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Abstract: Hypoxic-ischemic (HI) brain injury is one of the main causes of disabilities in  
term-born infants. It is the result of a deprivation of oxygen and glucose in the neural 
tissue. As one of the most important causes of brain damage in the newborn period, the 
neonatal HI event is a devastating condition that can lead to long-term neurological deficits 
or even death. The pattern of this injury occurs in two phases, the first one is a primary 
energy failure related to the HI event and the second phase is an energy failure that takes 
place some hours later. Injuries that occur in response to these events are often manifested 
as severe cognitive and motor disturbances over time. Due to difficulties regarding the 
early diagnosis and treatment of HI injury, there is an increasing need to find effective 
therapies as new opportunities for the reduction of brain damage and its long term effects. 
Some of these therapies are focused on prevention of the production of reactive oxygen 
species, anti-inflammatory effects, anti-apoptotic interventions and in a later stage, the 
stimulation of neurotrophic properties in the neonatal brain which could be targeted to 
promote neuronal and oligodendrocyte regeneration. 
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1. Introduction 

Hypoxic-ischemic (HI) encephalopathy is one of the major causes of disability and death in 
newborn infants worldwide [1]. An estimated four million babies die every year during the neonatal 
period, and one quarter of these deaths are attributed to HI [2]. Neonatal encephalopathy is a common 
clinical condition affecting approximately 2 in 1000 neonates [3], and accounts for a substantial 
proportion of admissions to neonatal intensive care; 10%–15% of cases will die in the neonatal unit, 
10%–15% will develop cerebral palsy and up to 40% will have other significant disabilities including 
blindness, deafness, autism, epilepsy, global developmental delay, as well as problems with cognition, 
memory, fine motor skills and behavior [4–8]. These problems are observed throughout development 
with a tremendous impact on the affected child, its family and society [9,10].  

Despite important progress in obstetric and neonatal care during the last decades, perinatal HI is 
still one of the most important causes of neonatal brain injury and its associated adverse developmental 
outcome [8,11,12]. The severity, intensity and timing of asphyxia, as well as a selective ischemic 
vulnerability and the immaturity of the brain, determine the extension and the degree of severity of the 
ensuing damage and long-term neurodevelopmental impairment [13–16]. 

Neuropathological studies indicate that many critical neuronal groups are more vulnerable to HI 
injury in newborns (immature brain) than in adults, particularly related to enhanced density and 
function of excitatory amino acid receptors as well as enhanced vulnerability to attack by reactive 
oxygen species (ROS) and reactive nitrogen species [17]. In fact, the immature brain has more blood 
vessels, higher water content, lower myelin, a poorly developed cortex, and a more prominent 
germinal matrix than the mature brain [10]. These characteristics make the preterm brain more 
susceptible to HI damage.  

Due to these immature brain characteristics, it is necessary to focus on the period of time following 
the HI event, when the therapeutic strategies could be efficacious in the reduction of brain damage to 
improve the care in perinatal HI. This period is normally short and may vary from 2 to 6 h; therefore, a 
rapid identification could facilitate the application of diverse rescue strategies. In order to reduce 
neurological consequences derived from HI injury, it is necessary to improve some actions, such as 
monitoring the perinatal period [18,19]. 

2. Pathogenesis of Perinatal Brain  

The principal pathogenic mechanism underlying neurological damage resulting from HI is the 
deprivation of the glucose and oxygen supply, which causes a primary energy failure and initiates a 
cascade of biochemical events leading to cell dysfunction and ultimately to cell death [20,21].  

Brain damage following a perinatal HI is an evolving process, which is comprised of two  
phases [13]. A first phase consists of an early energetic failure, where the oxidative energy metabolism 
of cells decreases and it promotes necrotic death. This is followed by a second phase of cell death, a 
late energetic failure, which occurs during reperfusion and reoxygenation several hours after the initial 
event and lasts for days [10,22,23]. The pathophysiology of this late energetic failure initiates a 
cascade of biochemical events (Figure 1), which involve nitric oxide synthases activation, the production 
of cytotoxic free radicals, inflammation, membrane dysfunction and apoptosis, among others [24].  
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Figure 1. Cascade of biochemical mechanism after hypoxic-ischemic (HI) brain injury. A 
schematic diagram that summarizes the cellular and molecular events triggered after HI 
injury in the developing brain. Mitochondrial damage, the cytotoxic levels of intracellular 
calcium and the release of inflammatory mediators cause metabolic failure, oxidative stress 
and ultimately the cell death. 

