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Abstract: Functional activation leads to an increase in local brain temperature via an increase in local
perfusion. In the intraoperative setting, these cortical surface temperature fluctuations may be imaged
using infrared thermography such that the activated brain areas are inferred. While it is known that
temperature increases as a result of activation, a quantitative spatiotemporal description has yet to be
achieved. A novel intraoperative infrared thermography device with data collection software was
developed to isolate the thermal impulse response function. Device performance was validated using
data from six patients undergoing awake craniotomy who participated in motor and sensory mapping
tasks during infrared imaging following standard mapping with direct electrical stimulation. Shared
spatiotemporal patterns of cortical temperature changes across patients were identified using group
principal component analysis. Analysis of component time series revealed a thermal activation peak
present across all patients with an onset delay of five seconds and a peak duration of ten seconds.
Spatial loadings were converted to a functional map which showed strong correspondence to positive
stimulation results for similar tasks. This component demonstrates the presence of a previously
unknown impulse response function for functional mapping with infrared thermography.

Keywords: infrared thermography; intraoperative mapping; functional neuroimaging; brain mapping;
image-guided neurosurgery

1. Introduction

Resective surgery is a fundamental part of glioma management [1–3]. Increased
extent of tumor resection has been shown to increase both patient survival and functional
outcomes [4,5]. As diffuse tumors, gliomas may extend beyond the radiographic boundaries
and infiltrate healthy tissues across the entire brain. It may be appropriate in some cases
to resect additional tissues to limit the possibility of recurrence [6]. However, increasing
the resection area also increases the risk of postoperative neurological deficits [7]. Even
though the location of functional brain regions are approximated based on known canonical
network nodes or presurgical mapping studies, there is significant variation in functional
anatomy among patients, particularly those harboring infiltrating tumors which have been
shown to induce functional neuroplasticity [8]. It is therefore imperative, and standard
of care, that intraoperative functional mapping be conducted alongside resective surgery
to identify and preserve these eloquent areas in cases where tumor resection is being
performed in the vicinity of presumed functional brain regions.

Direct electrical stimulation (DES) is the current gold standard for functional map-
ping during glioma surgery [9]. There is strong evidence showing that intraoperative
mapping with DES can prevent postoperative functional deficits without impeding exten-
sive resection [10]. DES can be performed at both the cortical and subcortical levels [11].
DES-based mapping is flexible and has been used to map a variety of functions including
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motor, sensory, language, and cognition [12]. The primary disadvantages of DES are that it
can only interrogate one area at a time and that it has a relatively low spatial resolution
of 5 mm. Stimulation-induced seizures occur in about four percent of patients [13] and
are a major contributor to mapping failure. The gross effects of stimulation on cortical
tissue are complex and overall poorly understood [14]. Accurate DES current thresholds
may differ significantly between different brain areas in a single subject [15]. Simulation
may incidentally interact with local inhibitory circuits, leading to false-negative mapping
results [16]. These limitations have raised interest in alternative mapping techniques.

Infrared thermography (IRT) is an experimental approach for intraoperative func-
tional mapping which identifies eloquent areas through stimulus-dependent changes in
brain surface temperature [17–19]. Activation of functional areas leads to an increase in
local perfusion, which during craniotomy leads to heating on the brain surface [20,21].
Gorbach et. al. demonstrated agreement between IRT and DES across motor, sensory, and
language tasks in awake patients and specifically identified a sharp temperature increase of
0.04–0.08 ◦C five to seven seconds following functional activation [22]. These temperature
values were corroborated with experiments in a rodent model demonstrating tempera-
ture increases of 0.05–0.10 ◦C in the barrel cortex in response to whisker stimulation [23].
Further investigation in rodents with simultaneous thermal and laser speckle imaging
demonstrated that these temperature increases are induced by local changes in cerebral
blood flow [24]. The triangulation between functional activation, hemodynamics, and
thermodynamics suggests that cortical temperature may operate as a functional contrast
similar to the functional MRI BOLD signal.

