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Abstract: In the past few years, significant advancements in microscopic imaging technology have
led to the production of numerous high-resolution images capturing brain neurons at the micrometer
scale. The reconstructed structure of neurons from neuronal images can serve as a valuable reference
for research in brain diseases and neuroscience. Currently, there lacks an accurate and efficient
method for neuron reconstruction. Manual reconstruction remains the primary approach, offering
high accuracy but requiring significant time investment. While some automatic reconstruction
methods are faster, they often sacrifice accuracy and cannot be directly relied upon. Therefore,
the primary goal of this paper is to develop a neuron reconstruction tool that is both efficient and
accurate. The tool aids users in reconstructing complete neurons by calculating the confidence of
branches during the reconstruction process. The method models the neuron reconstruction as multiple
Markov chains, and calculates the confidence of the connections between branches by simulating the
reconstruction artifacts in the results. Users iteratively modify low-confidence branches to ensure
precise and efficient neuron reconstruction. Experiments on both the publicly accessible BigNeuron
dataset and a self-created Whole-Brain dataset demonstrate that the tool achieves high accuracy
similar to manual reconstruction, while significantly reducing reconstruction time.

Keywords: neuron reconstruction; analysis of neuronal features; confidence of branch; Markov chain;
image processing

1. Introduction

Neurons constitute the fundamental units of the brain’s nervous system. A compre-
hensive insight of their morphological structure is crucial for studying brain function and
diseases [1,2]. For instance, reduced dendritic branching has been detected in the CA1
and CA4 subregions of the hippocampus in autism patients, while decreased lengths of
dendritic branches in both apical and basal regions of the CA1a and CA1b subregions have
been observed in Alzheimer’s disease patients [3].

In recent years, advanced fluorescence imaging platforms capable of high-throughput
and high-resolution have been developed, such as fluorescence micro-optical sectioning
tomography (fMOST) [4,5] and light-sheet fluorescence microscopy (LSFM) [6,7]. These
technologies have facilitated the production of numerous large-scale images of neurons.
Due to imaging technology constraints and uneven fluorescent labeling of neurons, images
often suffer from high levels of noise and low signal-to-noise ratios. Consequently, ana-
lyzing neuron structure becomes challenging. Neuron reconstruction aims to extract the
morphological structure of neurons from these images. Presently, there is no method for
neuron reconstruction that is entirely accurate due to these constraints. Therefore, manual
reconstruction remains essential for achieving highly precise results.

To facilitate users to manually reconstruct neurons, various neuron reconstruction
tools have been created, including Neurolucida [8], Vaa3D [9], Janelia Workstation [10], and
so on. Although the manual reconstruction of neurons achieved high accuracy, the more
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complex the neuron morphology, the higher the time cost. As a rough estimate, a complex
cortical neuron typically requires approximately 1–3 weeks to completely reconstruct [11].

Driven by the 2010 DIADEM competition, scientists have proposed many automatic
tracing algorithms [12], such as the APP2 method, which prunes over-reconstruction ac-
cording to a hierarchical strategy prioritizing long segments [13], the MOST method for
centerline extraction based on initial seed points [14], and the ENT method, which refers to
ensemble learning for neuron reconstruction [15], all of which aim to improve the efficiency
of neuron reconstruction. In recent years, scientists have introduced deep learning methods
into the neuron reconstruction. The 3D U-Net Plus method [16] improved 3D U-Net net-
work to segment tangled neuronal image; the UltraNPR method [17] segmented large-scale
neuron cluster images based on progressive learning; SPE-DNR [18] reconstructed neurons
by detecting critical points. These methods have shown promising results in neuronal im-
age segmentation and critical point extraction. However, due to the varying strategies and
models used by automatic reconstruction algorithms, as well as the differences in images
processed by the algorithms, their performance is not satisfactory in practical applications,
and the reconstruction cannot be directly utilized.

Unlike direct automatic tracing reconstruction algorithms, probabilistic tracing re-
constructs neurons in an uncertain manner, involving the calculation of confidence for
seed points or segments. Radojeić et al. introduced a neuron tracing method that utilizes
probability hypothesis density (PHD) filtering to assign tubular value confidence to seed
points [19]. Similarly, Athey et al. tackled the neuron tracing problem by employing a
hidden Markov model, connecting the two neuronal segments with the highest connec-
tion confidence, and deriving the final probability reconstruction [20]. Inspired by the
concept of probabilistic tracing, this paper implements confidence calculation on neuron
reconstruction. High-confidence branches are retained, while low-confidence branches are
presented to the users for modification, aiming to achieve efficient and accurate neuron
reconstruction results.

Manual neuron reconstruction is known for its precision but requires a significant
time investment. On the other hand, automatic reconstruction offers a quick solution but
often sacrifices accuracy. Therefore, this paper attempts to develop a neuron reconstruction
tool with both accuracy and efficiency. In this paper, we develop a tool for detecting
reconstruction artifacts based on branch confidence calculation, which can assist users
to reconstruct complete neurons. As shown in Figure 1, the tool provides users with
feedback on reconstruction artifacts detected in the automatic reconstruction through
various marking techniques, facilitating modification operations. By iteratively addressing
low-confidence branches via a ‘detection–modification’ approach, users can achieve more
accurate neuron reconstructions.

