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Abstract: Maternal obesity results in programmed offspring hyperphagia and obesity. The increased
offspring food intake is due in part to the preferential differentiation of hypothalamic neuroprogenitor
cells (NPCs) to orexigenic (AgRP) vs. anorexigenic (POMC) neurons. The altered neurogenesis may
involve hypothalamic bHLH (basic helix–loop–helix) neuroregulatory factors (Hes1, Mash1, and
Ngn3). Whilst the underlying mechanism remains unclear, it is known that mitochondrial function is
critical for neurogenesis and is impacted by proinflammatory cytokines such as TNFα. Obesity is
associated with the activation of inflammation and oxidative stress pathways. In obese pregnancies,
increased levels of TNFα are seen in maternal and cord blood, indicating increased fetal exposure. As
TNFα influences neurogenesis and mitochondrial function, we tested the effects of TNFα and reactive
oxidative species (ROS) hydrogen peroxide (H2O2) on hypothalamic NPC cultures from newborn
mice. TNFα treatment impaired NPC mitochondrial function, increased ROS production and NPC
proliferation, and decreased the protein expression of proneurogenic Mash1/Ngn3. Consistent with
this, AgRP protein expression was increased and POMC was decreased. Notably, treatment with
H2O2 produced similar effects as TNFα and also reduced the protein expression of antioxidant SIRT1.
The inhibition of STAT3/NFκB prevented the effects of TNFα, suggesting that TNFα mediates its
effects on NPCs via mitochondrial-induced oxidative stress that involves both signaling pathways.

Keywords: Hypothalamic neuroprogenitor cells; reactive oxygen species; inflammation; proliferation;
differentiation; maternal obesity; programmed hyperphagia

1. Introduction

Maternal obesity during pregnancy is associated with macrosomic newborns [1] and
offspring with childhood obesity and adult metabolic syndrome [2,3]. Animal models of
maternal obesity have replicated evidence of human-programmed offspring hyperphagia
and obesity [4,5]. The underlying cause of early onset offspring hyperphagia has been
attributed to the altered development of the appetite regulatory site (hypothalamic arcuate
nucleus, ARC) and neurogenesis [6,7]. The ARC contains at least two populations of
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neurons with opposing actions on food intake: primarily medial ARC orexigenic (NPY;
neuropeptide Y and AgRP; agouti-related protein) and primarily lateral ARC anorexigenic
(POMC; pro-opiomelanocortin and CART; cocaine- and amphetamine-regulated transcript)
neurons. ARC development begins in fetal life during [8] which the neuroprogenitor cells
(NPCs) in the peri-third ventricular zone undergo extensive proliferation, self-renewal, and
terminal division into cells destined for neuronal or glial fates [9]. These neurons migrate
to ultimate nuclei sites, differentiate to specific neuronal phenotypes, and form functional
circuits. NPCs differentiated to neurons destined for the ARC further differentiate to
orexigenic or anorexigenic phenotypes [10,11].

Early in development, the transmembrane Notch receptor involved in cell–cell commu-
nication regulates NPC proliferation by increasing the expression of Hes1, which suppresses
proneurogenic bHLH factor expression (e.g., Mash1, Ngn3) [12]. Exposure to a maternal
obesity/high-fat diet in utero results in altered fetal hypothalamic ARC development and
programmed hyperphagia at birth [4]. The hyperphagia is due to the increased protein ex-
pression of orexigenic NPY/AgRP and reduced expression of anorexigenic POMC peptides.
The neuronal counts show similar changes [7,13–15]. Consistent with the neuropeptide
changes, the expression of neurogenic regulators (Ngn3 and Mash1, which promote POMC
expression [16–19]) is decreased in the hypothalamic tissue and NPCs of newborns exposed
to maternal obesity [6,7]. These findings suggest that developmentally altered neurogenesis
is a significant factor contributing to neuronal phenotypes and offspring hyperphagia.