As an optical method, IRT has several distinct advantages versus DES. Foremost, IRT
is able to simultaneously map the entire exposed craniotomy, which may lead to faster
mapping and interrogation of cortical networks in a way that is not possible with single
localized DES stimulations. This also enables a different approach to awake task design.
Whereas DES revolves around a nonphysiological elicit or interrupt paradigm, in IRT
mapping, the subject instead simply performs the function of interest and the resulting
physiological changes are observed. IRT leverages advanced thermal imaging technology
to deliver spatial resolutions as low as 100 µm. Finally, IRT is noncontact and incurs
no additional safety risks such as intraoperative seizures. However, there are also some
weaknesses. First, IRT relies on temperature differences which are difficult to discern
without a dedicated imaging system for data analysis and visualization. Second, infrared
signal attenuation by water limits mapping to the brain surface, so deeper structures or any
areas beyond the edge of the craniotomy cannot be observed. Third, the temperature spread
of IRT is broader than the critical network nodes which may lower specificity as compared
to DES. Finally, it is currently difficult to differentiate eloquent areas from other tissues
with high confidence. Although the literature states that there are functionally induced
temperature changes, the precise structure and timing of these changes remain unclear.

The primary goal of this work is to address the present limitations of IRT and modern-
ize the technical framework for IRT-based mapping. We have developed a novel infrared
thermography system for awake functional mapping with custom software and integrated
devices for task administration and behavioral monitoring. We describe the major sources
of artifacts in thermography data and preprocessing steps to attenuate them. We validate
our approach through a group analysis of six awake subjects performing awake tasks
in a long-block design, and we compare our results to DES. Our results demonstrate a
previously undescribed thermal impulse response function for infrared thermography. We
discuss the implications of this response function for IRT mapping and its relationship with
analogous phenomena in fMRI.

2. Methods and Materials
Equipment

A novel thermography system was designed for awake functional mapping (Figure 1).
The system centerpiece is a FLIR T1020sc thermal camera (resolution 1024 × 768, framerate
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30 Hz, NETD < 20 mK). The camera is supported by a tripod with a horizontal extending
arm, all of which are enveloped by a sterile plastic cover during data collection. A data
transfer wire extends from the camera along the operating room floor to a computer
workstation housed in a mobile computer cart. The role of the workstation is data storage,
processing, visualization, and integration of the auxiliary devices for task administration
and behavioral monitoring. The computer has a speaker for transmitting audio cues to
guide the patient through tasks. A microphone attached to the computer cart records all
task audio. The computer is connected via Bluetooth to a tablet device which may deliver
visual stimuli to the patient, as well as a haptic glove which is worn during hand motor
or sensory tasks. This haptic glove tracks joint angles of the hand which may be used to
reconstruct the hand position and may deliver vibrotactile stimulation to the fingertips for
hand sensory tasks.
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Figure 1. Intraoperative Thermography System. (A) Mobile computer cart with workstation computer
during intraoperative data collection. The imaging app is visible on the screen with a real-time feed
of craniotomy data. (B) Infrared camera positioned over the craniotomy during data collection. The
camera and support system are wrapped in a sterile plastic cover. (C) Close-up of thermography task
administration and data collection software.

We have also developed a custom software application for the thermography system.
The application has a live data feed from the thermal camera which aids the camera
operator in optimally positioning, orienting, and focusing the camera over the craniotomy
during setup. The application connects to and time-synchronizes the thermal camera
with all auxiliary devices. This includes starting and stopping thermal camera recording,
calibrating thermal detector drift (non-uniformity correction) between task epochs, and
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issuing all task-related stimuli. The application is equipped with a training mode to teach
patients how to perform the task prior to surgery. A free text section allows the operator to
save any relevant observations or patient metadata related to the experiment at recording
time. Following each epoch, the thermal data and timings are saved locally for further
analysis. While the thermography system has been designed for real-time data processing
and analysis, this work focuses on the analysis steps needed so that the real-time result is
reliable. As a result, the results presented in the sections below are all post hoc analyses.

3. Data Collection

Patients undergoing awake craniotomy with DES functional mapping for glioma re-
section were recruited for intraoperative thermal imaging. Children and pregnant women
were excluded from the study. All patients underwent preoperative neuropsychological
evaluation to exclude patients with severe pre-existing functional or behavioral deficits. All
study protocols were approved by the corresponding institutional review board. Participa-
tion in the study did not prolong operation time by more than fifteen minutes. No changes
were made to standard surgical workflow, such as size and shape of craniotomy, anesthesia
protocol, or number of DES stimulations. Detailed procedures for awake craniotomy with
stimulation mapping have been described previously [3]. In brief, all patients underwent
an asleep–awake–asleep sedation protocol per routine. Initially, patients were sedated
via titration of intravenous propofol and remifentanil. Following standard craniotomy,
all sedation was held. The dura was opened sharply and, upon exposure of the cortical
surface, direct electrical stimulation (DES) mapping was performed using 60 Hz, 1–4 mA
pulses of 1 millisecond duration.

