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Abstract: Parkinson’s disease (PD) is the second most common neurodegenerative disease; it mainly
occurs in the elderly population. Cuproptosis is a newly discovered form of regulated cell death
involved in the progression of various diseases. Combining multiple GEO datasets, we analyzed the
expression profile and immunity of cuproptosis-related genes (CRGs) in PD. Dysregulated CRGs and
differential immune responses were identified between PD and non-PD substantia nigra. Two CRG
clusters were defined in PD. Immune analysis suggested that CRG cluster 1 was characterized by
a high immune response. The enrichment analysis showed that CRG cluster 1 was significantly
enriched in immune activation pathways, such as the Notch pathway and the JAK-STAT pathway.
KIAA0319, AGTR1, and SLC18A2 were selected as core genes based on the LASSO analysis. We
built a nomogram that can predict the occurrence of PD based on the core genes. Further analysis
found that the core genes were significantly correlated with tyrosine hydroxylase activity. This study
systematically evaluated the relationship between cuproptosis and PD and established a predictive
model for assessing the risk of cuproptosis subtypes and the outcome of PD patients. This study
provides a new understanding of PD-related molecular mechanisms and provides new insights into
the treatment of PD.

Keywords: Parkinson’s disease; cuproptosis; molecular subtypes; immune infiltration; LASSO
analysis; prediction model

1. Introduction

Parkinson’s disease (PD), which follows Alzheimer’s disease as the second most fre-
quent neurodegenerative disorder, is characterized by the degeneration of dopaminergic
neurons in the substantia nigra and striatum [1,2]. Approximately 7 million people world-
wide are affected by PD, with the majority being elderly individuals [3]. Gender and age are
identified as independent risk factors for PD [4]. It is estimated to affect approximately 1%
of adults over the age of 60, and the prevalence rate over the age of 85 reaches 5%, causing
a series of familial, medical, and social problems [5]. Although PD is largely considered to
be a sporadic disorder, several gene mutations, including α-synuclein (SNCA), have been
identified as causative genes for familial PD [6]. The common clinical manifestations of
PD are divided into motor symptoms and non-motor symptoms, in which motor symp-
toms include static tremors, bradykinesia, myotonia, and postural balance disturbance,
and in which non-motor symptoms include sleep disturbance, loss of smell, constipation,
anxiety, depression, and cognitive decline [7]. In the early stages, PD symptoms tend to
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resemble those of various other conditions, which often complicates the clinical evalua-
tion of the disease [8]. Due to its complex pathogenesis, the current main treatment for
PD (levodopa therapy and DBS) still cannot completely control the symptoms and their
progression [9]. Despite extensive efforts, clinical biomarkers for PD remain elusive due to
its high heterogeneity.

Previous studies have shown that the development of PD is closely related to mito-
chondrial dysfunction, neuroinflammation, oxidative stress, and apoptosis [10]. Neuroin-
flammation is a typical pathological characteristic of PD. Neuroinflammation mediated by
microglia, astrocytes, and peripheral immune cells exerts neurotoxic effects by exacerbating
neuronal damage [11]. Postmortem brain analyses of PD patients have shown increased nu-
cleic acid oxidation and lipid peroxidation in the substantia nigra and striatum, suggesting
that excessive levels of reactive oxygen species and free radicals lead to neuronal damage
and death [12]. DAergic neurons in the substantia nigra are vulnerable to mitochondrial
DNA (mtDNA) damage due to oxidative stress and neuroinflammation, ultimately leading
to mitochondrial dysfunction [13]. However, current treatments, as well as novel preventive
and therapeutic measures, work similarly and indiscriminately for PD patients. Therefore,
there is an urgent need to discover new diagnostic and therapeutic targets to improve the
quality of life of PD patients.