Whilst the underlying mechanism remains unclear, it is known that mitochondrial
function is critical for neurogenesis [20] and is impacted by proinflammatory cytokines
(TNFα) [21–24]. Notably, maternal obesity is associated with a proinflammatory and
reactive oxidative stress environment [25,26]. Consistent with this, in obese pregnancies,
increased levels of TNFα are seen in maternal and cord blood [27,28], indicating increased
fetal exposure. Similarly in animal models of maternal obesity, elevated levels of TNFα are
seen in maternal, fetal, and newborn plasma [29–31] with an increased expression of TNFα
in the placenta and in brain regions including the hypothalamic ARC [32–34].

Collectively, the evidence provides a plausible mechanism of inflammatory mediators
in the programmed neurogenesis and appetite in offspring exposed to maternal obesity.
Hence, we tested the effects of exogenous TNFα in vitro on mitochondrial function and
its downstream effect on the proliferation-, differentiation-, and appetite-regulating neu-
ropeptides in the hypothalamic NPCs of newborns from normal mice pregnancies. As
TNFα mediates its effects via STAT3 and NFκB signaling [35,36] and ROS production, we
further studied the effects of inhibiting the individual signaling pathways and also verified
the independent effects of ROS on hypothalamic NPCs, including the expression of SIRT1,
which acts as an antioxidant [37].

2. Materials and Methods
2.1. Animals

Studies were approved by the Animal Research Committee of The Lundquist Insti-
tute at Harbor-University of California Los Angeles (formerly known as the Los Angles
Biomedical Research Institute) and were in accordance with the American Association for
Accreditation of Laboratory Care and National Institutes of Health guidelines. Four preg-
nant C57BL/6 mice (Jackson Laboratory, Bar Harbor, ME, USA) were housed at constant
temperature and humidity on a controlled 12 h light/dark cycle with free access to food
(LabDiet 5001, Brentwood, MO, USA) and drinking water. Following delivery, brains were
collected from one-day-old newborn pups.

2.2. NPC Cultures

The hypothalamus was dissected from newborns, and three hypothalami from the
same litter were pooled and placed in DMEM/F12 medium, trypsinized, and cultured
as previously reported [38]. Briefly, NPCs were cultured in complete medium [Neu-
robasalTM Medium containing 1% anti-anti (Invitrogen, Waltham, MA, USA), 2% B27
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(GIBCO, Cat#17504-044), 20 ng/mL FGF2 (Sigma, St. Louis, MI, USA), 20 ng/mL EGF
(Sigma), 1 µg/mL heparin (Lilly, Indianapolis, IN, USA), and 2.5 µg/mL L-glutamine
(Invitrogen)] or differentiation medium (cultured in absence of FGF2, EGF and heparin)
and seeded in culture dishes pre-coated with 0.01% poly-L-lysine (Sigma).

2.3. NPC Mitochondrial Function

At day 7, cells cultured in complete medium were dissociated using TrypLE Express,
seeded (40,000 cells/mL) on PDL-coated XF96 microplate, and treated with DMSO (control)
or TNFα (20, 50, 100 pg/mL) [39] for 24 h (37 ◦C; 5% CO2). For mitochondrial respirometry
measurements (Seahorse XF96 Extracellular Flux Analyzer (Agilent Technologies, Santa
Clara, CA, USA), cells were washed with freshly prepared assay medium (Seahorse XF Base
Medium supplemented with 10 mM glucose, 2 mM L-glutamine and 1 mM pyruvate; pH
7.4) and incubated at 37 ◦C without CO2 for 30 min at a volume of 175 µL/well. The oxygen
consumption rate (OCR) and extracellular acidification rate (ECAR) were detected under
basal conditions and after the sequential injection of inhibitors: ATP synthase inhibitor
oligomycin (3 µM/well) was added to determine mitochondrial ATP production; electron
transport chain uncoupler FCCP (carbonylcyanide p-trifluoromethoxy-phenylhydrazone,
1.8 µM/well) was added to determine the maximal respiration; and a mixture of rotenone
and antimycin A (2 µM/well) was added to inhibit complexes I and III, respectively, to
determine the spare capacity. This sequential process provided an estimation of the con-
tribution of individual parameters for basal respiration, proton leak, maximal respiration,
spare respiratory capacity, non-mitochondrial respiration, and ATP production [40].

