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Abstract: Sequences of electrical pulses have been applied in the brain to treat certain disorders. In
recent years, altering inter-pulse-interval (IPI) regularly or irregularly in real time has emerged as a
promising way to modulate the stimulation effects. However, algorithms to design IPI sequences are
lacking. This study proposed a novel strategy to design pulse sequences with varying IPI based on
immediate neuronal reactions. Firstly, to establish the correlationship between the neuronal reactions
with varying IPIs, high-frequency stimulations with varying IPI in the range of 5–10 ms were applied
at the alveus of the hippocampal CA1 region of anesthetized rats in vivo. Antidromically-evoked
population spikes (APS) following each IPI were recorded and used as a biomarker to evaluate
neuronal reactions to each pulse. A linear mapping model was established to estimate the varied APS
amplitudes by the two preceding IPIs. Secondly, the mapping model was used to derive an algorithm
for designing an IPI sequence that would be applied for generating a desired neuronal reaction
pre-defined by a particular APS distribution. Finally, examples of stimulations with different IPI
sequences designed by the algorithm were verified by rat experiments. The results showed that the
designed IPI sequences were able to reproduce the desired APS responses of different distributions in
the hippocampal stimulations. The novel algorithm of IPI design provides a potential way to obtain
various stimulation effects for brain stimulation therapies.

Keywords: neuronal stimulation; varying inter-pulse intervals; population spikes; mapping model;
design algorithm

1. Introduction

The application of electrical pulse sequences in the brain has shown promise for
treating certain brain disorders [1,2]. Various stimulation paradigms have been developed
to generate diversified effects to meet the demands for extending the application [2,3].
One major strategy for the development of the stimulation paradigm is to program the
parameters of pulse sequences [4,5].

Usually, electrical stimulations in brain, such as deep brain stimulation (DBS), utilize
continuous sequences of high-frequency stimulation (HFS) of pulses around 100 Hz. Thera-
peutic efficacies may be adjusted by programming pulse parameters, such as intensity (i.e.,
the amplitude of voltage or current pulses), pulse width (common 60–150 µs), and pulse
frequency (i.e., the repetition rate of pulses) [6,7]. Traditionally, once the parameters are
set, the HFS is applied with a fixed pulse frequency, i.e., with a fixed inter-pulse-interval
(IPI) during the entire stimulation duration. However, an emerging way to modulate the
stimulation effects is to design temporal patterns of pulses, that is to vary IPI regularly
or irregularly in real time [8,9]. For instance, studies have shown that stimulations with
irregular IPI can suppress seizures more effectively than stimulations with regular IPI in
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the basolateral amygdala of rats [10]. HFS sequences with randomly varying IPI of Poisson
distribution in rat hippocampus can be more efficient to reduce the number of spontaneous
seizures compared to regular HFS [11]. In addition, stimulations with certain irregular
patterns of IPI may ameliorate motor symptoms and suppress pathological rhythmic ac-
tivity in the basal ganglia more effectively than stimulations of regular IPI [12]. Thus,
HFS sequences with randomly varying IPI provide a promising way to generate different
neuronal reactions to meet the demands for treating different diseases. However, there is a
lack of approach for designing pulse sequences with varying IPI, but trial.

The patterns of pulse sequences with randomly varying IPI are infinite. Previous
studies have exploited IPI sequences randomly varying with specific distributions (e.g.,
uniform, Poisson, and Gamma distributions) [10–14], or IPI sequences mimicking the firing
pattern of neurons [15,16], as well as IPI sequences according to the results of modeling
computations and behavior outcomes of stimulations in animal experiments and clinic
trials [17,18]. However, to our knowledge, there have been no algorithms reported to design
the varying IPI sequences based on the direct neuronal reaction to each stimulation pulse.