Currently, molecular biomarkers have promising applications in the diagnosis and
treatment of PD. Recently, Tsvetkov et al. revealed that copper accumulation disrupts
mitochondrial metabolic enzymes, triggering a novel regulated cell death (RCD) mechanism
called “cuproptosis” that differs from apoptosis, ferroptosis, and pyroptosis [14]. This study
demonstrates that cuproptosis occurs when copper binds directly to lipidated proteins
in the tricarboxylic acid (TCA) cycle, leading to acute proteotoxic stress, mitochondrial
metabolic dysfunction, and, ultimately, cell death. Copper is an indispensable trace element
involved in a variety of biological processes, and it plays a vital role in maintaining cellular
enzyme activity [15,16]. Altered copper levels in the body may lead to oxidative stress and
cytotoxicity and contribute to disease initiation and progression [17,18]. Previous studies
have shown that copper is abnormally distributed in aging brain tissue and associated
with neurodegenerative diseases [19,20]. Disrupted copper homeostasis can result from
genetic mutations, aging, or environmental factors, and it can contribute to a range of
pathological changes, including cancer and neurodegeneration [21]. An epidemiological
study has suggested that chronic copper exposure in the workplace increases the risk of
Parkinson’s disease [22]. Other studies have shown that copper excess can lead to neuronal
cell death and α-synuclein aggregation [23]. In addition, many studies have shown that
mitochondrial dysfunction and oxidative stress may play a key role in the progression of
PD [24–26]. Nonetheless, the possible regulatory mechanisms of cuproptosis in PD are
not yet fully understood. Therefore, the role of cuproptosis-related genes (CRGs) in the
development of PD deserves further attention.

In this study, we conducted a comprehensive analysis of the expression disparities and
immune features of CRGs between normal substantia nigra and PD substantia nigra. Based
on the expression profiles of 13 CRGs, we performed the consensus clustering analysis of
81 PD patients and further evaluated the differences in immune infiltration and functional
enrichment between the two clusters. Subsequently, the WGCNA algorithm was employed
to identify DEGs related to cuproptosis and PD, and the enriched biological functions and
pathways were subsequently determined based on these DEGs. We then selected three core
genes through a variety of machine learning algorithms. Finally, we further validated the
stability of the core genes in the test cohort in an attempt to provide new solutions for the
treatment of PD.

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

Expression profiles of PD (GSE7621, GSE20141, GSE49036, GSE20186, GSE20295, GSE8397,
GSE26927, and GSE133101) were downloaded from the Gene Expression Omnibus (GEO;
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http://www.ncbi.nlm.nih.gov/geo/ (accessed on 13 November 2022)) database [27]. The
GSE7621, GSE20141, GSE49036, GSE20186, GSE20295, and GSE8397 were normalized using
the “normalizeBetweenArrays” function in the “limma” package. Subsequently, the “combat”
function in the “sva” package was used to remove batch effects and to serve as the training
set [28]. Overall, the training set totaled 81 PD substantia nigra samples and 65 control samples.
For external validation, we selected two datasets as our testing set, including GSE26927 and
GSE133101. We performed the same preprocessing on the testing set. The information of these
datasets is listed in Table 1.

Table 1. The information of the GEO datasets.

GEO Datasets Platform Tissue PD Samples Normal Samples

GSE7621 GPL570 Substantia nigra 16 9
GSE20141 GPL570 Substantia nigra 10 8
GSE49036 GPL570 Substantia nigra 15 8
GSE20186 GPL96 Substantia nigra 14 14
GSE20295 GPL96 Substantia nigra 11 18
GSE8397 GPL96 Substantia nigra 15 8

GSE26927 GPL6255 Substantia nigra 12 8
GSE133101 GPL18573 Substantia nigra 15 10

2.2. Assessment of Immune Cell Infiltration

The relative abundance of 22 immune cells in each sample was calculated using the
“CIBERSORT” algorithm based on the LM22 signature matrix (https://cibersort.stanford.
edu/ (accessed on 11 September 2022)) [29]. Only samples with deconvolution p-values
< 0.05 were considered to accurately measure immune cell composition. The R package
“ESTIMATE” can calculate immune scores using gene expression profiles [30]. The immune
score for PD patients was evaluated between CRG clusters.

2.3. Unsupervised Clustering of Cuproptosis-Related Genes (CRGs)

A total of 13 CRGs were obtained from previous studies [14]. Utilizing the expression
differences of CRGs, we conducted a consensus clustering analysis with the “Consensus-
ClusterPlus” R package, categorizing 81 PD samples into distinct groups [31]. The optimal
number of clusters was determined by considering CDF curves, consensus matrices, and
consensus cluster scores.

