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Abstract: Mitochondrial dysfunction is well-established in Parkinson’s disease (PD); however, its
dysfunctions associating with cell organelle connectivity remain unknown. We aimed to establish the
crucial cytosolic protein involved in organelle connectivity between mitochondria and the endopalmic
reticulum (ER) through a computational approach by constructing an organelle protein network to
extract functional clusters presenting the crucial PD protein connecting organelles. Then, we assessed
the influence of anti-parkinsonism drugs (n = 35) on the crucial protein through molecular docking
and molecular dynamic simulation and further validated its gene expression in PD participants under,
istradefylline (n = 25) and amantadine (n = 25) treatment. Based on our investigation, D-aspartate
oxidase (DDO )protein was found to be the critical that connects both mitochondria and the ER.
Further, molecular docking showed that istradefylline has a high affinity (−9.073 kcal/mol) against
DDO protein, which may disrupt mitochondrial-ER connectivity. While amantadine (−4.53 kcal/mol)
shows negligible effects against DDO that contribute to conformational changes in drug binding,
Successively, DDO gene expression was downregulated in istradefylline-treated PD participants,
which elucidated the likelihood of an istradefylline off-target mechanism. Overall, our findings
illuminate the off-target effects of anti-parkinsonism medications on DDO protein, enabling the
recommendation of off-target-free PD treatments.

Keywords: Parkinson’s disease; mitochondrial-ER; mitochondria-associated membranes (MAMs);
systems biology; neuroinflammation

1. Introduction

Parkinson’s disease (PD) is one of the most common movement disorders, charac-
terized by the loss of dopamine-producing neurons in the midbrain’s Substantia nigra
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region of the human brain [1]. Tremor, bradykinesia, rigidity, and postural instability are
the cardinal symptoms that arise gradually with neuron loss that allow PD diagnosis on
neurological examination [2]. Neuronal death occurs with the accumulation of misfolded
synuclein protein, known as Lewy body, a prominent feature that is directly related to the
severity and progression of PD [3]. Notably, synaptic and axonal neuronal degeneration
are early pathological events underlying symptoms during the onset of PD [4]. To date,
several PD risk factors have been reported. Genetic mutations and environmental toxins
are the most contributing factors that disrupt mitochondrial function, causing oxidative
damage to neuronal cells. Furthermore, calcium homeostasis, cellular proteostasis, axonal
transport, and mitochondrial-endoplasmic trafficking have been suggested to play a role in
PD pathogenesis [5].

In eukaryotic cells, the compartmentalization of organelles and their interdependen-
cies play a crucial role in the regulation of numerous metabolic and physiological processes.
Such regulation between the organelles is influenced by external and internal responses
carried out by membrane receptors, signaling proteins, metabolites, and ions [6]. ER-
mitochondria interactions are essential for optimal physiological cell activity. Mitochondria
communicate bidirectionally with endoplasmic reticulum, peroxisomes, and lysosomes
via mitochondrial contact sites in order to maintain cellular homeostasis, redox activity,
calcium homeostasis, iron-sulfur biogenesis, amino acid metabolism, and fatty acid oxi-
dation [7]. Meanwhile, miscommunication between the ER and mitochondria results in
cellular dyshomeostasis. Also, the mitochondrial dysfunction leads to endolysososmal de-
fects as well as ER stress [8]. In order to maintain proper neural functioning, mitochondria
are essential for producing the majority of cellular ATP. These communications between
organelles and their coordination are essential for the survival of all cells, including neu-
rons [9]. However, the research involving organelle communication and the regulatory
mechanism underlying neuronal death in PD remains to be elucidated.