Commonly used frequency range of pulses, including the mean frequency of varying
IPI, is about ~100–200 Hz [3,5,11], corresponding to an IPI about 5–10 ms. Previous studies
have shown that HFS with a frequency in such range may prevent the propagation of
pathological neural signals from upstream and generate new neuronal activity that would
spread to the downstream areas [19,20]. The neuronal reaction directly induced by stimuli
is the origin of final outcomes of the stimulations. HFS with different patterns of varying
IPI could induce different patterns of neuronal firing, resulting in different stimulation
effects. Here we propose an approach to design patterns of IPI sequences based on direct
neuronal reactions.

A pulse can activate a population of neurons close to the stimulation electrode. We
quantified the direct neuronal reactions by antidromically-evoked population spikes (APS)
induced by axonal stimulations, because axon is the neuronal structure with the lowest
threshold to respond pulse stimuli [21,22]. HFS induced firing in axons can propagate in
two directions: downstream to the terminals and synapses, and upstream to the cell bodies
to generate APS. Therefore, APS can be used to evaluate the direct neuronal reactions
without involving synaptic transmissions [23].

In this work, for the objective of designing IPI sequences based on neuronal reactions,
we firstly created a computational mapping model to describe the relationship between
the varying IPI and the direct neuronal reactions to pulses. Secondly, we used the model
to develop an algorithm for designing IPI sequences for target neuronal reactions. Data
from rat experiments were used to create the model and to validate the algorithm. The
amplitude of APS was used as a biomarker to evaluate the direct neuronal responses to
the HFS pulses. The APS waveforms were recorded extracellularly in the cell-body layer
of pyramidal neurons in rat hippocampal CA1 region in vivo during HFS with varying
IPI applied on the axons of neurons. The study provides a novel strategy for designing
patterns of pulse sequences to obtained diverse effects in brain stimulations.

2. Materials and Methods
2.1. Animal Surgery

The experiment protocol was approved by the Institutional Animal Care and Ethics
Committee, Zhejiang University (Ethical approval code 14730 Zhejiang University, 1 March
2019). Thirty-seven male Sprague Dawley rats (250–350 g) were used under anesthetic
with urethane (1.25 g/kg, i.p.). The details of the experimental procedures were reported
previously [24]. In brief, after the rat was confined to a stereotaxic apparatus and part of the
left skull was removed, a recording electrode array (#Poly2, NeuroNexus Technologies, Inc.,
Ann Arbor, MI, USA) was positioned in the hippocampal CA1 region (AP −3.5 mm; ML 2.7
mm; DV ~2.5 mm). To antidromically evoke population spikes in the CA1 region around
the recording electrode, a bipolar concentric stimulation electrode (#CBCSG75, FHC, Inc.,
Bowdoin, ME, USA; diameters: inner pole 75 µm, outer pole 250 µm) was positioned at
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alveus (AP −4.8 mm; ML 2.7 mm; DV ~2.3 mm), the efferent fiber of the CA1 pyramidal
neurons (Figure 1A).

Figure 1. Different neuronal responses induced by 3-min A-HFS sequences with constant IPI 7.5 ms or with randomly vary-
ing IPI in a range of 5–10 ms but with different distributions. (A) Schematic diagram of the locations of recording electrode
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and antidromic stimulation electrode in the rat hippocampal CA1 region. (B–M) Examples of neuronal responses to three
types of A-HFS sequences with a mean pulse frequency of 133 Hz (B–E and F–I) and 150 Hz (J–M), including the recordings
of antidromically-evoked population spikes (APS) with the expanded APS waveforms at the onset and at the steady-state
periods of A-HFS (B,F,J), the distribution of varying IPI (C,G,K), the amplitudes of each evoked APS during the whole
A-HFS (D,H,L), and the distribution of APS amplitudes during the 100–180 s steady-state period of A-HFS (E,I,M). The
hollow triangle in (M) denotes APSs with medium amplitudes.