2.4. In Vitro Treatment with TNFα and H2O2

Hypothalamic NPCs from one-day-old newborns were cultured in complete or differ-
entiation medium [38] and treated with TNFα (5, 10, 20 pg/mL), H2O2 (0.5, 2.5, 10 µM), or
DMSO (untreated control cells) for 24 h. NPCs treated in complete medium were used to
measure the ROS (fluorescence assay), proliferation index (MTT assay, Sigma) [41,42], and
protein expression of the NPC marker (Nestin), activated notch (ICD), neuroproliferative
bHLH factor (Hes1), and antioxidant (SIRT1) by Western blot. NPCs treated in differen-
tiation medium were used to measure protein expression of proneurogenic transcription
factors (Mash1, Ngn3) and neuropeptides (AgRP, POMC).

2.5. In Vitro Treatment with Inhibitors

Hypothalamic NPCs from one-day-old newborns were cultured in complete or differ-
entiation medium and treated with inhibitors of STAT3 signaling (5 µM AG490; JAK2/STAT3
inhibitor [8]) or NFκB activation (5 µM TPCA1; IKK-2 inhibitor [43]) in presence or absence
of TNFα (10 pg/mL) for 24 h. NPC proliferation index (MTT assay) and the protein ex-
pression of STAT3, pSTAT3, NFkB, pNFkB, Hes1, Mash1, and POMC were analyzed by
Western blot.

2.6. ROS Assay

Reactive oxygen species levels were measured using commercial Assay Kit (ab113851,
abcam, Waltham, MA, USA) at Ex/Em: 485/535.

2.7. Proliferation Assay

NPC proliferation rate was determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-
diphenyl tetrazolium bromide; Sigma) colorimetric assay. MTT solution (5 mg/mL in BPS)
was added to each cell culture well and incubated for 1 h at 37 ◦C in CO2 incubator. The
cultured cells were harvested, and the MTT reaction product formazan was extracted with
acidic isopropanol (isopropanol in 0.04N HCl). The optical density of the formazan solution
was measured on an ELISA plate reader (VICTOR™ 1420 Multilabel Counter) at 570 nm.
The cell proliferating index was expressed as a value of OD 570 nm.
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2.8. Western Blot

For protein expression analysis, the disassociated neurosphere cells in complete or
differentiating medium were harvested and dissolved in RIPA solution (Cell Signaling,
Beverly, MA, USA) with a protease inhibitor cocktail (Thermo Fisher Scientific, Irwin-
dale, CA, USA); briefly sonicated and the cell lysates processed for the determination of
protein content by BACTM Protein Assay Kit (Thermo Fisher Scientific). Westerns were
performed as previously reported by our group [38]. For the detection of pSTAT3 and
NFκBp65, NaF (50 mM) was added to all buffers, which had been demonstrated to be an
effective phosphoseryl and phosphothreonyl protein phosphatase inhibitor. Antibodies
were obtained from Santa Cruz Biotechnology, Inc (Santa Cruz, CA, USA) unless otherwise
specified: AgRP (1:500, 14 kDA, sc-50299); POMC (1:500, 30 kDa, sc-20148); Hes1 (1:500,
35 kDa, sc-25392); Mash1 (1:500, 30 kDa, sc-13222); Ngn3 (1:1000, 23 kDa, ab38548, Ab-
cam, Cambridge, MA); SIRT1 (1:2000, 120 kDa, sc-5322), Cleaved NOTCH1 (ICD, 1:1000,
100 kDa, Cell Signaling), pSTAT3 (1:1000; 92 KD Thermo Fisher); and pNFκB (1:1000, 65kd,
NB100-2176, Novus Biologicals, Littleton, CO, USA). The secondary antibody included
anti-mouse IgG-HRP (Cell Signaling), anti-rabbit IgG-HRP (Cell Signaling), and anti-goat
IgG-HRP (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA). The blots were applied
with SuperSignal West Pico Chemiluminescence Substrate (Pierce, Rockford, IL, USA) to
produce chemiluminescence, which was visualized by exposing blots to x-ray film (HyBlot
CL Autoradiography Film; Denville Scientific, Inc., Metuchen, NJ, USA). The total protein
was used as the loading control. STAT3, pSTAT3, NFκB, and pNFκB were normalized to
the loading protein and the ratios of pSTAT3/STAT3 and pNFκB/ NFκB determined.