Mapping with infrared thermography (IRT) followed DES mapping. The infrared
camera and tripod were wrapped in a polyethylene surgical cover, and wheeled over
until adjacent to the surgical bed. Only one cover was used per patient, and it was not
moved during recording. The camera was then carefully positioned over the craniotomy
and adjusted as needed using the live camera data feed on the computer monitor as
a guide. The haptic glove was then placed on the patient if a hand-related task was
being performed. Infrared thermography was performed using a long-block design. Each
patient was assigned to one of three mapping tasks—hand motor, hand sensory, or face
motor—based on expected exposure of functional areas within the craniotomy. The task
was explained to each patient prior to mapping, and each patient practiced the task at least
once prior to mapping.

Mapping took five minutes for each patient, consisting of ten epochs of thirty seconds
each. Patients participated in a task stimulus at the start of each epoch. Hand motor
patients performed a hand clench, while face motor patients performed a lip purse. In
either case, three fast beeps (one second duration) were played to prompt the patient to hold
the position. Two seconds later, two slower beeps were played (one second duration) to
release the position. For hand sensory patients, the patient remained at rest while receiving
a two-second pulse of vibrotactile stimulation to the fingertips. Patients then remained at
rest for the remainder of the epoch. Patients were observed while performing the task to
ensure high-quality participation. Patients were not engaged during rest time except if they
appeared to be falling asleep.

4. Data Analysis

Thermography data were primarily analyzed using principal component analysis
(PCA) and group PCA to reveal patterns of stimulus-dependent temperature changes
and their spatial distribution across patients. However, several preprocessing steps were
applied prior to PCA to account for artifacts in thermal data. Our overall procedure is
detailed here, while additional details and justification on specific subroutines are described
in their respective sections below. Preprocessing begins with motion correction to bring
all frames from each patient into the same spatial reference frame. A craniotomy mask is
manually drawn over the craniotomy in the reference frame. Data outside this mask were
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excluded from all analysis in order to limit the effects of non-brain pixels on the functional
analysis. Each masked frame of thermal data was normalized to account for thermal drifts
over time, and then the time series of each pixel within the mask was normalized to account
for varying signal amplitudes over space. Data from all epochs were averaged together,
which underwent frame and pixel normalization again for PCA stability. Finally, the rapid
cooling effects of air currents were attenuated before the final PCA analysis.

4.1. Motion Correction

The craniotomy and brain surface exhibit rigid and nonrigid motion due to a variety
of factors, including the cardiorespiratory cycle and patient movement. As the temperature
gradients with respect to space typically exceed the temperature gradients with respect to
time, motion-related temperature changes become the dominant signal, interfering with
subsequent analysis. Our approach to motion correction has been described previously [25],
in which frame-to-frame motion is modeled as a two-dimensional spline function. We
expand this approach further by implementing a pyramid approach, where the deformation
field is first estimated on a downsampled version of the image and then upsampled as
initial conditions for the final calculation. We estimate performance of the motion correction
algorithm using image-quality metrics, which are calculated for each frame of thermal
data before and after motion correction using the first data frame as a spatial reference.
Three image-quality metrics were used: the image mean squared error (MSE), the peak
signal-to-noise ratio (PSNR), and the structural similarity index metric (SSIM).

4.2. Global Thermal Drift

The overall craniotomy temperature may change slowly over the course of the experi-
ment due to exposure to the external environment. These changes are independent of the
thermal response to functional activation and may confound subsequent analysis if the
magnitude of the drift is similar to the magnitude of task-induced thermal changes. We
account for this through a baseline subtraction and normalization approach. Only pixels
within the craniotomy mask are considered for this analysis. The median temperature is
calculated for each frame, and this value is subtracted from all pixels in the frame. Next,
the median absolute deviation is calculated for each frame, and all pixels in the frame are
divided by this value. Medians are chosen over means to mitigate the impact of outlier
pixel temperatures on thermal drift correction, such as pixels near the craniotomy edge or
any surgical objects on the brain surface.