 

3. Calcium Influx and Free Radical Formation 

During the late energetic failure, a consequent reperfusion injury often deteriorates the brain 
metabolism by increasing the oxidative stress damage. Particular roles for increase in extracellular 
glutamate, excessive activation of glutamate receptors (excitotoxicity), increase in cytosolic calcium 
(Ca2+) and generation of free radicals are emphasized [12,25–27].  

Loss of mitochondrial membrane potential, combined with high concentrations of glutamate, opens 
calcium-permeable NMDA glutamate channels and voltage-gated calcium channels allowing calcium 
to move into neurons [28]. This fact triggers enhanced production of free radicals and activation of 
lipases, proteases, and endonucleases.  

As a consequence of lipases and proteases activation, the release of free fatty acids, especially 
arachidonic acid, will activate cyclooxygenase and will catalyze the formation of prostaglandins, 
which will liberate super-oxide free radicals. In addition, the formation of oxygen free radicals is also 
enhanced via hypoxanthine metabolization. Hypoxanthine is formed during the HI and metabolized to 
uric acid. Collectively, these processes will lead to a surge of the superoxide free radicals, which play a 
central role in further production of free radicals and other toxic compounds [12,25–27]. 
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The prominence of an NMDA-mediated injury in the immature brain is related to the fact that 
NMDA receptors are functionally upregulated in the perinatal period due to their role in  
activity-dependent neuronal plasticity [29]. Immature NMDA channels open more easily and stay open 
longer than adult channels, and the voltage-dependent magnesium block that is normally present in 
adult channels at resting membrane potentials is more easily relieved in the perinatal period [30]. 

4. Nitric Oxide Synthases Activation 

Open NMDA channels allow calcium to enter into the intracellular compartment and activate 
neuronal nitric oxide synthase (nNOS), leading to production of the oxygen free radical nitric oxide 
(NO) [31,32]. Then, NO can react with superoxide to form toxic peroxynitrite, which can add nitrate to 
tyrosine groups on proteins. This reaction contributes to the production of hydroxyl radicals, causing 
lipid peroxidation of proteins and DNA, which produce to further damage to brain tissue [33–36]. NO 
can also disrupt mitochondrial respiration by impairing the function of cytochrome oxidase from 
complex 4 and complex 1, which increases the production of superoxide and peroxynitrite ions in 
mitochondria, especially during hypoxia [32,37]. 

5. Inflammation 

Inflammation plays an important part in the excite-oxidative cascade of injury in the perinatal 
period [38]. Three to twelve hours after reperfusion and reoxygenation an inflammatory response, 
which is probably induced by excessive free radical production and high levels of extracellular 
glutamate, pro- and anti-inflammatory cytokines such as TNF-α, IL-1, IL-6, IL-8 and IL-10 will be 
activated [39].  

Likewise, the activation of two transcription factors, Nuclear Factor kappa B (NF-κB) and c-Jun  
N-terminal kinase (JNK), play a central role in the post-HI inflammatory process. In addition, these 
transcription factors can regulate expression of pro- and anti-apoptotic proteins and thus can contribute 
to damage or neuroprotection [40–42]. 

6. Apoptosis Activation 

Apoptotic activity contributes to brain damage in the neonate and is an important pathway in the 
process of delayed neuronal death. Apoptosis is an energy-dependent process and ATP is required for 
apoptosome formation and subsequent caspase activation [43,44]. Caspases and especially the  
caspase-3 are activated in this process and bring about most of the changes that characterize apoptotic 
cell death [45]. Activated caspase-3 is expressed at higher levels in the developing brain after perinatal 
HI, giving rise to the assumption that apoptotic mechanisms of neuronal cell death seem to be more 
important in neonatal brain injury than adults [46]. Increased knowledge about the factors that 
determine when or how cells die after HI is important since it might enable salvage tissue through use 
of drugs, growth factors or treatment interventions that influence brain activity [47,48]. 
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7. Neuroprotective Therapies 

Many potential neuroprotective therapies that target specific pathways in the pathophysiology of HI 
brain injury have been investigated. At present, no individual neuroprotective agents have been proven 
safe and effective against neurological sequels after HI events in neonates. The insight into the 
biochemical and cellular mechanisms of neuronal injury after HI helps to provide interventions to 
interrupt those deleterious cascades derived from the event [49]. Pharmacological and non 
pharmacological therapies should start at different points of time after the HI event, in their optimal 
therapeutic window, according to their mechanisms of action (Figure 2). Moreover, some of these 
therapies are supplied pre-HI event. Anyway, the goals of these therapies are: reduce cerebral damage 
by decreasing the formation of toxic free-radicals, inhibit the excessive influx of calcium into neurons 
and minimize cerebral edema principally [50,51]. 

