results and Discussion

In this section, we conduct experiments on the OASIS dataset to assess the effectiveness of our
classification model. To understand how effective our method is in general, we conduct various
experiments on the two-class subset of the dataset which contains images from MCI and NC subjects
as described before. We carry out a semi-supervised learning method which requires only a small
percentage of the dataset as the training data to accurately predict the labels for the remaining test data.
This fact itself can illustrate the worthiness of the proposed method. We also compare the accuracy of
our method against various existing approaches.

4.1. Competing Methods

A great amount of research has been carried out for the accurate diagnosis of cognitive
diseases such as Alzheimer’s in recent years, and different approaches have been proposed for this
purpose. Mostly, the information extracted from structural and functional brain imaging data or the
cerebrospinal fluid is utilized for a better diagnosis. Moreover, a number of efforts have been made for
the classification and prediction of different stages of AD recently. In the following, some of the most
competitive works that have been carried out in this area in recent years are described:

Hosseini-Asl et al. [10]: The method proposed in this paper is basically based on a 3D
convolutional auto-encoder. This is a model which applies deep 3D convolutional neural network to
extract AD-related features and learn from them. Finally, the classification task is done for different
binary combinations of three groups of subjects (AD, MCI, and NC) as well as a ternary classification
among them.

Zu et al. [42]: In this effort, a learning method for multimodal classification of AD/MCI is
represented. First feature selection is done using multiple modalities and then, utilizing a group
sparsity regularizer, the different sets of extracted features are all jointly considered for selection
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of one subset of features which are the most informative AD-related ones. Finally to complete the
classification task and for obtaining a compatible multi-task feature selection objective function, a new
label-aligned regularization term is added to it. In the final step, SVM is used for mixing various
feature vectors captured from multi-modality data.

Moradi et al. [43]: In this method, to create a new biomarker of MCI to AD conversion,
a semi-supervised learning method is applied. While performing feature selection via regularized
logistic regression on the MRI images, the aging effects are removed. Finally, for the ultimate
classification which is carried out by utilizing a random forest classifier, the constructed biomarker is
unified with age and cognitive measures about the MCI subjects using a supervised learning method.

Liu et al. [5]: Here, a deep learning based framework is represented for the classification of
different stages of AD. In the feature selection step, stacked auto-encoders are used and since multiple
neuroimaging modalities are considered. A zero-masking strategy is then applied for capturing the
most discriminative features among the different modalities and the synergy between them.

Suk et al. [3]: This paper also applies deep learning for a high-level feature extraction.
Deep Boltzmann Machine (DBM) is applied for this cause on a volumetric patch and is followed
by another method designed for combining feature representations from different modalities. Finally,
an attempt is done for solving three binary classification problems of AD/NC, MCI/NC, and MCI
converter/MCI non-converter.

Casanova et al. [44]: In this paper, a new metric called AD Pattern Similarity (AD-PS) is introduced
and then tested on the dataset to compare the results with the performance of the classifications which
use other metrics such as the Spatial Pattern of Abnormalities for Recognition of Early AD (SPARE-AD)
index. After obtaining the results from a classifier based on MRI images and another one which is
trained based on cognitive measures, Casanova et al. combined the two outputs and evaluated the
performance.

Chyzhyk et al. [45]: In this effort, Lattice Independent Component Analysis (LICA) is utilized
for the feature selection stage as well as the Kernel transformation of the data. This approach has
improved the generalization of dendritic computing classifiers. Then, the method was applied on MRI
images for classification of AD patients and normal subjects.

Coupé et al. [46]: Here, the proposed method attempts to detect Alzheimer’s disease by
distinguishing between specific atrophic patterns of anatomical structures such as the hippocampus
(HC) and entorhinal cortex (EC). Coupé et al. attempted to capture AD-related anatomical conversions
by performing segmentation and also grading of structures altogether.

Cho et al. [47]: Cho et al. represent a method for AD classification using cortical thickness data.
The cortical thickness data of a subject are represented in terms of their spatial frequency components.
To prevent the disruptive effects of any possible existing noise, high frequency components are filtered
out. All of these help to perform an individual subject classification based on incremental learning.

Cheng et al. [48]: This paper demonstrates a domain-transfer learning method for diagnosis of
AD in its different stages. The cross-domain kernel learning and then SVM are utilized to transfer
supplementary domain knowledge and then perform cross-domain and auxiliary domain knowledge
fusion, respectively.