Multiple sources indicate that mitochondrial dysfunction plays a crucial role in neu-
rodegenerative processes in Parkinson’s [10] and Alzheimer’s disease (AD) [11]. Mito-
chondrial dysfunction can affect the communication organelles of a cell. Notably, the mito-
chondria and endoplasmic reticulum (ER) are interconnected by mitochondria-associated
membranes (MAMs), which regulate multiple cellular physiological processes [12]. MAMs
play a role in the transport of signaling proteins and metabolites for organelle function
in neurons [13,14]. According to Gómez-Suaga et al. (2018), the loss of ER-mitochondria
communication affects normal cellular physiology, which promotes PD [15]. Also, reports
indicate that environmental toxins such as rotenone and manganese alter the function of
MAMs, resulting in PD [16–19]. Similarly, animal studies on PD indicate that the loss of con-
nectivity between ER and mitochondria promotes the degeneration of dopamine-producing
neurons [20,21]. Loss of mitochondrial-ER connectivity generates reactive oxygen species
(ROS) and promotes oxidative cell damage [22]. On the basis of these studies, we aimed to
investigate mitochondrial-ER connectivity by means of cytosolic protein signals to deter-
mine their role in the pathogenesis of Parkinson’s disease. Simultaneously, we attempted
to identify potential PD drugs that could maintain organelle connection without inhibiting
the essential mitochondrial-ER connecting protein.

Herein, we implement a series of computational approaches to establish the protein sig-
nal that mediates cross-talk between mitochondria and the ER (Figure 1). Through computa-
tion, we found that the D-aspartate oxidase (DDO) protein is a key protein in the connection
between mitochondria and the endoplasmic reticulum (ER). Using molecular docking and
molecular dynamic (MD) simulation, we also found out how 35 anti-parkinsonism drugs
affected the DDO protein. Our results suggest that istradefylline may block the DDO, which
may inhibit mitochondrial-ER connectivity. In contrast, amantadine had minimal effects
on DDO, which could be advantageous for the treatment of PD. Further, the DDO gene
expression in PD participants under istradefylline or amantadine treatment was assessed,
which established the likelihood that istradefylline has an off-target mechanism.
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Figure 1. Comprehensive overview of the current investigation: Section-A: collection of organelle-
specific proteins of the endoplasmic reticulum (ER), mitochondria, and cytosol from various databases
and conversion of the collected proteins into official symbols in order to build a protein interaction
network. The top three clusters were extracted from the protein network using MCODE clustering.
Simultaneously, meta-gene expression analysis was carried out with PD datasets retrieved from the
NCBI-GEO datasets. The differentially expressed genes from the meta-analysis were mapped to the
top three clusters to select clusters influenced by PD pathogenesis (termed PD cluster) and screened
to select the cluster presenting proteins localized to the mitochondria, endoplasmic reticulum, and
cytosol. Then, protein shortest path analysis was conducted to discover the crucial cytosolic protein
connecting the mitochondria and endoplasmic reticulum (ER). Further, molecular docking and
molecular dynamic (MD) simulation were performed to evaluate the impact of anti-Parkinson’s
disease drugs on the crucial cytosolic protein. Section-B: To validate our finding, qPCR was used to
measure gene expression in peripheral blood mononuclear cells (PBMC) of PD drug-treated groups
and controls for the selected gene, and the significance was assessed by statistical analysis.

2. Materials and Methods
2.1. Data Collection and Protein Interactome Construction

Organelle-specific proteins (endoplasmic reticulum, mitochondria, and cytosol) were
collected from the human protein atlas (www.proteinatlas.org) (accessed on 12 August
2023), gene ontology (http://geneontology.org/) (accessed on 17 August 2023) and or-
ganelle (http://labs.mcdb.lsa.umich.edu/organelledb/) accessed on 23 August 2023, databases.
All the collected proteins were converted into official symbols using the HGNC (https:
//www.genenames.org/) (accessed on 1 September 2023) database and further verified us-
ing BioGPS (http://biogps.org/) (accessed on 7 September 2023) to confirm their organelle
specificity based on cellular localization. Then, the protein list was subjected to a protein
interaction network using the String plug-in in Cytoscape software 3.8.1 verison with zero
external interactions. Using the MCODE clustering algorithm, the crucial clusters were
extracted from the constructed protein network.