Figure 2. Neuroprotective therapies and their optimal moment of administration, according 
to their mechanisms of action. In this sense, pharmacological antioxidant therapies such as 
melatonin, allopurinol, hypothermia or magnesium sulfate could be useful just after the HI 
event. After the reperfusion, when the secondary energy failure takes place, other 
therapeutic options like cannabinoids, erythropoietin or iminobiotin, which have  
anti-inflammation and anti-apoptotic effects, could be promising therapies. 

 

Likewise, to improve the care in perinatal HI, it is necessary to focus on the period of time 
following HI event, when the therapeutic strategies could be efficacious in the reduction of brain 
damage. This period is normally short and may vary from 2 to 6 h and therefore a rapid identification 
would facilitate the application of diverse rescue strategies.  

In these sense, up to the present moment, some of the most useful therapies have been appeared, 
such as N-acetylcysteine and allopurinol, magnesium sulfate, glutamate receptor blockers, erythropoietin 
and hypothermia [52]. These pharmacological and non-pharmacological interventions progress to 
minimize the extent of damage along the evolving process after HI brain injury [53–58]. 
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8. Non-Pharmacological Therapies 

Among the nonpharmacologic therapies for the treatment of brain injury, hypercapnea and 
hypothermia stand out. On the one hand, in experimental assays with rats, hypercapnea has been 
reported to reduce lung injury, increase cerebral blood flow, and protect the immature brain from HI 
injury [59]. On the other hand, hypothermia appears to be the most reliable intervention available at 
the moment for reducing the risk of death or disability in infants with brain injury [60,61]. Multiple 
animal experimental models have demonstrated that a “mild-moderate” reduction in brain temperature 
of 2–3 °C below normal is beneficial when utilized during HI, during resuscitation and after the event 
to prevent or attenuate neuropathological damage. The temperature reduction in a moderate grade  
(32–34 °C) has now become standard of care for neonatal HI brain injury. For each 1°C decrease in 
core temperature, the cerebral metabolic rate decreases by 6% to 7% [62,63].  

Up to date, information derived from magnetic resonance imaging studies related to hypothermia 
therapy suggests that head and total body cooling are associated with a decrease of basal 
ganglia/thalamic brain lesions incidence [64]. The mechanisms based on the hypothermic 
neuroprotection are the increase of neuronal survival in the basal ganglia and the suppression of 
caspase-3 activation [65]. Hypothermia has also been shown to suppress microglial activation [66]. 
Furthermore, the inflammation and expression of TNF-α, IL-1β and IL-18 are reduced [67] whereas 
there is an increase of the anti-inflammatory cytokine IL-10 [66,68]. At a cellular level, hypothermia 
protects the cell wall and maintains the integrity of the lipoprotein membrane [69]. Furthermore, it 
decreases enzymatic reactions that lead to cell damage or death [70,71]. In addition, hypothermia 
inhibits activation of NMDA receptors [72]. At tissue level, hypothermia improves oxygen supply to 
areas of ischemic brain and decreases intracranial pressure [73]. 

Several trials of hypothermia in human newborns have been performed during last decades, 
applying two different methods: whole-body cooling and selective head cooling. Although neither 
method has been demonstrated to be superior, each mode of cooling has unique properties. These 
larger clinical trials in human newborns described reproducible approaches to hypothermic therapies 
and confirmed the feasibility of such therapies [74–77]. In many of the experienced centers involved in 
the multicenter trials, hypothermia is becoming “standard care” [78].  