4.3. Amplitude Normalization

Local perfusion is a significant contributor to brain surface temperature. Baseline pixel
temperature and the amplitude of temperature fluctuations are therefore modulated by the
local vasculature. For example, pixels near large surface vessels are considerably warmer,
while pixels near the craniotomy edge are often considerably colder. If the variance of
pixels is not normalized prior to principal component analysis, the results will be biased
towards thermal patterns from higher-variance pixels. This may over-represent vessels in
the final component maps at the cost of activated tissue. We account for this by normalizing
the amplitude of the time series of each pixel temperature. We use an identical procedure
as the thermal drift correction specified above, but applied to each pixel time series rather
than each frame. As a result of normalization, the time series median is set to zero and its
median absolute deviation is set to one.

4.4. Air Current Denoising

The neurosurgical operating theater is ventilated with cold air for sterility require-
ments [26,27]. The interaction of air currents with craniotomy motion creates turbulence
which drives erratic cooling patterns on the brain surface. This introduces substantial noise
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into the pixel-level signal. We propose a simple filter for air current attenuation of pixel
time series.

y = (x∗ex)/(w∗ex)

Here, x is a time series of thermal data from one pixel, ex is the element-wise exponent
of the time series x, w is a discrete Gaussian window function with a standard deviation
of σ, and y is the reconstructed signal. Operators represent convolution and element-wise
division. Outputs of both convolutions were cropped to match the size of the input time
series x. The filter may be understood as a sliding window softmax filter with an additional
Gaussian scaling coefficient. In practice, it functions as a moving average filter which
selectively preserves peaks and attenuates troughs. This is effective for air currents which
induce rapid momentary cooling by interpolating data from nearby local maxima.

4.5. Principal Component Analysis

Principal component analysis (PCA) is a dimensionality reduction technique where
the input data are transformed such that the dataset variance is primarily explained along
the orthogonal principal component vectors. As applied to our analysis, each pixel time
series is treated as an independent data point, so principal components represent patterns
of temperature change over time which are common across pixels. Loading coefficients rep-
resent the contribution of each principal component to each pixel time series. A component
map can then be created for each component time series where the pixel value is the loading
coefficient. For group PCA analyses involving multiple subjects, the data from all subjects
were spatially concatenated before PCA was applied. Next, the weighting of each subject’s
data was adjusted to be proportional to the inverse of the number of pixels contained in
each subject mask. Following group PCA, the data were split to achieve individual spatial
components which share a time series.

5. Results

Six patients were recruited for intraoperative functional mapping studies with IRT,
consisting of two patients for each of three tasks: hand motor, hand sensory, and face motor.
Patient demographics and task assignment is shown in Table 1 below. Four of the patients
were female (67%) and two of the patients were male (33%). The average patient was
37.3 years old with a standard deviation of 7.2 years.

Table 1. Patient Information. Age, sex, and task performed for each patient.

Patient Task Age Sex

1 Lip Purse 46 Male
2 Lip Purse 41 Female
3 Hand Clench 31 Male
4 Hand Clench 44 Female
5 Finger Sensory 33 Female
6 Finger Sensory 29 Female

Data from all patients were preprocessed as specified above. Data were downsampled
to 5 Hz and cropped to an epoch duration of 20 s. All data were used in the analysis except
the first epoch from patient 4, which was excluded due to a sudden large motion event.
Optimal motion correction parameters have been found previously for this downsampling
rate: image downsampling rate of 4, grid downsampling rate of 4, regularization coefficient
of 0.008, and four optimization steps per frame [25]. These parameters were used for the
base pyramid level, for which the upper pyramid level doubled both downsampling rates.
Image quality following motion correction was measured and the aggregate results are
displayed below (Figure 2). Motion correction improved median image quality across the
entire epoch for all three image-quality metrics.
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for all subjects. Aggregate values were computed by taking the median across all subjects and all
epochs. The first frame of the subject’s data was used as the reference frame for all other epochs
(full coregistration). Image quality is plotted over time for the mean squared error (MSE), peak
signal-to-noise ratio (PSNR), and structural similarity index metric (SSIM).