Savio et al. [49]: In this effort, after obtaining the displacement vectors using non-linear
registration procedures, the magnitude of the displacement vector and the Jacobian determinant
of the displacement gradient matrix are extracted. Relying on the relations between these extracted
values, the feature selection process is carried out. Eventually, SVM is used to reach the goal of
classifying the MRI images.

Westman et al. [50]: This study aims to compare and combine MRI data from two major study
cohorts in the world. After designing an automated framework for segmentation, regional volume
and regional cortical thickness scores are computed and then utilized while performing multivariate
analysis. In the next step, orthogonal partial least squares to latent structures (OPLS) models are created
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and applied to both the individual cohorts and the combined cohort for distinguishing between AD
patients and healthy subjects.

Chyzhyk et al. [51]: This paper uses dendritic computing to build up a binary classifier which
can also be extended to multiple classes. A single neuron lattice model with dendrite computation
(SNLDC) computes an approximation of the data distribution and for a better performance, the size of
the created hyperboxes are reduced. The feature extraction process is done using VBM.

Savio et al. [32]: In this paper, after applying the VBM method for extracting feature vectors from
the GM segmentation volumes, different models of artificial neural networks (ANN) have been used
such as: backpropagation (BP), radial basis networks (RBF), learning vector quantization networks
(LVQ) and probabilistic neural networks (PNN) to perform a MCI/NC classification on brain MRI
images and the best reported results were obtained with LVQ.

Chupin et al. [52]: Since hippocampal MRI volumetry (an informative biomarker for AD) has
limitations due to manual segmentation, Chupin et al. introduced a fully automatic method for
hippocampus segmentation. They applied probabilistic and anatomical priors for this cause. Finally,
took advantage of the obtained hippocampal volumes to classify the data into three groups of AD,
MCI and NC subjects.

García-Sebastián et al. [33]: In this paper, for the computation of feature vectors, VBM is applied
to study the usage of both original MRI volumes and GM segmentation volumes. The SVM algorithm
was applied to perform classification on the dataset consisting of patients with mild Alzheimer’s
disease and control subjects.

Savio et al. [34]: This study attempted to obtain results of an Adaboost approach to AD detection
in MRI brain images. Using the VBM analysis, clusters for voxel location detection are obtained and
then applied to select the voxel values which lead to computation of the classification features. Next,
an SVM was built upon these feature vectors. Finally, by considering various combinations of isolated
classifiers, an Adaboost strategy was applied to the created SVM.

4.2. Parameter Tunning

In this section, the parameters of the proposed method are tuned and the evaluation procedure
is described. After extracting the high dimensional features, a dimension reduction was performed
using PCA. This procedure led us to choose the first 35 dimensions, which contained more than 99%
of the cumulative energy. Next, we randomly chose 25 subjects to form the training set and the rest
of the subjects were used as the test set. Then, in order to determine the most efficient value for σ,
we performed a 6-fold cross-validation on the training set which led us to choose σ = 0.25 as the best
value for this parameter.

Classification accuracy, sensitivity and specificity were evaluated for different randomly chosen
sets of training data with size 25, and then the values of the three metrics over 40 different runs were
averaged. The results were then compared to the chosen previously proposed methods to prove
outperformance of the proposed method.

4.3. Results

In this section, various experiments are carried out to evaluate the performance of our method.
In Table 3, the performance of all existing methods is reported against the proposed method in
an MCI/NC classification. All accuracy, specificity, and sensitivity scores are reported as available.

For a fair comparison, the best results of all baseline methods have been reported which clearly
affirm that our proposed method has an overall better performance than other previous efforts.
The accuracy and specificity of our model are by far better than the rest of the approaches. While the
sensitivity score is slightly lower than that of Suk et al. [3], the accuracy of our method still clearly
outperforms the previous effort [3]. Also, in Table 3 it is suggested that among all previously existing
methods, Hosseini et al. [10] achieved the highest accuracy while classifying the MRI images into two
classes of MCI and NC.
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Considering the fact that we are proposing a semi-supervised method which only requires a small
percentage of the data for training, compared to the other supervised methods, it can be understood
how effective and valuable this approach can actually be for an accurate diagnosis and binary MCI/NC
classification.

Table 4 represents the accuracy for different sizes of feature vectors which proves the effectiveness
of the performed PCA. It illustrates that the accuracy score is increasing as the dimension increases
until dim = 35 and after that, the performance of our classifier is almost steady with 35 dimensions
giving the best possible results.