2.2. Cluster Analysis and Pathway Enrichment

Simultaneously, a gene expression-based meta-analysis was performed [23] to deter-
mine the differentially expressed genes (DEGs) in the PD brain. Three datasets, GSE28894
(114 samples), GSE8397-GPL97 (94 samples), and GSE20186-GPL96 (69 samples), were

www.proteinatlas.org
http://geneontology.org/
http://labs.mcdb.lsa.umich.edu/organelledb/
https://www.genenames.org/
https://www.genenames.org/
http://biogps.org/
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selected based on the inclusion and exclusion criteria for the meta-analysis. The inclusion
criteria include (a) the dataset presenting a case-control study with Homo sapiens as a
study subject, (b) the dataset restricted to brain tissue that compares PD and control, and
(c) the dataset containing raw intensity values for meta-analysis. Alternatively, the exclu-
sion criteria for the dataset include (a) animal models and in-vitro studies; (b) datasets
without replicate samples in a group; and c) studies other than microarray experiments.
The differential gene expression analysis was performed using a limma algorithm-based
linear model on microarray data [24], and then Fisher’s test was implemented to calculate
the p-value. All the collected DEGs were then mapped to the selected clusters to confirm
their significance in PD. Such selected clusters with PD genes were termed “PD clusters”.
Among the PD clusters, the cluster presenting proteins that are localized at the endoplasmic
reticulum, mitochondria, and cytosol was selected and subjected to molecular functional
enrichment analysis using the Shinygo database [25]. In addition, the shortest path for
cytosol proteins connecting the mitochondria and ER was identified for the chosen PD
cluster. Such assessment delivers a crucial cytosol protein that channels mitochondria and
the ER.

2.3. Molecular Modelling of Crucial Cytosolic Proteins

Next, the three-dimensional structure of the crucial cytosol protein was retrieved from
the AlphaFoldDB (Q99489 (OXDD_HUMAN)) due to lack of complete protein structure
in Protein Data Bank. The retrieved model structure was optimized using the Protein
Prep Wizard of Schrödinger-Maestro 11.2 version. The forcefield energy minimization was
implemented by setting the heavy atom RMSD (root mean square deviation) to 0.30 Å
with OPLS_2005 [26]. Further, the protein structure was processed to identify the putative
ligand binding sites within the protein structure using SiteMap2.6 in Schrodinger Suite.
Then a grid around the binding sites was generated using the Receptor Grid Generation
module in Schrodinger Suite for molecular docking.

2.4. Ligand Preparation and Molecular Docking

Based on the literature survey, a list of anti-parkinsonism drugs was identified, and
their structures were downloaded from the Drug Bank (www.drugbank.com) (accessed
on 15 September 2023) database (Table 1). The drug structures were optimized using the
LigPrep module of Maestro v11.2 in the Schrodinger suite. After the ligand optimization,
molecular docking was performed in the standard precision (SP) mode of the GLIDE
module of the Maestro v11.2 Schrodinger Suite [27]. The Glide module helps to assess the
active interaction between cytosol protein and the PD drug. Based on the docking score,
the PD drug presenting both the highest and lowest affinity with the cytosol protein was
selected for molecular-dynamic simulation.

Table 1. Clinical and demographic data of normal and PD participants under istradefylline or
amantadine treatment.

Parameter
Istradefylline

PD
(n = 25)

Amantadine
PD

(n = 25)

Healthy Control
(HC)

(n = 25)
p-Value

Gender (Male/Female) 13/12 8/17 17/8 0.527
Age (mean ± SD) 56.51 ± 1.40 55.45 ± 1.81 51.18 ± 1.33 0.007

Age at onset (mean ± SD) 48.46 ± 10.23 46.72 ± 11.68
Disease Duration
Year (mean ± SD) 6.92 ± 3.42 6.89 ± 3.14

UPDRS total (mean ± SD) 42.45 ± 19.02 41.35 ± 18.02
UPDRS I 6.57 ± 4.15 6.47 ± 3.05
UPDRS II 11.09 ± 8.36 11.29 ± 7.58
UPDRS III 23.57 ± 14.34 23.71 ± 13.14
UPDRS IV 1.85 ± 5.48 1.91 ± 5.18

Hoehn and Yahr Scale 2.12 ± 0.60 2.32 ± 0.50

www.drugbank.com
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2.5. Molecular Dynamic Simulation