Following preprocessing, all epochs were averaged together and analyzed with PCA.
Two experiments were performed: one in which PCA was applied to one subject at a time
(Individual PCA), and one where PCA was applied to all subjects simultaneously (Group
PCA). The results of these analyses are described below. Complete functional keys and
original full-color DES photos are available for inspection in the Supplementary Materials,
along with all component maps for each patient.

Component time series from group PCA are shown in Figure 3. Five components
explained a total of 87% of the variance, with 34% contained in component 1, 19% contained
in component 2, 13% contained in component 3, 12% contained in component 4, and 9%
contained in component 5. The time series of the first two components were notable.
Versions of both of these time series were observed in each patient’s individual PCA
component time series. Component 1 decreases initially until five seconds, slowly increases
until ten seconds, then rapidly increases to its peak at fifteen seconds. Component 2 is
stable for the first three seconds, then increases to its peak at ten seconds, after which
it stabilizes around seventeen seconds. Specifically, component 2 peaks as component
1 begins its rapid increase, and component 1 peaks as component 2 is nearly stabilized. The
remaining components were sequentially higher in frequency and lack clear interpretation
at this time.

Loading maps for component 1 were well correlated with functional areas for two
patients, partially correlated for two patients, and anticorrelated in two patients (Figure 4).
For patient 1 (lip pursing), F and G were positive for speech arrest, but only G is covered by
the map. For patient 2 (lip pursing), H and I (hesitation) are covered but J (dysarthria) is not.
In addition, there is vast activation over the unlabeled cortex. For patient 3 (hand clench),
there is overlap in terms of hand-motor labels (D, E). For patient 4 (hand clench), the entire
hand motor and sensory cortex is unactivated, with strong activation nearly everywhere
else. For patient 5, (finger sensory), label 5 (finger tingling) is unactivated. For patient 6
(finger sensory), there is strong coverage over the finger numbness areas (D–E). When
considered as a functional indicator across patients, component 1 maps do not consistently
overlap with task-specific functional areas.
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Loading maps for component 2 were well correlated with functional areas overall
(Figure 5). In patient 1 (lip pursing), both F and G (speech arrest) locations were active,
along with a large patch over label B (lip sensory), which is an unsurprising secondary
activation. In patient 2 (lip pursing), the largest positive area lies over J (dysarthria). There
are some moderate activations overlapping areas which induce hesitation when stimulated
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(H, G). In patient 3 (hand motor), the hand-specific labels (D, E) are both covered by
component 2. While label coverage here appears to be edge artifact, this is a result of
thresholding for this figure and the loading magnitudes are especially high for these areas.
In patient 4 (hand motor), there is strong activation across the hand motor and sensory
areas (all labels). In patient 5 (finger sensory), there is activation over label 5 (finger tingling)
as well as the rest of the sensory cortex (1–8), while the motor cortex (9–13) is unactivated.
In patient 6 (finger sensory), D and E (finger numbness) were strongly activated.
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Figure 5. Component 2 Group PCA Maps by Patient. Spatial loadings are shown for the second
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overlay indicates where the map component exceeded the mean value and is bright red where the
loading exceeds two standard deviations above the mean. Black areas indicate parts of the infrared
image outside of the field of view of the white-light image. Green indicates the edges of positive DES
labels which are directly related to the IRT task.

Component 2 maps also exhibited activation in unlabeled areas. For example, in
patient 3, there is a large area of positive cortex adjacent to and encompassing label 4 (mouth
motor) that may indicate activation in the premotor cortex. This spatial activation pattern
is also observed in patient 2 and to a lesser extent in patient 4. Our DES testing protocol did
not include interruption tasks and would therefore not be sensitive to secondary functional
areas, so there are no labels here. While this may explain some of the activations in the
motor tasks, it does not explain the additional activations in the passive finger sensory
tasks (patients 5 and 6). In addition, all maps suffer from some artifact along the edges and
small sparse activations throughout.

6. Discussion

We have uncovered in component 2 a pattern of temperature change which localizes
to DES-confirmed functional areas across patients and tasks. This component was observed
at the group level but is also found at the individual level across patients. The time course
of this component is significant for its structural similarity to the BOLD hemodynamic
response function (HRF) found in functional MRI. The time course of component 2 has an
initial dip, broad peak, and a small post-stimulus undershoot akin to the HRF. While the
thermal time course is notably slower than the BOLD HRF, this is expected as increased
blood flow is a prerequisite for tissue heating, which is not an immediate process [19].
Similarly, it takes some time for the tissue to cool post-activation. We define this time series
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as the thermodynamic response function (TRF) due to its similarity to the BOLD HRF,
functional localization, and likely role as an impulse response for IRT.