2.4. Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA)

GSVA and GSEA enrichment analyses were performed to elucidate the differences
in biological functionbetween different CRG clusters [32,33]. The annotation package
was obtained from the MSigDB website (https://www.gsea-msigdb.org/ (accessed on
30 November 2022)). The results were visualized using the “heatmap” package in R. GSEA
enrichment analysis was performed by GSEA software downloaded from the MSigDB
website to explore the involved signaling pathways between CRG clusters.

2.5. Identification of DEGs between Different CRG Clusters and Functional Enrichment Analysis

The DEGs between different CRG clusters were identified using the “limma” pack-
age [34]. The cut-off values for screening DEGs were based on |log2FC| ≥ 1 and
FDR < 0.05. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were performed using the “clusterProfiler” package in R to explore
the biological functions of CRG cluster-related DEGs [35].

2.6. Weighted Gene Co-Expression Network Analysis (WGCNA)

WGCNA analysis was conducted to identify co-expression modules using the “WGCNA”
package [36]. WGCNA analysis was used to investigate the relationship between different
modules and clinical characteristics. The independence and average connectivity of different
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modules were assessed with various power values (ranging from 1 to 20). To maintain the high
reliability of the results, the minimum number of genes was set to 30. The “moduleEigengenes”
function was employed to calculate the module eigengene for each model to identify key
modules. Module Membership (MM) indicated the relationship between modules and disease
status, while Gene Significance (GS) represented the correlation between genes and clinical
phenotypes. Candidate hub genes within the module were selected using the criteria of
|GS| > 0.2 and |MM| > 0.8.

2.7. Establishment of A Predictive Model Based on Machine Learning Methods

In order to narrow down the list of candidate genes and eliminate confounding factors,
a least absolute shrinkage and selection operator (LASSO) analysis was conducted [37].
This analysis aimed to identify key genes that do not exhibit a relationship with each other,
thus mitigating the risk of overfitting. The candidate genes identified through LASSO
analysis in the training cohort were utilized to build a logistic regression model. This
model aimed to investigate the correlation between disease occurrence and these genes.
Furthermore, the model was assessed using ROC curve analysis to evaluate its sensitivity
and specificity in both the training and testing cohorts.

2.8. Construction of a Nomogram

A nomogram model for evaluating the occurrence of PD was established using the
“lrm” function of the “rms” package in R [38]. For each predictor, there is an associated
score, and the cumulative score is employed to forecast the incidence of the disease. We
used calibration curves to assess the predictive power of nomogram models.

2.9. Validation of the Model

The stability of the candidate genes were validated by ROC using two test sets
(GSE26927 and GSE133101). The reliability of the model was judged by plotting the
ROC and calculating the AUC area. A boxplot was used to analyze the expression of model
genes in the test set. p < 0.05 was considered statistically significant.

2.10. Statistical Analysis

Each experiment was conducted a minimum of three times, and the results are ex-
pressed as the mean ± standard deviation (SD). Comparisons between two independent
groups were made using the Student’s t-test. To evaluate the statistical significance among
three or more groups, one-way ANOVA was employed. Statistical analysis of the data was
performed using R software (version 4.2.2), Prism 8, and SPSS (version 27.0). A p-value of
less than 0.05 was deemed to indicate statistical significance.