2.9. Data Analysis

NPCs were established from n = 4 independent animals, and each treatment in vitro
was undertaken in duplicate.

OCR was measured before and after the addition of inhibitors to derive several param-
eters of mitochondrial respiration that included basal respiration (derived by subtracting
non-mitochondrial respiration from baseline cellular OCR), ATP-linked respiration (derived
by subtracting the oligomycin rate from baseline cellular OCR), and maximal respiratory
capacity (derived by subtracting non-mitochondrial respiration from the FCCP rate).

ANOVA with Dunnett’s post-hoc was used to compare treated versus non-treated
NPCs and TNFα versus TNFα+inhibitor effects. Values are presented as fold change
(Mean ± SEM).

3. Results
3.1. TNFα Impairs NPC Mitochondrial Function, Promotes ROS Production, and Alters
Neuropeptide Expression

The treatment of hypothalamic NPCs with TNFα for 24 h impaired mitochondrial
function, as evidenced by reduced basal, ATP-linked, and maximal OCR at all three doses
with ~50% reduction at doses 20 and 100 pg/mL (Figure 1).

In view of the 50% reduction in mitochondrial function at 20 pg/mL TNFα, our
subsequent studies used lower doses of TNFα (≤20 pg/mL). With increasing TNFα doses
in complete medium, NPCs exhibited increased levels of ROS with an increased expression
in Hes1. Consistent with this, there was a dose-dependent increase in proliferation and
Nestin expression (Figure 2). However, in differentiation medium, TNFα treatment (10
and 20 pg/mL) resulted in the decreased protein expression of Mash1 and Ngn3 with a
corresponding increased AgRP and decreased POMC (Figure 3).
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Figure 1. TNFα Impairs NPC Mitochondrial Function. Hypothalamic NPCs were treated with
various doses (20, 50, and 100 pg/mL) of TNFα in complete medium for 24 h. Basal, ATP-linked, and
maximal respiration were determined. Values are normalized to untreated control cells and expressed
as fold change (Mean ± SEM of n = 4 independent experiments with each treatment performed in
duplicate). * p< 0.05 vs. untreated cells.
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Figure 2. TNFα Increases NPC ROS and Promotes Proliferation. Hypothalamic NPCs were treated
with various doses (5, 10, and 20 pg/mL) of TNFα in complete medium for 24 h. Values are
(Mean ± SEM of n = 4 independent experiments with each treatment performed in duplicate) normal-
ized to untreated control cells and expressed as fold change. For protein expression, representative
immunoblots are shown. Images of untreated (0 pg/mL) and TNFα-treated (10 pg/mL) cells (×20;
scale bar = 50µm). * p < 0.05 vs. untreated cells.
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Figure 3. TNFα Suppresses Proneurogenic bHLH Genes and Alters Neuropeptide Expression.
Hypothalamic NPCs were treated with various doses (5, 10, 20 pg/mL) of TNFα in differentiation
medium for 24 h. Values are (Mean ± SEM of n = 4 independent experiments with each treatment
performed in duplicate) normalized to untreated control cells and expressed as fold change. For
protein expression, representative immunoblots are shown.* p < 0.05 vs. untreated cells.