Figure 1. A flowchart of the proposed reconstruction process. Branches affected by reconstruction
artifacts are highlighted with different colors. In particular, white indicates high-confidence branches,
while fuchsine denotes user-confirmed correct branches.
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In summary, the major contributions of this paper are as follows:
(1) We propose an accurate and efficient neuron reconstruction process. By embedding

the necessary manual modification process in the automatic reconstruction, the reconstruction
accuracy is improved while reducing the time required for direct manual reconstruction.

(2) We design a method for detecting reconstruction artifacts, which serves as a
valuable reference for other studies in neuron reconstruction. Leveraging the distinct
features of neuronal branches, we employed Markov chain modeling to analyze the results
of neuron reconstruction. Within this framework, reconstruction artifacts are simulated,
facilitating their detection and prompting users for necessary modifications.

(3) We evaluated the performance of this neuron reconstruction tool in two challenging
3D neuronal image datasets. The experimental results show that our method can achieve
accurate and rapid neuron reconstruction.

2. Materials and Methods
2.1. Artifacts of Neuron Reconstruction

Due to the uneven distribution of fluorescent labels in neurons and the limitation of op-
tical microscopy imaging technology, the neuronal image often exhibits issues such as noise
interference and voxel loss. Particularly at the whole-brain level, where neurons are densely
intertwined, these complexities pose significant challenges for automatic reconstruction
algorithms. As shown in Figure 2, a neuron is selected for automatic reconstruction under
a whole-brain neuronal image of a mouse. The neuronal image exhibits noise and inter-
ference from other neuronal branches. When utilizing the traditional APP2 algorithm for
automatic reconstruction, the result reveals unsatisfactory output, characterized by numer-
ous artifacts. According to their different morphological characteristics, these artifacts can
be divided into four categories: over-tracing, incomplete tracing, connection error, and
branch missing. According to the range of the influence of artifacts on the branch, it can be
broadly classified as global artifacts or local artifacts. In particular, some artifacts existing in
parent branch will be directly inherited by the current branch, which can be called artifacts
having transitivity.

Figure 2. Automatic reconstruction of captured whole-brain neuron images.

Over-tracing occurs when an automatic algorithm traces redundant neuronal branches,
usually due to image noise, and this artifact exhibits transitivity. Connection errors arise
when the algorithm’s reconstruction result deviates from the typical pattern of neuronal
growth, caused by connections to interfering branches, and this artifact also displays
transitivity. Branch missing refers to cases where the automatic algorithm misses or fails
to trace a sub-branch, either due to image noise or voxel loss, without transitivity in this
artifact. Incomplete tracing denotes situation where the automatic algorithm stops tracing
at positions that still require tracing, possibly due to voxel loss, leading to gaps in the
branches without transitivity in this artifact. Incomplete tracing is a special type of branch
missing that takes place at the end of a branch.

The four artifacts mentioned above have differing implications for branches. Over-
tracing and connection errors within branches are categorized as global artifacts, while
branch missing, incomplete tracing, and connection errors between branches pertain to local
artifacts. Specifically, connection errors are categorized into two types: internal connection
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error, which occurs within a branch itself, indicating that the branch is connected to another
interfering branch and results in incorrect reconstruction; and external connection error,
which refers to a fragmentary connection error between two reconstructed branches. These
two types of artifacts exist in distinct locations and need to be explained separately.

These reconstruction artifacts significantly reduce the accuracy of automatic recon-
struction results, making them impractical for direct utilization and requiring manual
adjustments by users. Especially, during the modification phase, users are compelled to
evaluate each branch for four types of artifacts, resulting in a substantial consumption of
manual labor. This paper aims to detect these four types of reconstruction artifacts in an
automatic way. Users just need to adjust the low-confidence branches based on the tool’s
hints, evaluating the detection results only once, so as to reduce the reconstruction time.

2.2. Common Features of Neuronal Branch

To identify artifacts in neuron reconstruction, understanding accurately reconstructed
branch features is crucial. Neuronal branches have a tree-like structure, with a child branch
sharing similar properties to its parent branch. They typically exhibit image features, like
intensity mean and standard deviation, which reflect intensity information within the
neuronal image. Meanwhile, for the structural features like angle between parent and
child branches, reflects the morphological aspects of branches in the overall reconstruction.
These features play an important role in detecting and analyzing potential artifacts in
neuron reconstruction.

Figure 3 shows the common features of branches in mouse neurons. The dataset is
composed of 20 complete neurons manually reconstructed from whole-brain neuronal
images of 7 different mice, and the neurons in 29 regions are extracted and divided into
5190 pairs of parent–child branches for feature statistics. In order to emphasize the similar-
ity between parent and child branches, we calculate the differences in their features using
three statistical metrics: intensity difference, intensity standard deviation difference, and
angle. Branching pairs exhibiting neuronal features in more than 85% of cases are termed
as the common features of neuronal branches. Figure 3 reveals that the intensity difference
and intensity standard deviation difference of neuronal branches have similar distributions:
as the value of feature surpasses a specific threshold, there is a sharp decrease in the count
of branching pairs. This indicates that these two features can effectively capture the image
features of neuron reconstruction. Moreover, when the intensity difference or the intensity
standard deviation difference decreases, the number of parent–child branching pairs in-
creases. This supports the concept that there is a similarity in intensity between parent and
child branches. Finally, angle between parent and child branches is less than 90 degrees,
which is aligned with the growth pattern of neuronal branches, and the probability of
reverse growth is reduced. Therefore, this paper uses these three features as evaluation
factors for artifact detection.