3. Results
3.1. Identification of Cuproptosis-Related Genes and Activation of Immune Responses
in PD Patients

The research flowchart is shown in Figure 1. Our analysis included six GEO datasets
containing 81 PD substantia nigra tissues and 65 control substantia nigra tissues. Based
on previous studies, 13 genes (ATP7B, ATP7A, SLC31A1, FDX1, LIAS, LIPT1, DLD, DLAT,
PDHA1, PDHB, MTF1, GLS, and CDKN2A) were confirmed to be associated with cuprop-
tosis [11]. To confirm the role of the CRGs in PD, we determined the expression levels
of these 13 CRGs between PD substantia nigra and normal substantia nigra using the
GEO database. A total of eight CRGs were identified as differentially expressed genes in
PD substantia nigra. Among them, the expression levels of MTF1 were higher, whereas
ATP7A, FDX1, LIAS, DLD, DLAT, PDHB, and GLS gene expression levels were lower in
PD substantia nigra tissues than in the control samples (Figure 2A–C). We conducted a
correlation analysis, which revealed that DLD and DLAT exhibited a strong synergistic
effect with a coefficient of 0.79. Simultaneously, GLS showed obvious antagonism with
MTF1 (coefficient = 0.40) (Figure 2D). The gene association diagram further illustrated
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the close connections among these differentially expressed CRGs (Figure 2E). To elucidate
whether there were variations in the immune system between the PD and the controls, the
immune cell infiltration of substantia nigra was constructed through ESTIMATE algorithms
(Figure 2F). The results revealed that PD substantia nigra presented higher infiltration
levels of naive CD4+ T cells, resting memory CD4+ T cells, resting NK cells, Monocytes, M2
macrophages, and Neutrophils. Simultaneously, CD8+ T cells, follicular helper T cells, and
active NK cells decreased in the substantia nigra of PD (Figure 2G). These findings imply
that alterations within the immune system might be among the contributing factors to the
development of PD. Meanwhile, the correlation analysis indicates that CRGs are correlated
with immune infiltration (Figure 2H). These results suggest that CRGs may be associated
with PD progression and immune infiltration.
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Figure 2. Expression distributions and immune infiltrating landscape of CRGs in PD. (A) The expres-
sion of 13 CRGs between PD substantia nigra and normal substantia nigra. (B) Heatmap showing
the expression pattern of differentially expressed CRGs. (C) Circus plot showing the location of the
13 CRGs on chromosome. (D,E) The correlation of 12 differentially expressed CRGs. Blue and red colors
represent positive and negative correlations, respectively. (F) The abundance of immune infiltrating
between PD substantia nigra and normal substantia nigra. (G) Boxplot showing the difference in
immune infiltration between PD substantia nigra and normal substantia nigra. (H) The correlation of
8 differentially expressed CRGs with immune infiltration. * p < 0.05; ** p < 0.01; *** p < 0.001.

3.2. Identification of Cuproptosis-Related Clusters in PD

To investigate the cuproptosis-related expression patterns in PD, we executed con-
sensus clustering analysis focused on the eight CRGs utilizing the Consensus Cluster Plus
package within R. When k = 2, we obtained the best cluster stability, and we finally divided
81 PD patients into two CRG clusters, including cluster 1 (n = 40) and cluster 2 (n = 41)
(Figure 3A,B). The PCA plot displayed distinct distributions between the two CRG clusters
(Figure 3C).
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Figure 3. Identification of CRG clusters in PD. (A,B) PD patients were divided into two groups
according to the consensus score matrix (k = 2) and CDF plots. (C) PCA plot of CRG clusters.
(D) Heatmap showing expression patterns of 8 CRGs in different CRG clusters. (E) The expression
of 8 CRGs in different CRG clusters. (F) The differences in immune scores between the 2 CRG
clusters. (G) Boxplot showing the difference in immune infiltration between the 2 CRG clusters.
(H) Heatmap showing the differential expression of immune checkpoint genes between the 2 CRG
clusters. * p < 0.05; ** p < 0.01; *** p < 0.001.
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3.3. Correlations of Cuproptosis-Related Clusters with Immune Checkpoint Genes
and Immune Microenvironment

To explore the molecular features between the two CRG clusters, we first assessed
the differential expression of the eight CRGs between cluster 1 and cluster 2. Through
the heatmap, we found that there were significant differences in the expression of CRGs
between the two clusters (Figure 3D). Boxplot analysis showed that ATP7A, FDX1, LIAS,
DLD, DLAT, PDHB, and GLS were highly expressed in cluster 2, while the expression
of MTF1 was enhanced in cluster 1 (Figure 3E). To examine the role of CRGs in immune
infiltration associated with PD, we compared the immune scores and immune infiltration
levels between the two CRG clusters utilizing the ESTIMATE. The immune score of patients
in cluster 1 was higher than that of cluster 2 (Figure 3F). The immune infiltration analy-
sis revealed a change in the immune microenvironment between the two CRG clusters
(Figure 3G). Then, we explored the correlation of clusters with immune checkpoint genes
and immune score. Our analysis revealed that CRG cluster 1 exhibited a higher expression
of immune checkpoint genes (Figure 3H).