3.2. ROS Suppresses Antioxidant SIRT1 and Alters NPC Proliferation/Differentiation and
Neuropeptide Expression

To elucidate whether the TNFα-induced effects on neurogenesis were mediated via
increased ROS levels, we measured direct effects of ROS on NPCs. Treatment with H2O2
doses in the complete medium showed a quantitative increase in NPC ROS levels with a
concomitant increased protein expression of activated Notch 1 (ICD), Hes1 (10 µM H2O2),
and Nestin. In parallel, NPCs proliferation was increased. However, the SIRT1 protein
expression was decreased (Figure 4). In differentiation medium, treatment with TNFα
resulted in the reduced protein expression of Mash1 and Ngn3 with decreased POMC and
increased AgRP (Figure 5).
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Figure 4. H2O2 Promotes ROS Production and Upregulates NPC Notch/Hes1 Pathway and NPC
Proliferation with Downregulation of SIRT1. Hypothalamic NPCs were treated with various doses
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(0.5, 2.5, and 10 µM) of H2O2 in complete medium for 24 h. Values are (Mean ± SEM of n = 4
independent experiments with each treatment performed in duplicate) normalized to untreated
control cells and expressed as fold change. For protein expression, representative immunoblots
are shown. Images of untreated (0 µM) and H2O2 treated (10 µM) cells (×20; scale bar = 50 µm).
* p < 0.05 vs. untreated cells.
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Figure 5. H2O2 Reduces NPC Proneurogenic bHLH Genes and Alters Neuropeptide Expression.
Hypothalamic NPCs were treated with various doses (0.5, 2.5, and 10 µM) of H2O2 in differentiation
medium for 24 h. Values are (Mean ± SEM of n = 4 independent experiments with each treatment
performed in duplicate) normalized to untreated control cells and expressed as fold change. For
protein expression, representative immunoblots are shown. * p < 0.05 vs. untreated cells.

3.3. Inhibition of TNFα-Mediated STAT3/NFκB Signaling Normalizes NPC
Proliferation/Differentiation

Treatment with AG490 inhibitor significantly inhibited the expression of pSTAT3 and
prevented the effects of TNFα. That is, it normalized NPC proliferation and the protein
expression of Hes1, Mash1, and POMC (Figure 6). Similarly, treatment with TPAC1 inhibitor
significantly inhibited the expression of NFκBp65 and normalized NPC proliferation and
the protein expressions of Hes1, Mash1, and POMC (Figure 7). There was no significant
change in the protein expressions of STAT3 and NFκB.
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Figure 6. Effects of AG490 Inhibitor on pSTAT3 and NPC Proliferation/Differentiation. Hypothalamic
NPCs were treated with TNFα (10 pg/mL), AG490 (5 µM), and TNFα + inhibitor in complete or
differentiation medium for 24 h. Values are (Mean ± SEM of n = 4 independent experiments with
each treatment performed in duplicate) normalized to untreated control cells and expressed as fold
change. * p < 0.01 vs. untreated cells; # p < 0.05 TNFα + AG490 vs. TNFα.

Brain Sci. 2022, 12, x FOR PEER REVIEW 8 of 16 
 

or differentiation medium for 24 h. Values are (Mean ± SEM of n = 4 independent experiments with 

each treatment performed in duplicate) normalized to untreated control cells and expressed as fold 

change. * p < 0.01 vs. untreated cells; # p < 0.05 TNFα + AG490 vs. TNFα. 

 

Figure 7. Effects of NFĸB Inhibitor (TPCA1) on NPC Proliferation/Differentiation. Hypothalamic 

NPCs were treated with TNFα (10 pg/mL), TPCA1 (5 μM) and TNFα + inhibitor in complete or 

differentiation medium for 24 h. Values are (Mean ± SEM of n = 4 independent experiments with 

each treatment performed in duplicate) normalized to untreated control cells and expressed as fold 

change. * p < 0.05 vs. untreated cells; # p < 0.05 TNFα + TPAC1 vs. TNFα. 