Figure 3. Statistical analysis of neuronal branches’ common features. The x-axis represents specific
feature values, while the y-axis indicates the number of parent-child branch pairs corresponding to
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each feature value. (a) Examining intensity differences between parent–child branching pairs in the
mouse brain. (b) Exploring intensity standard deviation differences among such pairs. (c) Investigat-
ing the distribution of the angles between parent–child branching pairs. The red dotted line divides
the feature distribution, with the portion preceding it representing 85% of the total distribution.

2.3. Model Designation

The Markov chain refers to a series of random events, where the output of each event
depends only on the preceding event’s state, independent of previous events. In other
words, the Markov chain has the memoryless property, where the current state is solely
influenced by the preceding state, a characteristic known as Markov property.

As shown in Figure 4a, assuming state B and state C are any two points in the
undirected graph without direct edge connection, the probability of transferring from state
B to state C is independent of state B, and this is expressed mathematically as follows:

P(XC|XB, XA) = P(XC|XA) (1)

Because of the tree-like structure of neuronal branches, the growth trend of the current
branch is directly influenced by its parent branch, with no dependence on other branches
for its growth. This property aligns neuronal branching pair with the Markov property and
allows for its design using Markov chains.

Figure 4. Markov chain in neuron reconstruction.

In this paper, inspired by the work [20], we design Markov chains suitable for parent–
child branching pairs of neurons. In the work [20], numerous small fragments were directly
extracted from neuronal images. The connection confidence between these fragments was
computed using hidden Markov random fields, enabling the neuron tracing with high
confidence based on probability. In contrast to [20], this paper partitions the reconstructed
neuron structure into several pairs of parent–child branching segments, as illustrated in
Figure 4b. Beginning from the branching point, fixed-length and direction branching
segments are, respectively, extracted from the parent–child branching pair. The direction
of these branching segments is indicated by arrows. According to the context above, it is
inferred that the two segments exhibit Markov property. Consequently, the reconstruction
can be considered as the integration of several simple Markov chains, as depicted in
Figure 4c. In this paper, the connection probabilities of parent–child branching segments
are calculated by simulating various artifacts generated during reconstruction. And the
branch confidence calculation is categorized into two categories based on the range of the
artifacts’ influence on the branch, specifically denoted as:

Con f idence(Branch B) = min(PG(Branch B), PL(Branch B)) (2)

where, PG refers to the probability that the parent–child branching pair is connected under
the influence of a global artifact, and PL refers to the probability that the parent–child
segment pair is connected under the influence of a local artifact. The definition is as follows:

PG(Branch B) = P(Branch B|Branch A) (3)
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PL(Branch B) =
Branch B

∑
b

Con f idence(b) (4)

here, b is one of the segments of Branch B.
For the calculation of probability, the energy function U(·) is designed to calculate the

energy required for the connection between branches. The greater the energy, the lower the
probability of the connection. Taking Branch A and Branch B as an example, the connection
probability is calculated as follows:

P(Branch B|Branch A) = 1 − U(Branch A, Branch B)
Z(Branch A)

(5)

Z(Branch A) = ∑
s∈S

U(Branch A, s), S = {s|0 < dist(Branch A, s) < Td ∪ Branch B} (6)

here, Z(Branch A) calculates the total energy demand for all branches within set S to be
connected to Branch A. Set S encompasses neighboring branches that potentially connect to
Branch A. dist(·) calculates the nearest distance between two branching segment endpoints,
and Td represents the distance threshold. At last, the current branch is added to the set S,
considering the component of the current connection in the total potential connection.

To derive the energy function, we incorporate three common features of a neuronal
branch, and the design is as follows:

U(Branch A, Branch B) =

{
α∆I + β∆σ, θ < 90
∞, θ ≥ 90

(7)

∆I = |I(S1)− I(S2)| (8)

∆σ = |σ(S1)− σ(S2)| (9)

cos θ = cos⟨d1, d2⟩ (10)

where ∆I refers to the average intensity difference corresponding to Branch A and Branch B
in the image, while ∆σ is the intensity standard deviation difference corresponding to the
two branches in the image. The angle between the two branches is θ. Hyperparameters
α and β regulate the importance assigned to the image features. Additionally, θ < 90 is
assumed as the prior knowledge for neuron reconstruction. If the angle of the parent and
child branches is greater than 90 degrees, the connection energy is set to infinity. This
indicates that it is impossible to establish a connection in this case, and promotes users to
check and confirm. Branches with confidence below a specified threshold are marked as
having low confidence, prompting user intervention for modifications.