2.2. Stimulation

Stimuli of biphasic current pulses were generated by a programmable stimulator
(Model 3800, A-M System, Inc., Sequim, Washington, DC, USA) with a width of 100 µs/phase
and an intensity of 0.3 or 0.4 mA. The range of varying IPI was 5–10 ms with a temporal
resolution of 0.05 ms. Pulse sequences with various distributions and orders of IPIs
were created by a custom-made MATLAB program and were loaded into a custom-made
LabVIEW program. The LabVIEW program controlled a USB-6251 DAQ card (National
Instruments, Austin, TX, USA) to output a pulse sequence to trigger the 3800 stimulator to
generate a required HFS sequence for antidromic stimulation. The duration of antidromic
HFS (A-HFS) was 3 mins. The interval between successive A-HFS trains was longer than
20 mins to allow a complete recovery of neuronal state from previous A-HFS, which was
confirmed by the recovery of evoked APS to baseline level.

The following groups of A-HFS sequences with varying IPI in the range of 5–10 ms
were used in this study. Group 1 included eight different A-HFS sequences with a uniform
distribution of randomly varying IPIs and with an identical mean pulse frequency of
133 Hz. They were applied in rats to acquire the experimental data of APS amplitudes for
establishing the mapping model. Group 2 included A-HFS sequences of 133 and 150 Hz
with randomly varying IPI, as well as 133 Hz A-HFS with gradually varying IPI. They were
applied in rats to evaluate the predictions of the mapping model. Group 3 included two
A-HFS sequences that were designed by an algorithm for obtaining two different types of
desired neuronal reactions in rats (see the Results Section for the details of the algorithm).

2.3. Recording and Data Analysis

The raw electrical signals collected by the recording electrode were amplified 100 times
by a 16-channel amplifier (Model 3600, A-M System, Inc., Sequim, Washington, DC, USA)
with a band-pass range of 5–5000 Hz. The amplified signals were then sampled by a data
acquisition system (Model PL3516, ADInstruments, Inc., Bella Vista, NSW, Australia) with
a sampling rate of 20 kHz.

The stimulation artifacts in the recordings were removed by a custom-made MATLAB
program [25]. The amplitude of APS evoked by each pulse of A-HFS was measured with a
detection threshold of amplitude 0.1 mV and was then normalized by the amplitude of the
first APS evoked at the onset of A-HFS. The IPIs preceding the current evoked APS (i.e.,
1-back IPI, 2-back IPI, and k-back IPI) were termed IPI1, IPI2, and IPIk, respectively. The
Pearson correlation coefficient (R) between the APS amplitudes of experimental data and
the APS predicted by specific calculations of preceding IPIs was used to evaluate different
mapping models between the current APS and its preceding IPIs.

The root mean square error (RMSE) of APS amplitudes and the ratio of correct pre-
dictions of APS alterations (increase or decrease of amplitudes) were used as indexes to
evaluate the predictions of mapping models or to evaluate the differences between realized
values and pre-set values. Because the RMSE would be the standard deviation (SD) of the
APS amplitudes when a mean APS amplitude was simply used to make the prediction,
the mean RMSEs of the prediction model were compared with the mean SDs of the ex-
perimental APS amplitudes to show the prediction performance of the mapping model
as well.

By using the mapping model, a design algorithm was derived to calculate the IPIs of
an A-HFS sequence from a pre-set APS distribution, reversely. The detail of the algorithm is
closely related with the results of modelling thereby being described in the Results Section.
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One-way ANOVA with post hoc Bonferroni test or paired t-test were used to determine
the statistical significances of differences among or between data groups. “n” represents
the number of rats.

3. Results
3.1. Establish a Mapping Model for the Amplitudes of the Population Spikes Evoked by
A-HFS Pulses

During a 133 Hz A-HFS with a constant IPI of 7.5 ms, large APS waveforms with
similar amplitudes (~8.3 mV) were evoked by each pulse at the initial period of A-HFS
(Figure 1B,C). However, after seconds of stimulation, the amplitudes of evoked APSs
decreased rapidly and then were stable till the end of A-HFS. During the steady period of
late A-HFS 100–180 s (Figure 1D), most APS amplitudes were about 1.5 mV (Figure 1E).