Three independent MD simulations (1. ligand_free_protein; 2. Ligand (high affinity)
with protein 3. Ligand (low affinity) with protein) were performed using the GROMACS
2020.4 version to assess the stability of the protein-drug complex. In GROMOS 54a7,
single-point charge (SPC) was implemented to generate topology files for proteins, whereas
the drug topology was generated using the PRODRG server. Following the protocol of
Robertson et al., 2019, the structure was stimulated by implementing an OPLS-AA/L all-
atom forcefield, placing it into the 1.0 nm cubic box, and solvating using TIP3P water [28].
Later, with the addition of sodium or chloride ions, the solvated system was neutralized
with a constant salt concentration (0.15 mol/L). Energy minimization steps of the steepest
descent method (n = 50,000) were adopted, which helped overcome the unfavorable contacts
and clashes in the stimulated complex. Similarly, the NVT and NPT equilibrations were
performed for energy minimization. Further, the MD run was performed for 100 ns, and
the outcome trajectories such as root-mean-square deviation (RMSD), root-mean-square
fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), and total
number of H-bonds were assessed for the conformational stability of the complexes [29].
Additionally, two parallel runs were performed to confirm the reliability of the simulation.

2.6. Patient Recruitment and Clinical Assessment

For validation, fifty participants with Parkinson’s disease under the Group 1: istrade-
fylline (n =25) and Group 2: amantadine (n =25) treatments were recruited and compared
to 25 healthy controls (Group 3) following the inclusion and exclusion criteria. Institutional
ethical approval was obtained from the Chettinad Academy of Research and Education,
Tamil Nadu, India. Characteristics such as gender, age, and BMI were collected from all
the participants. Especially for PD participants with the support of movement disorder
specialists, clinical characteristics such as age of disease onset, the Unified Parkinson’s
Disease Rating Scale (UPDRS), and the Hoehn & Yahr scale with the presence of any two or
more cardinal symptoms were recorded. The exclusion parameters include (a) individuals
who show no evidence of dopaminergic neuronal loss and (b) suspected participants who
have a secondary cause of Parkinsonism, like the use of neuroleptic agents. Additionally,
healthy individuals (free of neurological or neuropsychiatric diseases) were categorized
based on a complete neurological examination (Table 1).

2.7. Gene Expression Profiling

Based on the treatment regime and clinical characteristics, the enrolled participants
were grouped as follows: Group 1: PD under istradefylline + L-DOPA (n = 25); Group 2: PD
under amantadine + L-DOPA (n = 25); and Group 3: Healthy Controls (n = 25). From the
participants, 3 mL of peripheral blood was collected, and peripheral blood mononuclear
cells (PBMC) were isolated using Histopaque-1077 (Sigma-Aldrich, Burlington, MA, USA)
reagent. The collected PBMCs for each individual were subjected to RNA isolation using
the TRIzol (Invitrogen) reagent, and cDNA was constructed with 100 ng of RNA measured
using Nanodrop 2000 (Thermo Scientific, Waltham, MA, USA). The cDNA was constructed
with High-Capacity cDNA reverse transcription kit from Thermo Fisher Scientific, Waltham,
MA, USA, following the manufacturer’s protocol. Later, using gene-specific primers,
quantitative real-time PCR (ABI-7000, Applied Biosystems, USA) was performed for all
three groups with GAPDH as the housekeeping gene (Table 2). The gene expressions
among the groups were calculated using the delta-delta Ct value method.

2.8. Statistical Analysis

The clinical and demographic characteristics of the cohort were compared using the
relevant SPSS version 21 statistical methods [30]. The distribution of the collected numerical
variables was then analyzed. Because each variable had a normal distribution, parametric
analyses were utilized. Age (demographic) and gene expression data were analyzed using a
one-way ANOVA followed by Tukey post hoc comparisons for multiple group comparisons
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(Group-1: 25, Group-2: 25, and Group-3: 25). All values are presented as the mean and
standard deviation, and p-values less than 0.05 are regarded as statistical significance.

Table 2. Primer Sequences and amplicon size.