2.4. Data Preprocessing and Skeleton Branch Extraction

For the purpose of reconstructing a complete neuron, it is essential to accurately
identify each branch in the neuronal image. Nonetheless, the background intensity across
the whole-brain neuronal image is not uniform, and there are neuronal branches with weak
signals that may be easily ignored during reconstruction [21]. In this paper, we employ
the derivative truncated gamma transformation (DTGT) method [22] to enhance the weak
signals in branches, thereby ensuring the integrity of the reconstruction.

The proposed tool conducts confidence calculation for each branch. Given the transitiv-
ity of certain artifacts, the reconstructed neuronal branches should be extended from soma
to calculate confidence, so it is necessary to divide the reconstructed neuronal branches
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based on the parent–child hierarchy within the tree structure. As depicted in Figure 5,
branches sharing the same hierarchy are color-coded uniformly.

Figure 5. Neuronal branches hierarchical display. Branches are color-coded based on different
reconstruction types in Vaa3D, indicating various hierarchical levels. The white value on the far left
corresponds to 0, with levels increasing from left to right.

In Figure 6, the process of deriving skeleton points for artifacts is demonstrated. In this
paper, we introduce an extended bounding box method to better analyze the reconstruction
result of each branch. This proposed method retains both the corresponding images of
the current branch and its neighbors. First, the process input an image obtained by the
extended bounding box method, subsequently performing foreground and background
segmentation to acquire a binary graph. For binarization, the process employs a fixed
threshold value computed based on the current image attributes [13]. This approach
effectively preserves neuronal branches within the image. Next, the thinning algorithm
introduced by Palágyi et al. [23] is applied to the binary graph, which is a classic technique
for thinning 3D images. After thinning, the non-empty voxels are identified as the initial
skeleton points.

Figure 6. The process of extracting skeleton points for artifacts. Points of different colors represent
skeleton points, while red lines depict the neuron reconstruction result within the image block.

Due to the characteristics of neuronal fluorescent labeling, the branches close to the
soma are distinctly labeled, often resulting in halos in imaging. These halos can impact
the thinning results, leading to the generation of numerous redundant skeleton points. To
solve the above problems, this paper filters the images through Frangi filter [24], focusing
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only on voxels with tubularity. However, it has been observed that the performance of this
filter is inadequate near the soma. Consequently, soma removal is conducted based on the
reconstructed soma radius. Moreover, if a skeleton point and its adjacent 26 neighborhoods
on the processed image are not empty, this point is identified as having tubularity and
is retained. Then the process filters the valid skeleton points based on two defined rules:
removing branching points to facilitate the extraction of skeleton branching segments, and
removing isolated points to reduce image noise interference.

Finally, the skeleton points are corresponding to the reconstruction, and those out-
side the reconstruction are retained. These points are focal areas for the proposed tool,
indicating the potential artifacts’ position. Once the skeleton points of potential artifacts
are extracted, they are connected into several undirected skeleton branches through the
adjacency matrix. The presence of these skeleton branches represents the likelihood of
inaccurately reconstructed branches, implying potential artifacts in the reconstruction.

2.5. Branch Confidence Calculation

According to the range of the artifacts’ influence on the branch, the calculation of
branch confidence is divided into two categories: global branch confidence calculation
and local branch confidence calculation. The global branch confidence calculation is to
calculate the confidence of connecting the segments of the parent and child branches in
case of global artifacts, including over-tracing and ‘branch–skeleton’ connection errors, and
similarly, the local branch confidence calculation is for the local artifacts, which encompass
‘branch–branch’ connection error, branch missing and incomplete tracing.

Figure 7a simulates a case in which a neuron reconstruction contain five kinds of
artifacts. In the global range, Figure 7b shows two distinct cases of over-tracing. In the
first case, when the angle between the child branching segment and the parent branching
segment exceeds 90 degrees, we consider that the child branch lacks the structural feature
and advise users to check it. In the second case, the over-tracing is evident when the angle
of the branches conforms to the structural feature, then the detection of the artifact relies
solely on the image features corresponding to the branching pair. To address this, we
propose a branch tubularity calculation: if 70% of the points on the branch have tubularity,
the branch is considered to have tubularity. Consequently, when a branch does not have
tubularity, it can be reasonably inferred that the branch has an over-tracing artifact. In
summary, over-tracing is defined as follows:

θ > 90 & hasTubularity(Current Segment) == f alse (11)

In this paper, connection errors are categorized into two types depending on the range
of influence. In particular, for ‘branch–skeleton’ connection error, as shown in Figure 7c, a
branch is incorrectly reconstructed to another location due to interference. As a result, there
exists a potential unreconstructed skeleton branch near its parent branching segment. For
this type of artifact, we compare the connection probability between the parent branching
segment and the skeleton branching segment with that between the parent branching
segment and the current branching segment. If the former exhibits a higher value, the
current branching has a ‘branch–skeleton’ connection error. The conditions are defined
as follows:

P(Current Segment|Parent Segment) < P(Skeleton Segment|Parent Segment) (12)

In the local confidence calculation, for the ‘branch–branch’ connection error, depicted
in Figure 7d, the branches are in close proximity to each other, resulting in a misconnec-
tion of the two branching segments during reconstruction. In this case, the probability
of connecting the parent branching segment to other branching segment is higher than
that of connecting the parent branching segment to the current branching segment, as
defined below:

P(Current Segment|Parent Segment) < P(Other Segment|Parent Segment) (13)



Brain Sci. 2024, 14, 396 9 of 19

For branch missing, as shown in Figure 7e, it is necessary to consider whether skeleton
branches are isolated missing branches. Since a skeleton branch breaks at the branching
point, it is possible for the skeleton branch to possess a parent skeleton branch. As for an
isolated skeleton branch, the probability of connecting with another skeleton branching
segment within the connection range should be lower than that of connecting to the
current branching segment. The presence of isolated skeleton branches signifies that the
reconstruction result has the artifacts of branches missing. The connection range represents
the minimum distance between the skeleton branch and the current branching segment. In
conclusion, the criteria for identifying there being a branch missing are defined as follows:

P(Current Segment|Skeleton Added Segment) > P(Skeleton Added Segment|Other Sekeleton Added Segment) (14)

Length(Skeleton Added Segment) > Length(Other Skeleton Added Segment) (15)

Finally, for the incomplete tracing detection, it is essential to assess whether adjacent
skeleton branches can be legally connected to the current branch. All artifacts’ detection
needs to consider the connection legality when identifying potential unreconstructed
skeleton branches. In this paper, skeleton branches are considered candidates if they have
tubularity and the distance from the endpoint of the current branching segment is less
than threshold D. The candidate skeleton branches might deviate from the typical growth
patterns of neurons when they connect to the current branch, necessitating additional check.
As shown in Figure 7g, the growth characteristics of neuronal branches are simulated,
and a connection between two neuronal branches is considered legal if the angles of the
branching segments satisfy the specified conditions as follows:

θ ≤ 90 & φ ≤ 90 & ω ≤ 90 (16)

when there exists any legal neuron skeleton branch connection, the branch is judged to
have incomplete tracing artifact. Based on the various conditions outlined above, branch
confidence can be employed for distinguishing among different artifacts. Consequently,
only the identified artifacts need to be marked to prompt users to perform the corresponding
corrective actions.

Figure 7. Schematic of reconstruction artifacts.
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3. Results
3.1. Datasets and Platform

(1) Whole-Brain Dataset: The proposed tool is to detect the reconstruction artifacts
that exist on mouse whole-brain neuronal images, so three different scales of mouse whole-
brain neuronal images were chosen to test this tool, with dimensions of 34,412 × 54,600
× 9847, 35,989 × 54,600 × 10,750 and 35,000 × 26,298 × 11,041, all with a resolution of
1 µm × 1 µm × 1 µm, as shown in Figure 8. Ten neurons were arbitrarily chosen from these
three large-scale images, and crop image blocks of dimensions of 256 × 256 × 256 with the
soma at the center, to create the Whole-Brain dataset.

(2) BigNeuron Dataset: The experimental validation of the tool also can be conducted
using the openly available BigNeuron dataset [25], which encompasses neuronal images
from various species along with gold standard morphological data. Given the tool’s specific
design for mouse neuron analysis, a subset of ten mouse neurons was chosen for testing
purposes. In contrast to the whole-brain datasets, this particular dataset predominantly
features single neuronal structures with high-quality images at varying resolutions, such
as 2048 × 2048 × 90, 1288 × 1280 × 30, 1324 × 1252 × 44 and so on. In order to match
the image input dimensions required by this tool, images are resized within the range of
256 × 256 × 256.

Figure 8. Mouse whole-brain neuronal images.

The tool is developed based on the Vaa3D platform [26], specifically version Vaa3D-
x.1.0.8. It is used for 3D visualization and analysis of medical images and interactive
operations, and the source code is openly available to support customization by developers.
This tool serves as a plug-in for the Vaa3D platform, which is convenient for users to
employ directly when reconstructing neurons and plays an auxiliary role.

Figure 9 displays the interface of this tool along with the presentation of the operational
results. First, an image is opened in the Vaa3D platform and the position of soma is
marked as the starting position of the reconstruction process. Upon selecting this plugin
from Vaa3D’s plugin list, a tool panel for branch confidence calculation will emerge, as
shown in Figure 9b. Users can utilize the function buttons on this panel to carry out
neuron reconstruction. This paper primarily focuses on the tool’s ability to perform neuron
branch confidence calculation for the reconstruction result. Figure 9c–h display the results
of the confidence calculation for the automatic reconstruction, and highlight different
reconstruction artifacts through different colors. Using the classic APP2 algorithm for
automatic reconstruction reveals numerous artifacts, as depicted in Figure 9c. For example,
the color red is employed to identify an over-tracing artifact, as demonstrated in Figure 9d,
where the red branch forms an angle exceeding 90 degrees with its parent branch. Utilizing
yellow to signify the ‘branch–skeleton’ connection error, as exemplified in Figure 9e. The
correct position for reconstructing the yellow branch corresponds to the location of the
skeleton branch highlighted in the hint. Figure 9f exhibits a blue branch labeled as a
‘branch–branch’ connection error, coinciding with the overlap of the green branch. In
Figure 9g, the depiction of a missing branch is indicated by the presence of the skeleton
branch, while the green branch signifies the occurrence of the artifact of branch missing. In
Figure 9h, the marker hints the position of incomplete tracing, exposing the presence of
unfinished voxels at that point. Additionally, Figure 9c features a fuchsine branch, serving
as a indicator for users to validate their confidence in the reconstruction. Users can mark
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a branch in fuchsine when they are convinced that the reconstruction for that branch is
absolutely accurate.