The benefit of hypothermia in reducing death and major disability in the survivors has been 
confirmed, but a number of important questions remain [79]. The optimal depth of cooling has yet to 
be determined in asphyxiated infants. Similarly, optimal duration remains unclear. The optimal mode 
of delivery—selective head vs. whole-body cooling—has not been studied [80]. As well as the exact 
duration of the therapeutic window in humans is unknown and likely related to inflammatory 
influences, nutrition, brain maturation and genetic predisposition [81]. Successful dissemination of this 
new therapy will require improved identification of infants with perinatal HI and the creation of 
systems that can institute therapy in a timely manner. 
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9. Pharmacological Therapies 

9.1. Therapeutical Strategies Related to Antioxidants 

Recent studies using a variety of pharmacological agents have noted that their administration 
followed by perinatal HI could contribute to effectiveness. In this sense, the main point of using these 
specific drugs is focused on reducing the toxic free radicals and inhibiting the excessive influx of 
calcium into neurons to minimize cerebral oedema caused by HI [9,52,82]. 

Regarding free radical formation after the HI event, allupurinol could reduce the formation of  
free-radicals that cause tissue damage and could help to maintain the blood-brain barrier. Allopurinol 
and its metabolite oxypurinol are inhibitors of xanthine oxidase, the enzyme involved in superoxide 
production, especially during reperfusion damage [83]. The difference between both of them is that 
oxypurinol crosses the blood brain barrier more easily than allopurinol. 

Neuroprotective effects of allopurinol administered after the event had been observed in  
seven-day-old rats [84] and in newborn lambs [85]. Reactive oxygen species induced after brain cell 
injury can be reduced through inhibition of xanthine oxidase, present in capillary endothelial cells [86], 
by allopurinol and oxypurinol [87]. Other neuroprotective pathways of allopurinol are the direct 
scavenging of free radicals demonstrated in vitro with high concentrations of allopurinol [88], 
inhibition of neutrophil accumulation [89], chelation of metal ions such as ferric iron [90] and 
facilitation of electron transport from ferrous iron to ferric cytochrome C [91]. 

A recent human pilot study has shown promising results when administrated immediately prior to 
delivery when suspecting fetal asphyxia. Five hundred mg of allopurinol or placebo was administrated 
intravenously to 53 pregnant women in labor (54 fetuses with a gestational age >36 weeks and signs of 
fetal hypoxia). It proved a reduction of biomarkers of neuronal damage [92]. However, it is possible 
that allopurinol has no positive effect when started too late and at low doses [93]. 

Other possible candidates, which are widely prescribed to lower cholesterol in hyperlipidemic 
patients at risk of cardiovascular diseases, are statins (3-hydroxy-3-methylglutaryl coenzyme A 
reductase inhibitors). Experimental evidence suggests that statins also possess properties that may 
confer to this class of drugs a prophylactic neuroprotective effect in stroke [94]. Although human 
treatment with statins seems still far away, Neuroprotection was associated with reduction of cytokine 
expression, caspase-3 activation and apoptotic cell death. However, according to research on immature 
rats, the neuroprotective effect was not associated with changes in eNOS expression [95]. Perinatal 
neuroprotection was observed using a prophylactic, high dose of statin (20 mg/kg), administered for  
seven days before the onset of ischemia [96] but not noticed when the drug was administered after the 
event [95]. In addition, other study reported the prophylactically administration of Simvastatin 
attenuated the HI-induced oligodendrocytes injury, inhibited microglial activation and reduced the 
numbers of pyknotic cells and neuronal loss [97]. However, the molecular mechanism by which the 
neuroprotective effect is achieved is not fully understood. 

Likewise, up to the moment, different noble gases have been studied as new neuroprotection 
therapies. On one hand, xenon, a non-competitive antagonist of the N-methyl-D-aspartate (NMDA) 
subtype of the glutamate receptor [98], appears to be superior to other NMDA antagonists because it 
has additional mechanisms of action, such as the inhibition of AMPA and kainate receptors and the 
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reduction of neurotransmitter release [99]. Other actions of xenon include inhibition of the 
calcium/calmodulin dependent protein kinase II [100], activation of anti-apoptotic effectors Bcl-XL 
and Bcl-2 [101] and induced expression of hypoxia inducible factor 1α [102]. Xenon is 
neuroprotective following HI in neonatal rats [103,104] and is effective even when its administration is 
delayed for some hours [105,106]. Moreover, the combination of xenon with hypothermia caused an 
effect, even at low concentrations or mild temperature reductions, while it supplied separately had no 
effect at all [103]. The major disadvantage of this intervention is that xenon is very expensive and its 
administration is rather complicated, since it requires intubation and ventilation of the patient, as well 
as a high percentage of xenon [12]. On the other hand, argon is a noble gas that, in contrast to xenon, is 
ubiquitous, cheap and widely applicable. Ryang et al. reported the argon neuroprotective role in an  
in vivo rat model of acute focal cerebral ischemia showing a significantly reduction of infarct volumes 
and better functional outcomes. However, other studies have pointed out the absence of a therapeutic 
effect, no advantage in acute survival 24 h after transient middle cerebral artery occlusion was 
demonstrated [107] 