Next, to evaluate our method’s robustness over different values of σ, we have reported the
accuracy scores for a number of chosen values for this parameter in Figure 6a. From this figure it
is seen that in a logical range for σ, which can be easily obtained through a k-fold cross validation
procedure, our method can consistently achieve high performance results (accuracy score above
80%) where the best performance is obtained for σ = 0.25. Figure 6b also demonstrates that there
is an increasing trend in the performance of the classifier as the training set becomes larger, though,
in a training set larger than 30, there is no significant improvement in the performance; Hence, we will
not sacrifice the benefits of having a semi-supervised classification method by utilizing large groups
of training data. We assume that when using computer based approaches for diagnosis, only a small
portion of labeled data is available. Therefore, we tried to keep the ultimately chosen number of
training data under 40% of the size of dataset.

Table 3. Comparative performance (ACC, SPE, SEN %) of our MCI/NC classifier vs. other methods.

Approach Year Dataset Modalities Validation Method
Metric

Accuracy (%) Sensitivity (%) Specificity (%)

Our Method 2017 OASIS MRI
semi-supervised method using

25% of the whole data set
as training data ?

93.86 94.65 93.22

Hosseini-Asl et al. [10] 2016 ADNI MRI 10-fold cross-validation 90.8 n/a n/a

Zu et al. [42] 2016 ADNI PET+MRI 10-fold cross-validation 80.26 84.95 70.77

Moradi et al. [43] 2015 ADNI MRI 10-fold cross-validation 82 87 74

Liu et al. [5] 2015 ADNI MRI 10-fold cross-validation 71.98 49.52 84.31

Suk et al. [3] 2014 ADNI PET+MRI 10-fold cross-validation 85.7 99.58 53.79

Casanova et al. [44] 2013 ADNI Only cognitive measures 10-fold cross-validation 65 58 70

Chyzhyk et al. [45] 2012 OASIS MRI 10-fold cross-validation 74.25 96 52.5

Coupé et al. [46] 2012 ADNI MRI Leave-one-out cross-validation 74 73 74

Cho et al. [47] 2012 ADNI MRI Independent test set 71 63 76

Cheng et al. [48] 2012 ADNI MRI 10-fold cross-validation 69.4 64.3 73.5

Savio et al. [49] 2011 OASIS MRI 10-fold cross-validation 84 90 77

Westman et al. [50] 2011 ADNI MRI 10-fold cross-validation 59 74 56

Chyzhyk et al. [51] 2011 OASIS MRI 10-fold cross-validation 69 81 56

Savio et al. [32] 2009 OASIS MRI 10-fold cross-validation 83 74 92

Chupin et al. [52] 2009 ADNI MRI Independent test set 64 60 65

García-Sebastián et al. [33] 2009 OASIS MRI Independent test set 80.61 89 75

Savio et al. [34] 2009 OASIS MRI 10-fold cross-validation 85 78 92

? All the existing methods use supervised learning while our proposed model utilizes a semi-supervised learning
method which can further justify its efficiency. ACC: Accuracy, SPE: Specificity, SEN: Sensitivity, PET: Positron
Emission Tomography, n/a: Not Available, MCI: mild cognitive impairment; NC: normal condition.

Table 4. Classification accuracy using the proposed method over different feature vector sizes.

Feature vector size 10 15 20 25 30 35 40 45 50 100 200 1000
Accuracy(%) 92.33 93.15 93.37 93.42 93.75 93.86 93.84 93.75 93.77 93.70 93.63 93.77
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Figure 6. Illustrating a) performance of the proposed method over different numbers of items of
training data and b) classification accuracy using the proposed method over different values of σ.

5. Conclusions

In this paper, we proposed a general framework based on semi-supervised manifold learning to
categorize brain MRI records in two groups of mild Alzheimer’s and normal condition (MCI/NC)
with high accuracy. For distinguishing early stages of AD, we exploited a label propagation approach
for the first time. We used the extracted discriminative voxel-based morphometry (VBM) features
that contain the most crucial information we need. We first constructed a weighted graph based on
the Euclidean distance between feature vectors. By knowing which class (MCI or NC) each of the
training subjects belong to, we assigned the corresponding label to them. Then, by applying the label
propagation method, we obtained the whole set of labels from just a few existing ones. We empirically
demonstrated the effectiveness of our method through extensive comparison with a large group of
existing methods in terms of accuracy, sensitivity, and specificity.
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