Figure 9. Presentation of system interface and operational results.

The users are able to discern the artifacts in the current branch through the different
colors and skeleton branches, allowing them to carry out targeted corrective actions. The
reconstruction process using this tool is considered finalized when only white and fuchsine
branches are visible in the final result.

3.2. Reconstruction Performance

The complete process for reconstructing neurons with this tool is depicted in Figure 10.
Initially, this tool begins automatic reconstruction upon receiving a neuronal image and
soma markers as inputs. Following this, it automatically calculates the confidence of
branches in the current reconstruction and marks branches with low confidence based on
the rules outlined in Section 3.1. Next, users are prompted to modify the low-confidence
branches and save the modified result. After that, another confidence calculation is per-
formed, revealing the persistence of low-confidence branches again. Following further
adjustments, all branches transition to either white or fuchsine, signaling the tool’s recog-
nition of the completion of reconstruction. This neuron only carries out two ‘detection–
modification’ iterations to achieve a complete reconstruction. In fact, the exact number of
iterations required vary for different neurons. This tool calculates branch confidence using
parallelization technology, ensuring the detection is to be completed within one minute.

In order to demonstrate the usefulness of this tool in neuron reconstruction, we com-
pared the results reconstructed by manual method, automatic method, automatic followed
by manual method, MouseLight method [10] and our method. Similar to our method, the
MouseLight method also combines the results of automatic reconstruction with manual re-
construction. By automatically reconstructing neuron fragments and manually connecting
branching points, the MouseLight method can achieve efficient axon reconstruction. To
facilitate the comparison of neuronal topological morphology, the radii of the reconstruction
results were all set to 1.
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Figure 10. Process of assisting in the complete reconstruction of a neuron using confidence calculation.

In Table 1, the results of the neuron reconstruction on the two datasets are evaluated in
seven metrics. Among them, Time is used to compare the reconstruction speed of different
methods. Precision, Recall, and F1-Score are used to judge how well the reconstruction
results match the ground truth. The definitions are as follows [27]:

Precision(R, G) =
|R ∩ G|
|R| (17)

Recall(R, G) =
|R ∩ G|
|G| (18)

F1-Score(R, G) = 2 × Precision × Recall
Precision + Recall

(19)

where, R denotes the results using different reconstruction methods and G denotes the
ground truth, which is established through a process of manual reconstruction confir-
mation. |·| represents the number of points that satisfy the condition. These metrics are
confined within the value range of [0, 1], with a higher numerical value indicating higher
reconstruction accuracy.

Table 1. Performance comparison for neuron reconstruction on the BigNeuron and Whole-Brain datasets.

Dataset Method Time (s) Precision Recall F1-Score ESA DSA PDS

Whole-Brain

Manual 1021.656 1.000 1.000 1.000 0.000 0.000 0.000
Automatic 8.058 0.708 0.919 0.764 4.175 12.253 0.187

Automatic+Manual 1028.262 0.929 0.937 0.928 0.819 5.553 0.054
MouseLight 1348.945 0.802 0.773 0.765 1.915 6.308 0.184

Ours 704.635 0.931 0.930 0.930 0.753 4.948 0.051

BigNeuron

Manual 743.366 0.967 0.907 0.936 0.934 4.411 0.049
Automatic 3.560 0.968 0.346 0.499 4.918 8.290 0.313

Automatic+Manual 669.420 0.950 0.850 0.896 1.066 4.104 0.080
MouseLight 332.586 0.834 0.561 0.641 2.637 5.687 0.268

Ours 620.583 0.969 0.883 0.924 0.957 4.074 0.057

Note: Automatic+Manual means the automatic followed by manual method. Bold values indicate superior
performance in the corresponding metric. In the Whole-Brain dataset, the Manual method is established as the
ground truth without comparative analysis.



Brain Sci. 2024, 14, 396 13 of 19

Additionally, three other metrics, including the entire structure average (ESA), differ-
ent structure average (DSA), and percentage of different structures (PDS), were employed
to evaluate the structural accuracy compared to the ground truth [28]. The lower values
for these metrics indicate smaller gaps with ground truths and suggest higher-quality
reconstructions.