4. Discussion 

Previous studies have shown that TNFα negatively regulates embryonic and adult 

neurogenesis [44-46]. However, to our knowledge, this is the first study to demonstrate 

the effects of TNFα on hypothalamic NPCs from one-day-old newborns and provide a 

plausible pathway of TNFα-mediated mitochondrial dysfunction effects on NPC prolifer-

ation/differentiation with resultant altered appetite/satiety neuropeptide expression. We 

speculate that this may be a potential mechanistic pathway contributing to the pro-

grammed hyperphagia in the offspring of obese dams. 

TNFα effects are primarily mediated via its receptors (TNFR1 and TNFR2), both of which 

are expressed in the hypothalamus [47, 48] and NPCs [44, 49]. TNFα binding to the receptors 

activate both canonical NFκB and STAT3 signaling pathways [35, 36]. Briefly, NFκB proteins 

are comprised of transcription factors that remain inactive in the cytosol bound to inhibitor 

IκB proteins. TNFα-induced phosphorylation of IκB by the IκB kinase complex (IKKβ, IKKα, 

and NEMO) leads to IκB degradation, the nuclear translocation of NFκBp65, and induction of 

transcription of target genes [36]. In response to TNFα, STAT3 is phosphorylated by receptor-

associated Janus kinases (JAK) and translocated to the nucleus where they act as transcription 

activators [35]. The activations of both NFκB and STAT3 pathways lead to mitochondrial dys-

function [50-52] and increased oxidative stress [53, 54]. It is known that mitochondrial function 

is critical for neurogenesis [55], with mitochondrial apoptosis and ROS levels modulating 

NPC proliferation [56, 57] and differentiation [58-60]. 

Complementing mitochondrial effects, NPC proliferation and differentiation processes 

are regulated by a spatial/temporal interplay of pathways, including cell communication fac-

tors (e.g., Notch/Hes1) and a series of neuroregulatory bHLH transcription factors, including 

Mash1 and Ngn3, among others. Early in development, the transmembrane Notch receptor 

involved in cell–cell communication regulates NPC proliferation by increasing the expression 

of Hes1, which suppresses proneurogenic bHLH factor expression (e.g., Mash1, Ngn3). Nota-

bly, both Ngn3 and Mash1 are required for the normal development of POMC neurons [18], 

Figure 7. Effects of NFkB Inhibitor (TPCA1) on NPC Proliferation/Differentiation. Hypothalamic
NPCs were treated with TNFα (10 pg/mL), TPCA1 (5 µM) and TNFα + inhibitor in complete or
differentiation medium for 24 h. Values are (Mean ± SEM of n = 4 independent experiments with
each treatment performed in duplicate) normalized to untreated control cells and expressed as fold
change. * p < 0.05 vs. untreated cells; # p < 0.05 TNFα + TPAC1 vs. TNFα.
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4. Discussion

Previous studies have shown that TNFα negatively regulates embryonic and adult
neurogenesis [44–46]. However, to our knowledge, this is the first study to demonstrate
the effects of TNFα on hypothalamic NPCs from one-day-old newborns and provide a
plausible pathway of TNFα-mediated mitochondrial dysfunction effects on NPC prolifera-
tion/differentiation with resultant altered appetite/satiety neuropeptide expression. We
speculate that this may be a potential mechanistic pathway contributing to the programmed
hyperphagia in the offspring of obese dams.