3.4. Functional Annotation of CRG Clusters

To further explore the biological function between the two CRG clusters, we car-
ried out GSVA, GO, and KEGG analyses. The GSVA of GO terms showed that CRG
cluster 1 was significantly enriched in growth-related processes (growth factor binding,
collagen metabolic process, and collagen containing extracellular matrix). Simultane-
ously, CRG cluster 2 was significantly enriched in synapse-related processes, including
inhibitory synapse, neurotransmitter gated ion channel clustering, and proteasome binding
(Figure 4A). The GSVA of KEGG terms revealed that CRG cluster 1 was significantly en-
riched in the Notch pathway, ECM receptor interaction, JAK-STAT pathway, and cytokine
receptor interaction. CRG cluster 2 was significantly enriched in cell cycle, RNA degrada-
tion, ubiquitin-mediated proteolysis, pyruvate metabolism, and citrate cycle TCA cycle
(Figure 4B). We then performed a GSEA analysis, which was consistent with GSVA. The
GSEA results showed that CRG cluster 1 was enriched in cytokine receptor interaction,
focal adhesion, and Notch signaling pathway (Figure 4C). CRG cluster 2 was significantly
enriched in Parkinson’s disease, proteasome, and ubiquitin-mediated proteolysis, which
is consistent with the GSVA (Figure 4D). Then, we explored the metabolic characteristics
between the two clusters. The results showed that cluster 1 had a significant decline in
energy metabolism (such as citric acid cycle, inositol phosphate metabolism, and oxidative
phosphorylation) and biosynthesis (fatty acid elongation and Cholesterol Biosynthesis)
(Figure 4E).

3.5. Identification of Cuproptosis Gene Subtypes in PD

To further explore the underlying biology of the CRG clusters, we performed differen-
tial analysis and identified transcriptome differences between the CRG clusters. A total
of 77 DEGs were identified between the two CRG clusters using package “limma” in R.
We performed consensus clustering of 77 DEGs obtained from the differential analysis,
which divided PD patients into two gene clusters (Figure 5A,B). The PCA plot showed an
obviously different distribution between the two gene clusters (Figure 5C). The heatmap
delineated the DEGs between the two gene clusters, and the DEGs that were positively
correlated with the gene cluster were classified as gene type A, while the rest of the DEGs
were named gene type B (Figure 5D). Through the heatmap, we found that the gene cluster
was consistent with the CRG cluster. We explored the correlation between gene clusters
and CRGs, and the results were generally consistent with the results of CRG clusters
(Figure 5E). We then explored the correlation of gene clusters with tyrosine hydroxylase
(TH) expression, which is a key pathological mechanism for predicting PD progression
and poor prognosis. The results showed that the expression of TH in gene cluster 1 was
lower than that in gene cluster 2, indicating that the neuron loss in gene cluster 1 was
more significant (Figure 5F). Ultimately, we conducted GO and KEGG enrichment analyses,
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focusing on the 77 DEGs. Consistent with the GSVA, the results of GO and KEGG showed
that these DEGs were enriched in dopaminergic synapse, GABAergic synapse, TCA cycle,
etc., which revealed that cuproptosis plays an important role in PD development and
progression (Figure 5G,H).
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between the 2 CRG clusters. (B) GSVA analysis of KEGG terms between the 2 CRG clusters.
(C) GSEA analysis of CRG cluster 1. (D) GSEA analysis of CRG cluster 2. GSVA, gene set vari-
ation analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene
set enrichment analysis. (E) Heatmap showing the enrichment of metabolism-related signatures
between the 2 clusters.