Gene Primer Sequence (5′->3′) Ampliconic Size

DDO
Forward Sequence GGAGCTGAAATCTCTCACCTGG

193Reverse Sequence CTCATGGACACAGCACGGAT
GAPDH Forward Sequence TGTCATCAACGGAAAGGC

183Reverse Sequence GCATCAGCAGAAGGAGCA

3. Results
3.1. Data Collection and Meta-Analysis of Cluster Proteins

Two authors manually collected the list of organelle-specific proteins from various
databases. A total of 2941 proteins, 243 (ER), 1399 (mitochondria), and 1299 (cytosol)
proteins were retrieved from various sources. The protein list was then verified using
BioGPS to validate their cell organelles’ specificity. The whole list of proteins was combined
to build a protein interaction network that contains 2918 nodes with 23,210 edges using the
String plug-in in Cytoscape software. Further, the network was subjected to the MCODE
algorithm to extract the top three highly interconnected functional clusters. Cluster-A
had 84 proteins and 3469 edges; cluster-B had 66 proteins and 1844 edges; and cluster-C
contained 44 proteins and 450 edges.

3.2. Interactome and Pathway Enrichment Analysis

To determine the significance of clusters in PD pathogenesis, the gene expression-
based meta-analysis was performed by integrating the datasets GSE28894, GSE8397, and
GSE20186. A total of 277 samples were subjected to a meta-analysis in which 3973 genes
were differentially expressed (DEGs) in PD compared to control (p < 0.05, Fisher’s test). All
three clusters showed the presence of PD genes. Further, the clusters presenting mitochon-
dria, ER, and cytosolic proteins were selected. Notably, cluster-C (Figure 2) with 44 proteins
showed the presence of 37 mitochondrial, six cytosolic, and one ER protein. Further, the
molecular functional enrichment analysis of these 44 proteins reveals their involvement in
PD-associated molecular mechanisms (Figure 3) Then, the organelle connectivity within
cluster-C was assessed based on the shortest path method to trace protein interactions
between mitochondria, endoplasmic reticulum, and cytosol. Our shortest path assessment
revealed that DDO (D-aspartate oxidase) a crucial cytosolic protein, interacts with SEC61A1
endoplasmic reticulum protein through the IDE (Insulin Degrading Enzyme) and UBA52
(Ubiquitin A-52 Residue Ribosomal Protein Fusion Product 1) of mitochondrial proteins.
Thereby, DDO could be one of the important proteins that channels the mitochondria and
endoplasmic reticulum.

3.3. Molecular Docking and Molecular Dynamic Simulation

Next, the impact of anti-parkinsonism drugs on DDO protein was determined through
docking analysis. Out of 35 drugs, istradefylline was noticed to have the highest affinity
(−9.073 kcal/mol) with DDO protein, whereas minimal affinity was observed for amanta-
dine with a binding energy of −4.543 kcal/mol (Table 3) (Figure 4). Based on the docking
score, MD simulations were run on the DDO_istradefylline and DDO_amantadine com-
plexes and compared with the ligand-free DDO protein to figure out the stability of the
protein-drug complexes. The average RMSD (Figure 5A) value of ligand_free_DDO was
0.208 nm, DDO_istradefylline was 0.188 nm, and DDO_amantadine was 0.215 nm. Similarly,
the average RMSF (Figure 5B) values were 0.128, 0.141, and 0.135 nm for ligand_free_DDO,
DDO_istradefylline, and DDO_amantadine, respectively. Also, the SASA (Figure 5C)
average corresponding to ligand_free_DDO was 182.46 nm2, DDO_istradefylline was
183.129 nm2, and DDO_amantadine was 183.451 nm2. Likewise, average Rg (Figure 5D)
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and HB (Figure 5E) count for ligand_free_DDO (2.10 Å; 249), DDO_istradefylline (2.13 Å;
247), and DDO_amantadine (2.13 Å; 244) (Figure 5).
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Table 3. Docking scores of anti-parkinsonism drugs against D-aspartate oxidase
(DDO)cytosolic protein.