Furthermore, administration of magnesium sulfate (MgSO4) has been suggested to act as a 
neuroprotective agent. MgSO4 is an NMDA receptor antagonist, which prevents excitotoxic  
calcium-induced injury through the non-competitive voltage-dependent inhibition of NMDA receptor. 
This inhibition reduces calcium entry into the cell [108–111]. Magnesium sulfate may also have direct 
actions on mitochondrial activity, anticonvulsant properties and haemodynamic effects by increasing 
cerebral blood flow. Moreover, animal data suggest that MgSO4 may serve an antiapoptotic role and 
prevent neuronal cell loss [112–114]. An additive effect in reduction of the infarct area, when 
magnesium sulfate is associated to mild hypothermia, has been observed in rats [115].  

Nowadays, there is no general consensus about the value of magnesium as a neuroprotective agent. 
Previous reports suggested that MgSO4 administration prevented the effects of energy depletion after 
an HI event in newborn children trials [116] and altered important enzymes in erythrocyte membrane 
from asphyxiated newborns, reducing the postasphyxial damage [117]. However, other multicenter 
trials have pointed out on the one hand the absence of a therapeutic effect [118,119] and on the other 
hand, magnesium administration has even been considered to be harmful for the fetus [120,121], 
although this opinion is not unanimously held [122–124] and the question is still unclear. These 
paradoxical perspectives regarding the neuroprotective effect of MgSO4 administration could be the 
consequence of the variability in the study design, depending on the dose and the experimental model, 
making it difficult to compare the outcomes directly. Studies with newborn rodents and different 
magnesium doses presented divergent results, including neuroprotection [125–130] or its  
absence [115,131–135]. On the other hand, although lamb or pig models are closer to humans [136], 
up to date there are few studies on the protective effect of MgSO4 administration in these newborn 
mammals suffering neonatal HI encephalopathy [114]. 

In the last years, several studies have pointed out cannabinoids as substances with high potential as 
neuroprotective compounds, both in acute neurodegenerative diseases, as HI or traumatic brain 
damage and in chronic processes as multiple sclerosis, Parkinson’s disease and Alzheimer’s  
disease [137–139]. These substances have emerged as neuroprotectants due to the fact that can 
modulate neuronal and glial response. Besides, cannabinoids have endothelial cell functions,  
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anti-excitotoxic [140,141] anti-inflammatory [142,143] and vasodilator effects [144], regulating at the 
same time the calcium homeostasis [145,146].  

Activation of cannabinoid receptors induces the closure of Ca2+ channels, consequently inducing a 
neuroprotection through the reduction of glutamate release [147,148]. Drugs reducing glutamate 
release are of particular value according to neuroprotection in neonatal HI event, as glutamate receptor 
blockers are neurotoxic in immature brains [149]. In addition, cannabinoids reduce direct NMDA 
toxicity by downstream inhibition of Protein Kinase A signaling and NO generation [150].  

Several in vitro studies have reported neuroprotective effects of cannabinoids related to their 
antioxidant effect [151,152]. In addition, in vivo models of neurodegenerative diseases have 
demonstrated antioxidant-related neuroprotective actions for cannabinoids [153]. Cannabinoids 
possess some other properties that account for their neuroprotective effects after a HI event: they are 
brain vasodilators [154,155], stabilize the blood-brain barrier and are involved in neuroproliferative 
processes [156]. Cannabinoids enhance energy metabolism of astrocytes [157] and protect these glial 
cells against cytotoxic and proapoptotic stimuli [158]. 