3.6. Gene Module Screening and Co-Expression Network Establishment

We implemented the WGCNA to construct a co-expression network based on nor-
mal substantia nigra and PD substantia nigra, with the aim of identifying key modules
associated with PD. The soft threshold power was set to four, and the scale-free R2 was
equal to 0.9 (Figure 6A). Eight modules expressed in different colors were identified by
the dynamic tree-cutting algorithm (Figure 6B). Heatmaps were employed to visualize
the co-expression relationships between modules and clinical features (normal and PD)
(Figure 6C). Among them, the turquoise module had the strongest relationship with PD,
including 1384 genes (Cor = −0.43, p = 7 × 10−8). We found that the turquoise module had
a high correlation with PD (Cor = 0.7, p < 1 × 10−200) (Figure 6D). We also analyzed the
key modules associated with CRG clusters using the WGCNA. The soft threshold power
was set to four, and the scale-free R2 was equal to 0.9 (Figure 7A). As shown in Figure 7B,
12 co-expression modules were identified through the dynamic tree-cutting algorithm.
Co-expression relationships between modules (CRG cluster 1 and CRG cluster 2) and clus-
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ters were visualized using heatmaps (Figure 7C). Among the 12 modules, the turquoise
module was significantly associated with the CRG clusters (Cor = 0.71, p = 2 × 10−13).
A high correlation was observed between MM and GS in the turquoise module (Cor = 0.87,
p < 1 × 10−200) (Figure 7D).
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Figure 5. Identification of cuproptosis gene subtypes in PD. (A,B) Differential expression genes (DEGs)
were identified between CRG clusters, and DEGs were divided into two groups according to the
consensus score matrix (k = 2) and CDF plot. (C) PCA plot of the gene clusters. (D) Heatmap showing
the differential expression of DEGs and cuproptosis characteristics between gene clusters 1 and 2.
(E) The expression of CRGs between gene clusters 1 and 2 (F) The correlation of gene clusters with
TH expression. (G) GO analysis between gene clusters 1 and 2. (H) KEGG analysis between gene
clusters 1 and 2. TH, tyrosine hydroxylase; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes. * p < 0.05; ** p < 0.01; *** p < 0.001.
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Figure 6. Identification of key modules between PD and control. (A) The selection of soft threshold
power. (B) Co-expression module clustering tree dendrogram. Different colors represent differ-
ent co-expression modules. (C) Correlation heatmap analysis between different modules and PD.
(D) Scatter plot between turquoise modules and PD.

3.7. Identification of Cuproptosis–PD-Related Genes and Functional Analysis

A total of 225 cuproptosis–PD-related genes were identified by the intersection of the
CRG cluster module genes and the PD module genes (Figure 8A). The GO and KEGG
enrichment analysis was used to further explore the function of the cuproptosis–PD-related
genes. The GO enrichment analysis showed that among biological process (BP) categories,
the cuproptosis–PD-related genes were enriched in axon development, axonogenesis, mod-
ulation of chemical synaptic transmission, and synaptic vesicle cycle (Figure 8B). In cell
component (CC) categories, cuproptosis–PD-related genes were enriched in presynapse,
synaptic membrane, transport vesicle, and GABA-ergic synapse (Figure 8B). In molecular
function (MF) categories, cuproptosis–PD-related genes were enriched in channel activity,
tubulin binding, and gated channel activity (Figure 8B). KEGG enrichment analysis results
showed that cuproptosis–PD-related genes were enriched in pathways of neurodegenera-
tion, synaptic vesicle cycle, dopaminergic synapse, and cell adhesion molecules (Figure 8C).
Therefore, we hypothesized that the cuproptosis–PD-related genes may be involved in the
progression of PD through cuproptosis.

3.8. Construction of Cuproptosis-Related Machine Learning Models

In order to pinpoint cuproptosis–PD-related genes possessing high diagnostic value,
we constructed a LASSO analysis utilizing the cuproptosis–PD-related genes within the
PD training cohort. Three genes (KIAA0319, AGTR1, and SLC18A2) were identified as key
genes based on the LASSO analysis (Figure 9A,B). A ROC curve was employed to evaluate
the performance of the three genes in the training cohort. The highest areas under the ROC
curve (AUC) values of the three genes were as follows: KIAA0319 = 0.812, AGTR1 = 0.826,
and SLC18A2 = 0.856 (Figure 9C). The boxplot results showed that the three genes were
significantly down-regulated in the substantia nigra of PD (Figure 9D–F). Furthermore, we
evaluated the correlation between the expression of the three genes and TH expression.
We observed a positive correlation between KIAA0319, AGTR1, and SLC18A2 and TH
expression (Figure 9G–I).
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Figure 9. Construction and evaluation of machine learning models based on LASSO analysis.
(A,B) We performed LASSO regression on the DEGs and plotted the cross-validation curve for se-
lecting the tuning parameter (λ). (C) The ROC curve of the core genes. (D–F) The boxplots showing the
3 genes’ (SLC18A2, KIAA0319, and AGTR1) expression in PD substantia nigra and normal substantia
nigra. (G–I) The correlation analysis between the TH expression and the core genes. *** p < 0.001.