During an A-HFS (mean 133 Hz) with randomly varying IPI of a uniform distribution,
large APS waveforms with similar amplitudes were also evoked by each pulse at the initial
period of A-HFS despite the variations in IPI (Figure 1F,G). However, after seconds of
stimulation, the amplitudes of evoked APSs varied substantially with the varying IPIs
till the end of A-HFS. During the steady period of late A-HFS 100–180 s (Figure 1H), the
distribution probability of APS amplitudes decreased with the increase of APS amplitudes
approximately linearly (Figure 1I).

During another A-HFS with varying IPI of a different distribution in the identical
range of 5–10 ms but a mean pulse frequency of 150 Hz, the initial large APSs remained.
However, the distribution of APS amplitudes in the steady period changed accordingly
(Figure 1J–M). The distribution probability of APS amplitudes decreased more rapidly with
the increase of APS amplitudes, resulting in a decrease of the amount of medium APSs
(indicated by the hollow triangle in Figure 1M).

Because an APS potential waveform is formed by the integration of the synchronous
discharges of a population of neurons, the change in the APS amplitudes can indicate
a change in the number of discharging neurons activated by a pulse. The above results
indicate that varying IPI patterns even within an identical time range may alter the fir-
ing pattern of neurons, which suggests a way to design pulse sequences for different
neuronal reactions. Previous studies have shown that during the steady-state period of
A-HFS, the amplitude of evoked APS correlated with the lengths of immediately pre-
ceding IPIs [13,26]. To design the required sequence of IPIs for a desired distribution of
evoked APS, we first established a mapping model between the APS amplitude and its
preceding IPIs.

Take one of the 133 Hz A-HFS with randomly varying IPI for example (Figure 2A),
during the steady-state period, the APS amplitude increased with the increase of the pre-
ceding IPI1 (R = 0.82). However, the dispersion of APS amplitudes also increased with the
increase of IPI1 (Figure 2B). The correlation coefficient increased to R = 0.88 for a mapping
of APS amplitude with a calculation (IPI1 − IPI2) (Figure 2C), and further increased to
R = 0.92 for a calculation (1.5IPI1 − IPI2) (Figure 2D) with a decrease of dispersions.

To compare different mapping models of APS amplitudes, we made least square
fittings for the experimental APS data by utilizing up to four preceding IPIs. The data
were collected from 23 rats that received eight different sequences of 133 Hz A-HFS with
a same uniform distribution of varying IPI as shown in Figure 1C. For the four types of
mappings using one to four IPIs (Figure 2E), the mean R value significantly increased
from R = 0.82 ± 0.02 for the mapping (aIPI1 + b) to R = 0.91 ± 0.02 for the mapping (aIPI1
+ bIPI2 + c) (ANOVA F3,88 = 152, p < 0.001; post hoc Bonferroni test, p < 0.001, n = 23).
Then the mean R values did not change significantly for the mappings with three or four
preceding IPIs. Therefore, the two preceding IPIs (IPI1 and IPI2) were used to predict the
APS amplitudes (Figure 2E, red).
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Figure 2. Comparison of different mapping models describing the relationship between the amplitudes of evoked APS
and the preceding IPIs. (A) Left: evoked APS during an A-HFS sequence with uniformly varying IPI. Right: illustration of
the current APS and its preceding IPIs (IPI1, IPI2, IPI3 and IPI4). (B–D) Examples of the correlations of APS amplitudes to
IPI1, (IPI1 − IPI2) and (1.5IPI1 − IPI2) with their correlation coefficient (R), respectively. The APS amplitudes were collected
from the 100–180 s steady-state period of A-HFS shown in (A). (E) Comparison of the R values for the linear mappings of
APS amplitudes with different numbers of preceding IPIs. (F) Comparison of the R values for the different types of linear
mappings with the two preceding IPIs (IPI1 and IPI2). *** p < 0.001; n.s., not significant; post hoc Bonferroni tests after
ANOVA for the data from n = 23 rats.