We have also found a primary component which is stronger in magnitude than the
TRF and is also present in every patient. While it lacks any consistent spatial specificity
with DES results, the time course suggests that it may represent hemodynamic patterns
following the TRF. Local perfusion increases in functional areas via arterial dilation, which
constricts once the stimulus event is over. The larger spatial coverage primary component
may represent the spread of the venous network as it drains the increased amount of blood
to the region, which causes heating in regions not directly associated with the activation.
This is known as the draining vein problem in fMRI [28,29]. While in fMRI the problem
goes away as the activated bolus becomes diluted downstream (within 5 mm), the issue
in thermal imaging is worse as the heated blood conducts this heat to adjacent tissue and
stores it there. The time constant of this transfer and its decay are not known but the data
seem to suggest that it is much slower to dissipate, leading to the larger activation fields in
the primary component.

We are the first to demonstrate a coherent TRF impulse response across subjects.
Prior studies relied on temperature thresholds in order to distinguish functional from
nonfunctional tissues during classification. This is less reproducible and less robust than
impulse-based mapping, as absolute temperature values are dependent on many factors
including air temperature and humidity, operating room ventilation system type and
positioning, type and dose of anesthetic [24,30], neurovascular coupling, and craniotomy
size and orientation. Due to the high sensitivity of IRT to functional areas, it may be useful
as a screening tool in conjunction with DES confirmation as a way to reduce the stimulation
search space and ultimately lower the mapping time. Although the task-related specificity
was low in some patients, much of the extra activation was also in the eloquent cortex.
Stimulating these areas is also informative for intraoperative mapping.

While there have been many modalities developed for intraoperative functional map-
ping [31,32], DES has remained at the forefront. Somatosensory evoked potentials are
effective for mapping the central sulcus or thalamocortical tract [33,34] but has limited
general applicability and its accuracy may vary based on lesion location [35]. Addi-
tionally, electrocorticography has been used for some time to track discharges during
epilepsy surgery [36] and is also viable as an intraoperative mapping tool for complex
functions [37,38]. Electrode-based methods (including DES) are generally successful due
to their basis in neural electrophysiology; however, they share weaknesses in low spatial
resolution and low cortical coverage. Optical methods such as IRT compensate for these
weaknesses by mapping the entire craniotomy simultaneously with high spatiotemporal
resolution. Further refinement of efficient optical methods for brain mapping may develop
a synergistic relationship between the two classes of techniques.

7. Limitations

We encountered a couple of limitations while performing this study. Foremost, we
encountered difficulty in recruiting a large cohort of subjects. Awake craniotomies for
glioma resection are relatively infrequent, and not all of these patients are strong candidates
for research. Since no alterations to the clinical procedures could be made as a result of
participation in the present study, neuroanesthesia protocols could not be adjusted and
some patients were unable to stay awake during testing. This resulted in inconsistent
or partial task participation which is not suitable for inclusion in the above analyses.
Second, measured surface temperature is a result of many factors, of which local functional
activation is a major determinant. However, some patients may have local alterations in
neurovasculature due to natural variation or glioma invasion. This may alter sensitivity
and specificity of thermal mapping in some subjects. Lastly, the vascular network is
interconnected so heating or cooling may happen in unexpected areas due to upstream
or downstream effects. This may be accounted for by studying the order in which areas
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experience similar temperature patterns, but our analysis here does not have the capacity
to study delays.

8. Conclusions

This study analyzes the effects of stimuli on intraoperative brain surface temperature.
We have demonstrated a new technique for functional brain mapping using patterns of rel-
ative temperature change as opposed to absolute temperature changes. We have developed
new hardware and software approaches to support this analysis in the operating room. Us-
ing this technology, we were able to observe an impulse response for thermography-based
functional mapping. This function is likely the direct thermal byproduct of neurovascular
coupling and has strong agreement with positive areas from direct electrical stimulation
mapping. These contributions together modernize the current approaches for functional
mapping with infrared thermography. We have taken steps towards standardizing the
mapping methodology, which will ultimately be necessary for adoption of thermography
for real-time surgical use.
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