TNFα effects are primarily mediated via its receptors (TNFR1 and TNFR2), both of
which are expressed in the hypothalamus [47,48] and NPCs [44,49]. TNFα binding to the
receptors activate both canonical NFκB and STAT3 signaling pathways [35,36]. Briefly,
NFκB proteins are comprised of transcription factors that remain inactive in the cytosol
bound to inhibitor IκB proteins. TNFα-induced phosphorylation of IκB by the IκB kinase
complex (IKKβ, IKKα, and NEMO) leads to IκB degradation, the nuclear translocation of
NFκBp65, and induction of transcription of target genes [36]. In response to TNFα, STAT3 is
phosphorylated by receptor-associated Janus kinases (JAK) and translocated to the nucleus
where they act as transcription activators [35]. The activations of both NFκB and STAT3
pathways lead to mitochondrial dysfunction [50–52] and increased oxidative stress [53,54].
It is known that mitochondrial function is critical for neurogenesis [55], with mitochondrial
apoptosis and ROS levels modulating NPC proliferation [56,57] and differentiation [58–60].

Complementing mitochondrial effects, NPC proliferation and differentiation processes
are regulated by a spatial/temporal interplay of pathways, including cell communication
factors (e.g., Notch/Hes1) and a series of neuroregulatory bHLH transcription factors, in-
cluding Mash1 and Ngn3, among others. Early in development, the transmembrane Notch
receptor involved in cell–cell communication regulates NPC proliferation by increasing the
expression of Hes1, which suppresses proneurogenic bHLH factor expression (e.g., Mash1,
Ngn3). Notably, both Ngn3 and Mash1 are required for the normal development of POMC
neurons [18], while Ngn3 also inhibits NPY expression [19]. Thus, Ngn3(-/-) mice express
markedly reduced POMC [19] and an increased number of NPY cells [16].

In the present study, treatment of hypothalamic NPCs with TNFα in complete medium
resulted in impaired mitochondrial function as evident by the lower basal, ATP-linked
and maximal oxygen consumption rate. Furthermore, TNFα treatment increased ROS
levels with a corresponding increased expression of Hes1 and augmented the proliferation
of NPCs. Treatment in differentiation medium resulted in suppressed Mash/Ngn3 with
increased AgRP and decreased POMC expression. These findings are consistent with
our postulated mechanism of TNFα-mediated programmed hyperphagia in offspring of
maternal obesity/high-fat diets.

To further verify that TNFα likely mediates its effects on NPCs via induced oxidative
stress, we studied the direct effects of H2O2 on NPCs and showed increased ROS levels
with increased NPC proliferation and similar changes in bHLH genes and neuropeptides
akin to TNFα. Although NPCs have lower levels of ROS than differentiated cells [35], as a
result of the higher expression of uncoupling protein 2 (UCP2) and glutathione peroxidase
(GPx) [59,61], previous studies show that ROS can increase Notch/Hes1 expression [62]
and NPC proliferation [56,57] and also modulate NPC differentiation [58–60].

As ROS are generated mainly as by-products of mitochondrial respiration, mitochon-
dria are the primary target of oxidative damage and dysfunction. The imbalance between
mitochondrial ROS production and removal due to the overproduction of ROS and/or
decreased antioxidants defense activity results in oxidative stress [63,64]. SIRT1, an NAD+-
dependent protein deacetylase, has been shown to modulate the regulation of a variety of
cellular processes associated with ROS including neurogenesis [65,66]. It is metabolically
active in the hypothalamus and is inhibited by increased levels of ROS [67]. Through its
deacetylation activity, it suppresses NFκB signaling and Hes1 [37]. This is consistent with
our results of ROS-mediated decreased SIRT1 and increased Hes1.
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The inhibition of signaling pathways STAT3 by AG490 [68] and NFκB by TPAC1 [69]
prevented TNFα-mediated effects on NPCs. Although TPCA1 is considered a potent and
selective inhibitor of IκB kinases [69], recent studies indicate that TPCA1 may be a dual
inhibitor of STAT3 and NFκB [70]. This may in part explain our comparable findings on in-
hibiting STAT3 and NFκB pathways, suggesting that both pathways are important for NPC
proliferation/differentiation or, alternatively, that the STAT3 pathway may be of greater
importance. As NFκB and STAT3 are both cytosolic [56,71] and mitochondrial [72,73], the
activation of these factors by TNFα may have direct nuclear effects on bHLH gene ex-
pression or are mediated via induced mitochondrial dysfunction [21–23]. Notably, STAT3
directly interacts with Mash1 and Ngn3 [35].