Next, four types of linear mappings with IPI1 and IPI2 were examined (Figure 2F). The
mean R = 0.90 ± 0.02 for the mapping (aIPI1 + bIPI2) was similar to the mean R = 0.91 ± 0.02
for the mapping (aIPI1 + bIPI2 + c). The RMSE of the two mappings were similar as well
(0.0349 ± 0.0075 vs. 0.0331 ± 0.0074). The R values of both mappings were significantly
greater than the R values of the other two mappings [a(IPI1 − IPI2) + b] (R = 0.86 ± 0.02)
and [a(IPI1 + IPI2) + b] (R = 0.31 ± 0.03) (ANOVA F3,88 = 3709, p < 0.001; post hoc Bonferroni
tests, p < 0.001, n = 23). Therefore, the linear mapping (aIPI1 + bIPI2) was selected for
conciseness (Figure 2F, red).

Finally, the parameters a and b in the mapping model were determined by using
least square fittings for the normalized APS amplitudes. The statistical values were



Brain Sci. 2021, 11, 509 7 of 17

a = 0.0409 ± 0.0092 and b = −0.0273 ± 0.0067 (n = 23), respectively. Therefore, we had
the normalized APS amplitude (NAA):

NAA = 0.027(1.5IPI1 − IPI2) (1)

The value of the equation was set to 0 once an IPI1 and/or an IPI2 in the range of
5–10 ms resulted in a normalized APS amplitude smaller than 0. Thus, the final mapping
model was:

NAA = max [0.027(1.5IPI1 − IPI2), 0] (2)

This mapping model was established based on the neuronal responses to the A-HFS
with randomly varying IPIs distributed uniformly. Next, we evaluated the predictions of
the mapping model for different distributions and different orders of IPIs varying in the
identical range of 5–10 ms.

3.2. Predict Neuronal Responses to A-HFS with Varying IPI

Three types of A-HFS sequences were used to verify the mapping model (Equation (2)).
First, for a 133 Hz A-HFS sequence with randomly varying IPI of a uniform distribution,
the mapping model was able to accurately predict the amplitudes of APS during A-HFS
(Figure 3A–C). The A-HFS sequence was different from the sequences used for establishing
the mapping model. The predicted data correctly followed 88.6 ± 1.1% (n = 7) of the APS
alterations (increasing or decreasing) (Figure 3A). The consistency of the predicted APS to
the experimental APS was shown clearly in the scatter plot (Figure 3B). Most (90.5%) of the
errors of predicted APS amplitude (i.e., the predicted value minus the experimental value)
were within a range of ±0.05 of the normalized APS amplitude (Figure 3C).

Second, when the same set of IPI was arranged orderly to form an A-HFS of grad-
ually varying IPI, the predicted data of the mapping model were also able to follow the
experimental data accurately (Figure 3D). Most (99.9%) of the prediction errors were within
a range of ±0.05 of the normalized APS amplitude (Figure 3E,F). For several successive
pulses in a short period of A-HFS with the gradually varying IPI, the stimulation is equiv-
alent to constant IPI [26]. Therefore, the result indicated that the model was also able to
predict the APS generated by A-HFS of slowly varying IPI or constant IPI.

Third, when the A-HFS sequence was changed to a mean frequency of 150 Hz with
IPI still randomly varying in the range 5–10 ms, the predicted APS correctly followed
88.8 ± 2.2% (n = 7) of the APS alteration directions (Figure 3G). The data points in the
scatter plot of predicted data vs. experimental data were distributed around the diagonal
line (Figure 3H). Most (91.4%) of the predicted errors were in a range of ±0.05 of the
normalized APS amplitude (Figure 3I).

Statistical data showed that during A-HFS with the above three types of IPI sequences
repeated in seven rats, the mean RMSEs of the predicted data were smaller than 0.04
of normalized APS amplitude and were significantly smaller than the mean SDs of the
experimental APS amplitudes (Figure 3J). Especially for the A-HFS with random IPI, the
RMSE = 0.034 ± 0.004 for 133 Hz A-HFS and RMSE = 0.032 ± 0.005 for 150 Hz A-HFS were
only half of the corresponding SD = 0.067 ± 0.010 and SD = 0.073 ± 0.012. Similar results
were obtained for the pool data of the eight different A-HFS sequences (133 Hz, random
IPI) used for establishing the mapping model (see the dashed box in Figure 3J).