Analysis of Table 1 indicates that the tool not only accelerates the process of neuron
reconstruction but also achieves highly accurate results. In the Whole-Brain dataset, the
absence of a gold standard for neuronal morphology led to manual reconstruction results
being considered as the ground truth, particularly due to the random selection from the
whole-brain images. By analyzing the results of the two datasets, it was observed that
automatic reconstruction was the fastest, but less accurate, with the worst F1-Score perfor-
mance. Notably, automatic reconstruction achieved high accuracy in the BigNeuron dataset,
likely due to the dataset’s high level of image quality. The data in Table 1 demonstrate
the similarity between our method and the automatic followed by manual method in
terms of reconstruction accuracy. This similarity is attributed to both methods prioritizing
complete neuron reconstruction. The automatic followed by manual method achieves this
by incorporating manual judgment and modification of automatic reconstruction results,
while our method relies solely on automatic judgment, leading to differences in time con-
sumption between the two methods. Additionally, significant variations in accuracy can
be observed with the MouseLight method. In the Whole-Brain dataset, the MouseLight
method achieves higher accuracy levels. This is attributed to the interference from other
neuron branches, prompting the method to identify more branching points and segment
fragments at locations prone to errors, thereby resulting in higher accuracy in the recon-
struction process. Conversely, in the BigNeuron dataset, the lack of human intervention in
automatic reconstruction segments significantly impacts the final reconstruction accuracy.
Our method consistently achieves accuracy levels close to manual reconstruction, with
F1-Scores reaching as high as 93.0% and 92.4%. Consequently, employing this tool to assist
reconstruction can achieve accurate neuron reconstruction results.

Figure 11 displays the time consumption for reconstruction on the two datasets. It is
evident that the time consumed using the proposed tool is lower than the manual method.
The automatic method consistently has the shortest processing time, but its reconstruction
results with low accuracy cannot be directly utilized. Specifically, the MouseLight method
exhibits a longer processing time in Whole-Brain dataset, and even exceeding that of manual
reconstruction. This is because the method is primarily applicable to axon reconstruction,
and in the whole-brain neuronal images, there are numerous interfering branches around
dendrites, leading to the generation of multiple interfering fragments and short fragments.
When using this method for whole-brain neuron reconstruction, users must first remove
interfering fragments and then connect short fragments, thus requiring a longer processing
time. However, in the BigNeuron dataset, due to fewer neuronal signal interferences
and higher image quality, longer fragments are generated, requiring only branch point
connection operations and resulting in shorter processing times for users.

When reconstructing neurons using the automatic followed by manual method, longer
processing times are observed in the Whole-Brain dataset due to the influence of interfering
branches, resulting in more reconstruction artifacts in the automatic reconstruction results,
requiring user judgment and modifications, which is time-consuming. In contrast, our
method demonstrates higher efficiency in reconstructing whole-brain datasets. But there is
no significant efficiency advantage over the automatic followed by manual method in the
BigNeuron dataset. This is because both methods supplement automatic reconstruction
results manually in high-quality images, with the difference lying only in human judgment
versus automatic judgment. Consequently, the utilization of the present tool proves effective
in reducing the overall time required for neuron reconstruction.
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Figure 11. The reconstruction times comparison on the two datasets. (a) Comparison of reconstruction
times on the Whole-Brain dataset. (b) Comparison of reconstruction times on the BigNeuron dataset.

In addition, we also analyze the effect of the magnification of neuronal images on
the performance of our method. Four neuronal images from the same mouse brain were
chosen from the Whole-Brain dataset, with voxel sizes of 1 × 1 × 1 µm3, 2 × 2 × 2 µm3,
and 4 × 4 × 4 µm3, respectively. Neuron reconstruction was performed by the manual
method and our method. Figure 12 illustrates the impact of varying image scales on the
reconstruction accuracy of our method. Across all scales, our method consistently achieves
commendable accuracy, with F1-Scores consistently exceeding 75%. Moreover, our method
demonstrates higher accuracy in reconstructing neurons at the 2 × 2 × 2 µm3 magnification
scale compared to the other two scales. At both the 1 × 1 × 1 µm3 and 2 × 2 × 2 µm3

scales, intricate details of neuron branches are clearly visible, enabling better feedback
for artifact detection and user modification of operations. However, at the 1 × 1 × 1 µm3

scale, fewer neuron branches are discernible in the image, resulting in some deviations
rather than artifacts in reconstruction, which leads to significant fluctuations in accuracy.
Similarly, at the 4 × 4 × 4 µm3 scale, the clarity of branch signals is reduced, resulting
in lower reconstruction accuracy compared to the 2 × 2 × 2 µm3 scale. These findings
emphasize the importance of selecting an appropriate scale for reconstructing neuronal
images throughout the whole brain.
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Figure 12. Impact of neuronal image scales on the neuron reconstruction accuracy of our method.

Furthermore, Figure 13 illustrates the effect of varying image scales on processing
time. As shown in the Figure 13, the reconstruction time using our method increases as the
scale rises, attributed to the growing number of neuronal interference branches. Notably,
at the 2 × 2 × 2 µm3 scale, most images require more time for reconstruction because
neurons exhibit more fine structure at this scale, requiring additional processing time. And
regardless of the scale, the time to reconstruct neurons using our method is often lower
than that of the manual method.

Figure 13. Visualization of reconstruction results on ten different neurons.

Figure 14 visualizes the reconstruction results of five neuronal images with noise. The
red part represents the ground truth, the blue part represents the results using different
reconstruction methods, and the red and blue overlapped part represents the results
matching the ground truth. In Figure 14, it is obvious that the automatic reconstruction
results vary in performance across different neuronal images. Many images depict an
abundance of blue branches and numerous reconstruction artifacts. On the contrary,
when using the MouseLight method to reconstruct neuron images with noise, it is easy
to lose branches due to the loss of extracted fragments, resulting in many incomplete red
branches in the output. However, when utilizing our method for reconstruction, nearly all
branches align closely with the ground truth, resulting in a significantly higher accuracy
of reconstruction. This leads us to assert that the proposed tool can provide valuable
assistance to users in reconstructing neurons.
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Figure 14. Visualization of reconstruction results on five neuronal images with noise.