Sl. No Drug ID Drug Name DOCKING SCORE (kcal/mol)

1 DB11757 Istradefylline −9.073
2 DB06654 Safinamide −8.862
3 DB00843 Donepezil −8.861
4 DB00246 Ziprasidone −8.381
5 DB06477 Sumanirole −8.256
6 DB00494 Entacapone −8.153
7 DB00490 Buspirone −8.074
8 DB06454 Sarizotan −7.918
9 DB01202 Lavetriacetam −7.879
10 DB00323 Tolcapone −7.703
11 DB00486 Nabilone −7.455
12 DB00413 Pramipexole −7.246
13 DB12551 Idazoxan −7.082
14 DB06585 Fipamezol −7.025
15 DB01367 Rasagiline −6.788
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Table 3. Cont.

Sl. No Drug ID Drug Name DOCKING SCORE (kcal/mol)

16 DB00745 Modafinil −6.766
17 DB00363 Clozapine −6.711
18 DB05271 Rotigotine −6.679
19 DB01235 Levodopa −6.601
20 DB00571 Propranol −6.551
21 DB06156 Tesofensine −6.517
22 DB05814 Gpi-1485 −6.468
23 DB01224 Quetiapine −6.333
24 DB00472 Fluoxetine −6.31
25 DB00268 Ropinirole −6.046
26 DB00190 Carbidopa −6.025
27 DB00674 Galantamine −6.012
28 DB01183 Naloxone −5.886
29 DB04982 Talampanel −5.768
30 DB00714 Apomorphine −5.743
31 DB01043 Memantine −5.605
32 DB00989 Rivastigmine −5.486
33 DB00334 Olanzapine −5.295
34 DB01037 Selegiline −4.823
35 DB00915 Amantadine −4.543

3.4. Gene Expression of DDO Gene in PD

In order to confirm our computational finding, gene expression analysis using real-
time PCR was performed for the selected genes in the PBMC of the PD drug-treated groups
compared to the control. The gene expression analysis shows significant downregulation of
DDO in the treatment of istradefylline when compared to amantadine and control (Figure 6).
Henceforth, our data clearly shows usage of the istradefylline anti-parkinsonism drug has a
significant impact on mitochondrial and ER connectivity. Whereas, the amantadine showed
a minimal effect on DDO expression.
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4. Discussion

The molecular pathogenesis of PD is complex and is mostly correlated with mitochon-
drial dysfunction that is linked with the generation of oxidative stress, causing neurodegen-
eration. However, the mitochondria are not only a single entity; they collaborate with other
organelles in a cell to perform normal physiological processes. Notably, the mitochondria
and endoplasmic reticulum (ER) are highly connected and exhibit significant associations
in the pathological process of PD. Both cellular organelles primarily receive external stim-
uli through protein signals from the cytoplasm, which cause the organelles to alter their
functions. The role of endoplasmic reticulum (ER) and mitochondrial dysfunction in Parkin-
son’s disease (PD) is defined through several pieces of literature [20]. However, there was
still a lack of substantial knowledge about the role of organelle connectivity in the etiology
of PD. The maintenance of a robust population of mitochondria and endoplasmic reticulum
(ER) is thought to be crucial for supporting neuronal function. However, any disruption
to this delicate balance can lead to cellular oxidative stress and ultimately contribute to
cellular demise. Therefore, an investigation of the intricate defective molecular process
and the unintended effects (off-target) of anti-parkinsonism medications on advantageous
proteins may enable us to propose improved pharmaceutical options for the treatment of
Parkinson’s disease.