TNFα and other pro-inflammatory cytokines play important roles in the control of
body energy stores. TNFα levels are correlated with maternal BMI and significantly in-
creased in obese [74] and gestational diabetic women [75], resulting in fetal exposure to
proinflammatory cytokines. In obese pregnant women, placental TNFα expression is in-
creased [76] with higher levels of amniotic fluid [74] and umbilical cord blood TNFα [27,28].
Accordingly, cord blood TNFα levels are two-fold higher in newborns of overweight/obese
mothers and are positively correlated with maternal BMIs [27]. In rodents, a high-fat
diet significantly increases serum TNFα in both obese and obesity-resistant rats [77], and
neonatal overfeeding markedly increases mouse serum TNFα [78]. Diet-induced obese
murine models evidence increased inflammation [33] and impaired brain mitochondrial
function, as high-fat diet induces increased hypothalamic TNFα mRNA prior to substantial
weight gain and peripheral inflammation. Further, sustained high-fat diet results in a 25%
reduction in POMC cells [79], suggesting that inflammatory-mediated impaired satiety
contributes to obesity.

Other cytokines, such as IL6 and IL1B [80,81] and saturated fatty acids (e.g., palmi-
tate) [82,83], also increase ROS and induce mitochondrial dysfunction. Notably, maternal
obesity is associated with reactive oxidative stress and a lipotoxic environment [25,26] and,
consistent with this, in obese pregnancies, increased levels of IL6 and palmitate are seen in
maternal and cord blood [84–86]. The in vitro treatment of rodent NPCs with varying doses
of IL6 [87], IL1B [88], and palmitate [89,90] inhibits neurogenesis at higher doses, likely via
STAT3 activation [87,90]. In addition to these, an array of other factors including hormones
(leptin and insulin) [38], β-catenin, and growth factors (IGF1, FGF) influence neurogenesis
by promoting NPC proliferation and determining neuronal versus glial fate [91–93].

Various natural and synthetic antioxidants have been shown to have beneficial effects
in reducing ROS and inflammation. For example, N-acetyl-l-cysteine (NAC) suppresses
TNF-induced NFκB activation through the inhibition of IκB kinases, and as it effectively
crosses the blood-brain barrier [94], it also reduces brain ROS [95,96]. More effective
antioxidants such as Mito-TEMPO specifically target and accumulate in the mitochondria.
It acts as a mitochondrial superoxide scavenger [97] and prevents cell death in vitro [98]
and oxidative stress in vivo [99]. Several synthetic mitochondria-targeted ROS scavengers,
such as MitoVit-E (vitamin E covalently attached to a triphenylphosphonium cation), are
also effective as they easily pass through cell membranes, including the blood–brain barrier,
into cells and tissues affected by mitochondria ROS [64]. Lastly, SIRT1 (antioxidant and
histone deacetylase) inhibits NFκB signaling and also binds to the promoters of TNFα and
IL1β and, through deacetylation, suppresses the expression of these cytokines.

5. Conclusions

In summary, the current study specifically shows that TNFα impairs NPCs mito-
chondrial function, increases ROS production leading to activation of Notch/Hes1, and
promotes NPC proliferation. Consistent with this, the proneurogenic factors Mash1/Ngn3
are suppressed causing an increase in AgRP and decrease in POMC expression. Notably,
treatment with H2O2 produced similar effects as TNFα and reduced antioxidant SIRT1. The
inhibition of STAT3/NFκB signaling prevented the effects of TNFα, suggesting that TNFα
mediates its effects on NPCs likely involving both signaling pathways. Nonetheless, future
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studies that directly test the roles of TNFα, mitochondrial dysfunction, reactive oxygen
species, and changes in protein expression profile are needed to confirm this pathway and
its role in neurogenesis and hyperphagia.
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