3.9. Establishment of a Nomogram and Evaluation of the Model

A nomogram was constructed to diagnose the PD subtypes using the KIAA0319,
AGTR1, and SLC18A2 (Figure 10A). Calibration curves showed a small error between actual
and predicted risk for PD clusters (Figure 10B). Subsequently, we validated the three gene
prediction models on test cohorts (GSE133101 and GSE26927). The ROC curve showed that
the AUC of the three genes predicts well in the test cohort (Figure 10C–E). We built a logistic
regression model with an AUC of 0.860 under the ROC curve, indicating that the model had
good predictive performance (Figure 10F). Then, we evaluated the expression differences
of the top three genes in the total test cohort. The boxplot showed that the expression
of KIAA0319, AGTR1, and SLC18A2 in the substantia nigra of PD are all significantly
down-regulated, which is consistent with previous results (Figure 10G–I). Correlation
analysis showed that the three genes were positively correlated with the expression of TH
(Figure 10J–L). The above results proved that the three cuproptosis genes had a certain
pathological diagnosis value in PD.
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Figure 10. Establishment of a nomogram and evaluation in the test cohort. (A) Construction of a
nomogram based on the core genes for predicting the risk of PD. (B) Construction of calibration
curve. (C) The ROC curve in GSE133101. (D) The ROC curve in GSE26927. (E) The ROC curve in the
total test cohort. (F) The ROC curve of the model in the total test cohort. (G–I) Boxplots showing the
core genes’ expression in PD substantia nigra and normal substantia nigra in the total test cohort.
(J–L) Correlation analysis between the TH expression and the core genes in the total test cohort.
*** p < 0.001.

4. Discussion

In recent years, due to the rising incidence of PD, gaining a comprehensive understand-
ing of the pathology and molecular mechanisms of PD has become increasingly important
for diagnosis and treatment. High-throughput sequencing and bioinformatics analysis
have assisted in enhancing our understanding of the molecular mechanisms involved in
disease initiation and progression, thereby facilitating the exploration of genetic alterations
and the identification of potential diagnostic biomarkers. Current studies have shown that
the development of PD is associated with oxidative stress, neuroinflammation, abnormal
aggregation of α-synuclein, mitochondrial dysfunction, and cell death [39–41]. However,
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based on current research, the effect of PD treatment is not satisfactory. Therefore, exploring
the molecular mechanism is crucial to guide the individualized treatment of PD.

Cuproptosis, as recently proposed, is a novel RCD dependent on copper and mi-
tochondrial respiration [14,42]. The present study has demonstrated that copper binds
directly to the lipoylated components of the TCA cycle, leading to the aggregation of
lipoylated proteins and the subsequent loss of iron–sulfur cluster proteins, which causes
proteotoxic stress and ultimately leads to cell death. The most recent study indicated that
copper induces cognitive impairment in mice through the regulation of cuproptosis and
CREB signaling pathways [43]. However, the specific mechanisms underlying cupropto-
sis and its regulatory role in PD remain unclear. In our present study, we first assessed
CRGs’ expression in control substantia nigra and PD substantia nigra. Compared with
the control population, the CRGs’ expression in the substantia nigra of PD patients is
generally abnormal, suggesting that CRGs play an important role in the development of
PD. Correlation analysis reveals significant interactions between CRGs in PD, including
synergistic and antagonistic effects. Subsequently, we assessed immune cell content be-
tween controls and the substantia nigra of PD. The results showed that there were higher
levels of naive CD4+ T cells, resting memory CD4+ T cells, resting NK cells, Monocytes,
M2 macrophages, and Neutrophils in PD patients, which was consistent with the results
of previous studies [44–46]. In addition, we used unsupervised cluster analysis to divide
81 PD patients into two clusters to better understand the expression patterns of CRGs.
Immunological analysis revealed that cluster 1 exhibited a higher immune score. We also
explored the expression of immune checkpoints between the two clusters, and the results
showed that the expression of immune checkpoint-related genes in cluster 1 was generally
increased, which supported the above results [47]. GSVA and GSEA analysis indicated that
CRG cluster 1 was enriched in the Notch pathway, ECM receptor interaction, JAK/STAT
pathway, and cytokine receptor interaction, while CRG cluster 2 was significantly enriched
in cell cycle, ubiquitin-mediated proteolysis, pyruvate metabolism, and TCA cycle. It has
been reported that the Notch signaling pathway and the JAK/STAT signaling pathway
are involved in neurodegeneration and neuroinflammation in PD, respectively [48,49].
Taken together, we have reason to believe that cluster 1 may have more neuroimmune
involvement in the progression of PD.