In this study, a series of computational methods were employed to ascertain the
cytoplasmic linker that mediates interactions between mitochondria and the endoplas-
mic reticulum. The methodology employed in our study encompasses the collection of
protein-encoding genes that are localized in the mitochondria, cytosol, and endoplasmic
reticulum. Then the construction of the interaction network and the identification of the
functionally relevant Parkinson’s disease clusters through meta-analysis and pathway
enrichment analysis. Subsequent analysis of organelle interconnection using the shortest
path method and the utilization of molecular docking and simulation techniques facilitate
the comprehension of the stability of the protein-drug complex. Based on our analysis of
the interaction network, D-aspartate oxidase (DDO), a cytosolic protein, was mostly inter-
connected with mictochondria and indirectly associated with ER protein (SEC61A1) [31].
The D-aspartate oxidase (DDO) enzyme is of significant importance in the metabolism of
D-aspartate (D-Asp) within the mammalian brain [32,33]. The levels of D-Asp typically ex-
hibit higher concentrations throughout the embryonic and perinatal stages but experience a
significant decline during maturity [34]. D-aspartate (D-Asp) participates in glutamatergic
neurotransmission by acting as an agonist to glutamate [35]. The research findings indi-
cate that the suppression of the DDO gene results in a heightened level of D-Asp in the
brain [35]. Moreover, an elevated concentration of D-Asp in the brain has been linked to an
augmentation of NMDAR-dependent long-term potentiation (LTP) in the hippocampus and
a reduction in long-term depression (LTD) in the striatum [36–39]. Excitement of NMDARs
promotes synaptic strength and connectivity, the frequent stimulation of the receptor leads
to neuronal death [39]. Errico F et al., 2011 show the association of NMDAR receptor over-
stimulation due to increased D-Asp level causes early breakdown of basal glutamatergic
transmission, synaptic plasticity, and hippocampal reference memory in 13/14-month-
old Ddo−/− knock downed mice with neuroinflammation and cell death in midbrain
dopaminergic neurons, as well as a precocious onset of L-DOPA-induced dyskinesia [39].
Similarly, the loss of excitatory glutamatergic synapses and the reduction of synaptic GluN1
and GluN2B subunits were noticed [40]. A study by Punzo D et al., 2016 reports that the
downregulation of DDO genes promotes abnormal increases in free D-Asp levels in the
brain, which causes neuroinflammation and cell death as age increases [41]. The increased
D-Asp also causes dystrophic microglia, early caspase-3 activation, and cell death in cortical
pyramidal neurons and dopaminergic neurons of the substantia nigra pars compacta [41].
Hence, the evidence and predisposition of lipufuscin granules in Ddo−/− knockdown
brains confirm the significance of the DDO role in preventing neurodegenerative processes
produced by non-physiological extracellular levels of free D-aspartate. Elevated levels of
D-Asp act as agonists of the NMDA receptor, which is pathologically linked with PD [42].
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Notably, MPTP showed an association between increased free D-aspartate and PD-like
symptoms [43]. Currently, NMDA antagonists are suggested as an effective therapy for PD.
But increased D-Asp has the tendency to activate NMDA [42]. However, the presence of
DDO-catalyzed D-Asp reduces its level in the cellular environment. Thereby, maintaining
the levels of DDO will help to maintain organelle connectivity as well as decrease the
D-Asp that benefits PD treatment.

Thereby, we assessed the influence of anti-parkinsonism drugs on DDO through
molecular docking. Of the 35 drugs analyzed, istradefylline had the highest affinity against
DDO protein compared to other drugs. Alternatively, the lower affinity was noticed for
amantadine with DDO, with no visible bond formation between the amantadine and DDO
proteins. In general, istradefylline is used for patients with “off episodes”. This drug
targets the adenosine A2A receptor as an antagonist and promotes dopaminergic activity
by antagonizing adenosine in the basal ganglia [44–46]. Whereas, amantadine showed to
decrease bradykinesia, rigidity, and tremor symptoms in PD individuals [45]. Amantadine
shows a synergistic effect with levodopa, which promotes the conversion of dopamine
with the help of striatal enzymes in the central nervous system [47–49]. Further, the MDS
suggests that the DDO_istradefylline complex was highly stable based on the RMSD value
when compared to the ligand-free and DDO_amantadine complexes [50]. Also, the high
RMSD value of the ligand-protein complex suggests that the complex is unstable; ligand is
not properly accommodated in the binding site of protein across the adopted MD simulation
timeframes [51,52]. Upon simulation, the average RMSD of DDO-istradefylline is 0.18 when
compared to DDO-amantadine (0.215) in docked structure. Similarly, RMSF values for
DDO-istradefylline were high compared to other complexes; changes in the flexibility of
the protein contributed significantly to the binding of the drug. Additionally, the number
of hydrogen bonds formed within the complex was higher for DDO-istradefylline than
for DDO-amantadine. More hydrogen bond formation relates to the high stability of the
protein complex. However, no significant differences were observed for Rg and SASA
between the complexes. Henceforth, the computational analysis suggests high protein
stability was achieved due to the binding of istradefylline to DDO [53]. Further, to validate
the off-target effect of anti-parkinsonism drugs, the PD participants under the istradefylline
and amantadine treatments were recruited, and their DDO gene expression was assessed
and compared with healthy controls. Notably, the participants under istradefylline with
L-DOPA (group 1) therapy showed a significant decrease in expression of DDO when
compared to individuals under amantadine (group 2) and the control group (group 3).
Overall, our data clearly shows that istradefylline was able to manage their symptoms, but
simultaneously, inhibition of DDO may negatively impact or disturb mitochondrial and ER
connectivity, leading to the progression of neurodegeneration.