Administration of endogenous cannabinoids emerges as a novelty neuroprotective therapy due to 
the particularity that these substances take part on the natural mechanism for controlling damage. 
According to their neuroprotective effects, experimental in vitro studies confirmed that the endogenous 
cannabinoids AEA and 2-AG may attenuate the injury in cortical cells in an oxygen glucose 
deprivation model [159]. Taking into consideration an in vivo model of induced excitotoxicity 
endocannabinoid AEA protects the neuronal injury [160]. Moreover, according to closed head injury 
in mice, the administration of 2AG promotes significant reduction of brain oedema, better clinical 
recovery, reduced infarct volume and reduced hippocampal cell death [161]. Finally, the 
administration of these two different endocannabinoids after HI injury in perinatal rat model creates a 
remarkable amelioration of brain injury, reducing apoptotic cell death and contributing to the 
maintenance of mitochondrial functionality, as well as improving cellular parameters such as the influx 
of calcium and ROS production [162]. 

Among the anti-oxidant interventions for the treatment of perinatal brain injury, the melatonin is 
also a well focused possible therapy. Melatonin is an endogenously produced indoleamine that is 
primarily formed by the pineal gland. Melatonin has the ability to cross all morphophysiological 
barriers and therefore is distributed widely in tissues, cells and subcellular compartments including the 
brain. Various studies reported that melatonin might act as a neuroprotective agent in neonatal  
HI [163,164] and acts as a potent endogenous antioxidant by scavenging free radicals and upregulating 
antioxidant pathways. The activity and expression of antioxidant enzymes such as superoxide 
dismutase, glutathione catalase, glutathione peroxidase and glutathione reductase have been shown to 
be increased by melatonin, supporting its indirect antioxidant action. Further evidence of the 
antioxidant effect of melatonin is provided by its ability to reduce lipid peroxidation, a degradative 
phenomenon involved in the pathogenesis of many diseases [165]. 

Another alternative is the use of antioxidants such as erythropoietin, which has antiapoptotic and 
angiogenic properties [166] and provides neuroprotection and neurogenesis in neonatal rats [167,168]. 
Vitamin E is also hypothesized as an antioxidant and free-radical scavenger to be effective reducing 
the risk and severity of HI damage [169]. Moreover, deferoxamine prevents the formation of free 
radicals from iron since it is a free metal-ion chelator. Deferoxamine reduces the severity of brain 
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injury and improves cerebral metabolism in animal models of HI when supplied during  
reperfusion [170]. However, some toxic effects have been detected when administrated at high dose in 
preterm baboons [171]. 

9.2. Therapeutical Strategies Related to Anti-Inflammation and Anti-Apoptosis 

Apart from producing an antioxidant effect, cannabinoids can also play a key role in peripheral and 
brain immune functions, including the inhibition of the inflammatory mediators release, such as nitric 
oxide, interleukin-2 and TNF-α, the inhibition of the cell-mediated immune processes activation and 
the inhibition of proliferation and chemotaxis [172,173]. 

Moreover, some authors have indicated that cannabinoid WIN55212 reduces apoptotic cell death 
through the maintenance of mitochondrial integrity and functionality in all regions studied [174], it 
promotes neurogenesis in subventricular zone, oligodendrogenesis, white matter remyelination and 
neuroblast generation after neonatal HI event [175]. Besides, the CB1 antagonist AM281 and the 
DAG-lipase inhibitor O-3640, exacerbates the detrimental effects in an oxygen glucose deprivation  
in vitro model by releasing glutamate in excess. The CB2 receptor agonist, 0-1966, has been found to 
increase blood flow to the brain and therefore attenuates neuroinflammation in an animal model of 
stroke [159]. These data support the hypothesis that the protective effects of cannabinoids derive from 
its anti-apoptotic and anti-inflammatory effects, opening a new gate about its possible use as 
neuroprotective targets after perinatal HI. 

Regarding to anti-inflammatory effect after the HI event, N-acetylcysteine (NAC) has been used in 
some pilot studies. NAC is a free radical scavenger and restores intracellular glutathione levels, 
attenuating reperfusion injury, decreasing inflammation and NO production in models of stroke [176]. 
Besides, it has low toxicity and it is able to cross the placenta and blood-brain barrier. In a clinical 
trial, extremely low birth weight newborns received NAC by continuous infusion during the first six 
days of life in order to reduce chronic lung disease incidence [177]. When combined with 
hypothermia, NAC decreased infarct volume, improved myelin expression and functional outcomes 
after focal HI injury in seven-day-old rats exposed to 2 h of carotid ligation and hypoxia [178]. 