These results indicated that the linear mapping model was able to predict the evoked
APS during A-HFS with IPI varying in the range of 5–10 ms. Based on the model, we next
developed an algorithm to design pulse sequences for desired neuronal reactions.
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Figure 3. Using the mapping model of normalized APS amplitude (NAA) = max [0.027 × (1.5 × IPI1 − IPI2), 0] to predict
the neuronal responses to A-HFS with different types of varying IPI. (A–I) Comparison of the predicted APS amplitudes
and experimental APS amplitudes (normalized) during a 133 Hz A-HFS sequence with randomly varying IPI (A–C), during
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a 133 Hz A-HFS sequence with gradually varying IPI (D–F) and during a 150 Hz A-HFS sequence with randomly varying
IPI (G–I). The predicted APS amplitudes followed the experimental APS amplitudes in an episode of A-HFS (A,D,G).
The data points distribute around the diagonal line in the scatter plots of the predicted data (vertical coordinate) vs. the
experimental data (horizontal coordinate) (B,E,H). The APS errors (predicted APS amplitude minus experimental APS
amplitude) of each evoked APS are shown along the A-HFS time (C,F,I). (J) Comparisons between the RMSE of predicted
APS and the SD of experimental APS (normalized) for the three different types of AHFS shown in (A–I), as well as for the
other eight IPI sequences of 133 Hz A-HFS with randomly varying IPI for the mapping the model. * p < 0.05, *** p < 0.001,
paired t-test between RMSE and SD, n = 7 or n = 23.

3.3. Design Pulse Sequences for Desired APS Distributions

To obtain a desired distribution of evoked APS, a calculated-IPI (C-IPI) sequence of A-
HFS was designed by the following three steps (Figure 4). Step 1: set a desired probability
distribution of normalized APS amplitudes with a resolution of 0.000675 determined by
the mapping model (Equation (2)) and the sampling rate 20 kHz of experiment recording.
Step 2: queue the desired APS amplitudes randomly. Step 3: calculate every C-IPI of the
A-HFS based on the mapping model with an initial C-IPI1, e.g., 5 ms, and with the APS one
by one in its queue. Once a calculated C-IPI is out of the time range 5–10 ms, take the next
APS and recalculate the C-IPI, until an APS (termed APSm) is found to obtain the C-IPI
within 5–10 ms. Move the APSm forward to the location immediately before the current
APS (termed APSk) and then continue to calculate the next C-IPI by using the APSk.

Two different types of desired APS distributions were used to verify the above algorithm.
Type 1: for a target neuronal reaction with bimodal normalized APS amplitudes

distributed in the ranges either smaller (<0.05) or larger (>0.15) and randomly appearing
during A-HFS (Figure 5A), the designed IPI sequence distributed mainly in 5–6 and 8–10 ms
with a mean pulse frequency of ~140 Hz (Figure 5B). The real distribution of experimental
APS amplitudes (Figure 5C) induced by an A-HFS with the designed IPI sequence was
similar to the original desired distribution. The experimental APS was able to follow the
alterations of desired APS (Figure 5D).

Type 2: for a target neuronal response with only one peak in the middle of APS
distribution (Figure 5E), the distribution of the designed IPI sequence was also unimodal
with a mean pulse frequency of 121 Hz (Figure 5F). The real distribution of experimental
APS amplitudes (Figure 5G) induced by the designed IPI sequence was similar to the
desired unimodal distribution. The alterations of experimental APS were consistent with
the desired ones (Figure 5H).