5. Conclusions

In conclusion, this study integrates a computational and molecular approach that
identifies the D-aspartate oxidase (DDO), a crucial cytosolic protein essential for the commu-
nication between mitochondria and the endoplasmic reticulum for normal cellular function.
Through molecular docking and MD simulation, our study also shows the off-target effects
of anti-parkinsonism drugs that act upon the DDO protein. Among 35 drugs, istradefylline
had high tendency to inhibit DDO protein, which leads to the loss of mitochondrial-ER
connectivity. In contrast, amantidine had minimal effects on DDO, which could be a po-
tential benefit in the treatment of PD. However, research in this direction is needed for
further confirmation.

Author Contributions: S.S.S.J.A. and P.P.; designed, supervised interpret the study, A.A.; investi-
gation, formal analysis, data curation. S.M.; formal analysis and data curation. S.F.A. and T.B.E.:
Resource, Software, formal analysis, data curation. All authors have read and agreed to the published
version of the manuscript.



Brain Sci. 2023, 13, 1551 13 of 15

Funding: This research was funded by King Saud University, Riyadh, Saudi Arabia, Project Number
(RSPD2023R709).

Institutional Review Board Statement: The Institutional Review Board of the Chettinad Hospital
and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu,
India approved the study (protocol code 367/IHEC/10-17 and 23 October 2017). Experiments
involving humans was carried out in accordance with the Declaration of Helsinki.

Informed Consent Statement: Written informed consent has been obtained from the patient(s) to
publish this paper.

Data Availability Statement: Data are available on request.

Acknowledgments: All authors thank their institutes for the infrastructure support for this study. The
authors acknowledge and extend their appreciation to the Researchers Supporting Project Number
(RSPD2023R709), King Saud University, Riyadh, Saudi Arabia for funding this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tanner, C.M.; Goldman, S.M. Epidemiology of Parkinson’s disease. Neurol. Clin. 1996, 14, 317–335. [CrossRef] [PubMed]
2. Kouli, A.; Torsney, K.M.; Kuan, W.L. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis; Exon Publications: Brisbane,

Australia, 2018; pp. 3–26.
3. Dawson, T.M.; Dawson, V.L. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J. Clin. Investig.

2003, 111, 145–151. [CrossRef]
4. Gcwensa, N.Z.; Russell, D.L.; Cowell, R.M.; Volpicelli-Daley, L.A. Molecular mechanisms underlying synaptic and axon

degeneration in Parkinson’s disease. Front. Cell Neurosci. 2021, 15, 626128. [CrossRef] [PubMed]
5. Ryan, K.C.; Ashkavand, Z.; Norman, K.R. The Role of Mitochondrial Calcium Homeostasis in Alzheimer’s and Related Diseases.

Int. J. Mol. Sci. 2020, 21, 9153. [CrossRef] [PubMed]
6. Lebiedzinska, M.; Szabadkai, G.; Jones, A.W.; Duszynski, J.; Wieckowski, M.R. Interactions between the endoplasmic reticulum,

mitochondria, plasma membrane and other subcellular organelles. Int. J. Biochem. Cell Biol. 2009, 41, 1805–1816. [CrossRef]
[PubMed]
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