4. Discussion

By employing the automatic reconstruction algorithm, rapid reconstruction results can
be achieved. To mitigate the time-consuming process of manual reconstruction, direct man-
ual adjustments to the automatic reconstruction are feasible. Nevertheless, as evidenced by
the outputs depicted in Figure 11, the time invested in this method surpasses the manual
method. Moreover, the time required for neuron reconstruction using the MouseLight
method is influenced by the quality of the neuronal image. Although high-quality images
entail shorter reconstruction times, they often yield lower accuracy in the reconstruction
results. Therefore, leveraging this tool to aid users in modifications becomes imperative.
Regardless of the complexity of neuron images, this tool is capable of achieving complete
reconstruction results similar to manual reconstruction, with accuracy rates exceeding 90%
across three performance evaluation metrics. In conclusion, the method of using confidence
calculations on branches to detect artifacts in neuron reconstruction is practical.

Presently, automatic reconstruction methods are undergoing continuous updates.
However, due to their high specificity, relying only on these algorithms cannot achieve
perfect reconstruction for various neuronal images. This tool facilitates a ‘detection–
modification’ process on automatic reconstruction results through multiple iterations.
Users have the ability to refine the reconstruction by addressing identified artifacts and
then proceed to detection following each adjustment, ultimately achieving a highly ac-
curate reconstruction. This strategy does not focus on a particular neuronal image but
rather iteratively examines reconstruction results, allowing adaptability to diverse neuronal
images by utilizing various automatic reconstruction algorithms. As a result, this efficient
process markedly diminishes the labor costs, elevates the reconstruction accuracy, and
reduces the reconstruction time.

Actually, branch confidence calculation in neuron reconstruction has been imple-
mented in previous studies. For example, Rivulet2 [29] employs an online confidence
calculation which is defined as the proportion of backtracking steps, aimed at removing
branches with low confidence. This measure serves to prevent incorrect connections with
interfering branches. However, its applicability is limited to the specific automatic re-
construction algorithm used, making it challenging to directly apply to other automatic
reconstruction. This paper draws inspiration from the work [20], where connection con-
fidence was introduced to connect various branching segments extracted from an image
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with high confidence. In contrast, this paper constructs multiple Markov chains for neuron
reconstruction, and the branch connection confidence is tailored based on the common
features of neuronal branches. A simulation is conducted to assess the confidence as-
sociated with connecting branching segments in the presence of various reconstruction
artifacts. This tool can be applied to reconstruction results obtained from various automatic
reconstruction algorithms and serves as a reference for other studies focusing on neuronal
reconstruction artifacts.

The primary focus of this paper is on detecting reconstruction artifacts. This paper
outlines the criteria for neuron reconstruction artifacts, and the judgment of some recon-
struction artifacts requires considering the features of the extracted skeleton branches. In
order to maintain the integrity of foreground voxels within neuronal images, the traditional
thinning algorithm is utilized for extracting skeleton points, which needs to be segmented.
In this paper, the process of segmenting the neuronal image is simplified by binarizing it
based on the intensity features in the image. This simplification might potentially influence
the skeleton points extraction process, resulting in redundant skeleton branches and affect-
ing the accuracy of the detection outputs. Recently many neuronal image segmentation
methods have been proposed, such as V-Net [30], 3D U-Net Plus [16], and SGSNet [31],
which can be used to further optimize this tool.

5. Conclusions

In summary, the quest for more efficient manual neuron reconstruction has emerged
with the development of various automatic reconstruction algorithms. Nevertheless, the
precision of these algorithms heavily relies on the quality of neuronal images, and their
outputs are not immediately practical. To tackle this challenge, this paper proposes the
integration of a reconstruction artifact detection tool. This tool serves to aid users in
modifying and refining the results of automatic reconstruction, ultimately enhancing
the practicality and usability of the obtained outputs. In detail, this tool constructs a
parent–child branching segments structure by dividing the neuron reconstruction into
various Markov chains, subsequently executing connection confidence assessment on these
structures. This tool identifies potential unreconstructed skeleton branches in the image,
carrying out global and local confidence calculations on these branches. This enables the
detection of potential artifacts in the reconstruction, prompting the users to make necessary
modifications. Through multiple iterations of automatic detection and users’ intervention,
the complete reconstruction of the neuron is achieved.

To assess the tool’s contribution to neuron reconstruction, two neuronal image datasets
with varying characteristics were employed: the self-created Whole-Brain dataset and the
BigNeuron dataset. When comparing the results obtained through automatic method,
automatic followed by manual method, and the MouseLight method to those of our
method, and contrasting them with the manual reconstruction results, it is apparent that
the tool’s reconstruction aligns more closely with the manual reconstruction and requires
less time. In conclusion, this tool can assist the users in realizing a fast and complete neuron
reconstruction.
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