Furthermore, melatonin also has antiapoptotic and anti-inflammatory effects. It prevents the 
translocation of NF-κB to the nucleus, therefore reduces the up-regulation of pro-inflammatory 
cytokines [179] and it reduces the expression of pro-inflammatory genes such as cyclooxygenase-2 
(COX2) and iNOS [180]. Welin et al. demonstrated that post-asphyxia melatonin treatment attenuated 
the increase in activated microglia and 8-isoprostane (a marker of lipid peroxidation) production and, 
at the same time, reduced the number of apoptotic cells in the cerebral white matter in midge station 
fetal sheep [181]. It may act at different levels by decreasing inflammation with some of the multiple 
mechanisms responsible for the progression of the neurodegenerative process. Therefore, melatonin 
may represent a promising neuroprotectant, on its own or as an additional adjunctive therapy, for 
reducing brain injury and its long-term sequaelae in infants [181,182]. 

Recent studies using erythropoietin (EPO) have noted that its administration following perinatal HI 
could contribute to effectiveness. The EPO, which was originally identified for its role in 
erythropoiesis, was found to play a variety of roles in modulation of the inflammatory response and 
has vasogenic effects [11]. It may activate antioxidant enzymes, decrease excitotoxic damage, induce 
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anti-apoptotic and anti-inflammatory factors and inhibit lipid peroxidation [183]. Moreover, EPO 
regulates the balance of antiapoptotic and proapoptotic genes expression, increasing anti-apoptotic 
gene Bcl-2 levels [184]. 

EPO prevents the secondary delayed rise in IL-1β, attenuates the infiltration of leukocytes into the 
ipsilateral hemisphere [185] as well as the pro-inflammatory response in brain injured pups [186]. 
Neuroprotection with EPO has been documented in spinal cord injury, traumatic brain injury, ischemic 
stroke, and perinatal HI [187]. Administration of EPO, after HI event, promotes oligodendrogenesis 
leading to attenuated white matter injury concurrently with increased neurogenesis [188]. However, 
the mechanisms of EPO in different kinds of neural injury have not been clearly clarified, especially 
for neonatal brain injury. 

Another neuroprotective strategy is the iminobiotin. Iminobiotin, an analog of biotin, has inhibited 
both nNOS and iNOS in experimental studies, so it could be considered as a neuroprotectant. 
Otherwise, in vivo, it provides long and short-term neuroprotection probably inhibiting cytochrome  
c-caspase 3, consequently hindering apoptotic pathways. Remarkably, only female rats were protected 
against brain injury, what suggests a gender specific effect [189]. 

In the last years, several studies have pointed to these candidates as substances with high potential 
as neuroprotective compounds, both in acute neurodegenerative diseases and in chronic processes. 
These pharmacological and non-pharmacological interventions are progressing to minimize the extent 
of damage along the evolving process after HI brain injury by modulating the neuronal response,  
anti-excitotoxic, anti-inflammatory, anti-apoptotic, vasodilatory effects as well as by regulating the 
calcium homeostasis. 

10. Delayed Possibilities: Regeneration 

During HI brain injury, neurons, glia and endothelial cells are damaged, thus reducing their 
functionality or dying. Endogenous regeneration mechanisms have been shown to exist in the brain with 
ischemic injury, stimulating neural stem cell proliferation and differentiation in cerebral neurogenic 
areas [190–192]. However, the capacity of the neonatal brain to respond to enhanced endogenous 
neurogenesis following neonatal HI may depend on timing and severity of event. In addition, endogenous 
neurogenesis may only partially restore brain damage after an HI event. 

Recent advances in regenerative medicine suggest that stem cell transplantation may improve repair 
of the damaged brain [193]. Neural stem cells can renew and differentiate themselves between cells  
of all glial and neuronal lineages and populate the developing or the degenerating central nervous  
system regions. 

Recent evidences suggest that HI induced brain damage can also be treated with mesenchymal stem 
cells (MSCs) [194]. MSCs may also secrete several trophic factors including colony stimulating factor-1, 
VEGF, basic fibroblast growth factor, nerve growth factor and brain derived neurotrophic factor [195]. 
In these sense, the intracranial administration of MSCs several days after HI event has shown a 
decreased histological damage and an improved outcome in rat HI model [196].  

Stem cell transplantation has the potential to become a future neuroprotective and regenerative 
therapy for ischemic brain damage, however there are still hurdles to overcome before clinical 
application of stem cell transplantation can safely be considered. 
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