To further explore the biology of CRG clusters, we performed differential analysis and
identified DEGs between CRG clusters. Based on the DEGs, we performed unsupervised
clustering to classify PD into two gene clusters. The heatmap results showed that the gene
clusters were generally consistent with the CRG cluster classification. Tyrosine hydroxylase
(TH) is the initial and rate-limiting enzyme in the biosynthesis of dopamine, and its
dysregulation is a key pathological mechanism in predicting PD progression and poor
prognosis [50,51]. The boxplot analysis showed that TH expression was lower in gene
cluster 1 than in gene cluster 2, predicting more severe neuronal damage in gene cluster
1. The enrichment analysis showed that DEGs were enriched in dopaminergic synapses,
GABAergic synapses, and the TCA cycle, indicating that CRGs play an important role in
the development of PD.

In recent years, WGCNA algorithms and machine learning models have been increas-
ingly used in the screening of PD-related genes and the prediction of disease prevalence [37].
We used the WGCNA algorithm to identify key modules related to PD and CRG and finally
obtained 225 intersection genes. Enrichment analysis of these intersection genes showed
that cuproptosis–PD-related DEGs were enriched in certain pathways, such as neurode-
generation, synaptic vesicle cycle, dopaminergic synapse, and cell adhesion molecules.
The results show that the cuproptosis–PD-related DEGs are mainly expressed in the brain
and play an important role in maintaining the transmission of nerve signals in the brain,
indicating involvement in the development of neurodegeneration. In this study, we con-
ducted a LASSO analysis based on the expression profiles of cuproptosis–PD-related DEGs.
Subsequently, we selected the top three genes (KIAA0319, AGTR1, and SLC18A2) for
further investigation. KIAA0319 encodes a transmembrane protein that regulates neu-
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ronal migration and cell adhesion in the central nervous system, but the exact mechanism
in PD remains unclear [52]. AGTR1, also known as angiotensin II receptor type 1, has
been extensively studied in tumors and neurodegenerative diseases. Tushar et al. found
that AGTR1 is spatially restricted to the ventral side of SNpc and highly susceptible to
loss in PD [53]. SLC18A2 is an integral membrane protein that mediates the transport
of monoamine neurotransmitters from the cytoplasm to synaptic vesicles. Dysfunctions
of SLC18A2 have been suggested to contribute to the pathogenesis of PD [54]. Then, we
constructed a nomogram model to diagnose the PD subtype using KIAA0319, AGTR1, and
SLC18A2. Two validation cohorts (GSE133101 and GSE26927) were used to evaluate the
efficacy of the three genes, and the ROC results showed that the model had good predictive
performance and certain clinical application values. Additionally, we used the test cohorts
to detect the expression of the three genes between the control and PD. The results are
consistent with the training set. Correlation analysis showed that the three genes have
a positive correlation with TH expression, suggesting that these genes are involved in
maintaining neuronal function in PD.

Although many novel explorations have been carried out in this study, there are still
some limitations. Firstly, to improve the accuracy of the model, more detailed clinical
characteristics should be included in the analysis. Furthermore, more PD samples need
to be included to ensure the accuracy of copper-poisoning-associated clusters, and the
potential correlation between CRGs and immune infiltration needs further study. Finally,
this study needs further analyses to validate the expression pattern of CRGs in PD patients.

5. Conclusions

In summary, our research has revealed the expression patterns of cuproptosis-related
genes in PD through transcriptome integration analysis. By dividing CRGs into two clusters,
we found that immune cell infiltration and signaling pathways were different in the two
CRG clusters. Through machine learning, we identified KIAA0319, AGTR1, and SLC18A2
as the core genes involved in the pathogenesis of PD. Furthermore, we have established
a prediction model that can accurately assess the risk of PD. Our study systematically
evaluated the relationship between cuproptosis and PD, which will help to improve the
understanding of cuproptosis in PD.
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