The above two types of designed IPI sequences were applied in seven experimental
rats. The mean RMSE of normalized APS amplitude evoked by the two designed A-HFS
sequences were 0.042 ± 0.005 and 0.027 ± 0.005, respectively (Figure 5I). In addition, the
ratios of small APS errors in the range of ± 0.05 for Type 1 and Type 2 were 73.9 ± 5.8%
and 93.5 ± 4.5%, respectively (Figure 5J), indicating that most of the experimental APS
amplitudes were close to the desired APS amplitudes.

The above results indicated that different types of desired neuronal responses to
A-HFS can be approximately obtained through the design of IPI sequences varying in the
range of 5–10 ms by using the algorithm.
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Figure 4. Illustration of the three steps of the algorithm to design a pulse sequence with varying
IPI for desired neuronal responses. In step 1, the Ai is the setting amplitude of APS, and Ni is the
corresponding number of APS with amplitude Ai.
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Figure 5. Verification of designed pulse sequences for two different types of desired neuronal responses: Type 1 for a desired
APS distribution with bimodal APS amplitudes (A–D) and Type 2 for a desired APS distribution with unimodal APS amplitudes
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amplitudes (E–H). In (A–C) and in (E–G), the top rows are the distributions and the bottom rows are the sequences of the
desired APS amplitudes (A,E), of the designed IPI (B,F) and of the real experimental APS amplitudes (C,G). (D,H) The
amplitudes of desired APS and real experimental APS in an episode of A-HFS. (I) The design errors (RMSE) of Type 1
and Type 2 (n = 7). (J) The ratio of small APS errors of Type 1 and Type 2 (n = 7), i.e., −0.05 ≤ (the desired APS minus the
experimental APS) ≤ 0.05.

4. Discussion

In the study, a simple linear model was created to describe the relationship between
the amplitudes of the evoked APS and the varying IPI of A-HFS. The model was able to
predict the neuronal response to each pulse of A-HFS sequences with IPI randomly varying
in the range of 5–10 ms, corresponding to 100–200 Hz pulse frequency. Based on the model,
an algorithm was created to design pulse sequences for desired neuronal reactions. To
our knowledge, the study is the first to propose a quantitative approach to design HFS
sequences based on required neuronal reactions with different distributions. The design
approach and its implications are analyzed below.

4.1. Amplitude Distribution of APS as an Index of the Strength of Stimulation Effects

We applied pulse stimulations at the efferent fibers of principal neurons and utilized
the amplitudes of APS waveforms recorded near the cell bodies to evaluate the strength of
neuronal responses in the rat hippocampus in vivo (Figure 1A). Neuronal axons are apt to
be activated by the narrow pulses commonly used in brain stimulations [27,28]. The APS
amplitude can indicate the number of axons synchronously activated by a pulse because the
firing of cell bodies is directly induced by the antidromic propagation of axonal activation
without involving synaptic transmissions. Additionally, an APS is hardly affected by
local inhibitory networks [23], which was confirmed by the similar large APSs induced
successionally in the initial period of A-HFS (Figure 1B,F,J). According to the essential
cable theory of axons [29], the strengths of activations propagating in both directions are
similar. Therefore, the APS amplitude may also indicate the strength of stimulation-induced
reactions propagating orthodromically to the terminals of axons, i.e., the pre-synaptic area.
Admittedly, through synaptic transmissions, the post-synaptic activity could be different
from pre-synaptic activity, which needs further investigations.

A larger APS means activation of a larger population of neurons firing synchronously,
thereby representing a stronger neuronal response that could propagate and affect a larger
population of neurons in the downstream areas. For a train of APS, even with a similar
accumulation amplitude of APS, varied APSs with a few and relatively larger amplitudes
can generate stronger neuronal activity in the downstream post-synaptic area than the
neuronal activity generated by uniform smaller APSs with constant IPI (see Figure 7 in
Feng et al., 2019) [13]. For the two types of designed APS distributions (Figure 5), the
amount of relatively large APSs included in bimodal APS distribution (Figure 5C) was
greater than the unimodal APS distribution (Figure 5G). The HFS sequence corresponding
with the bimodal APS distribution would exert a stronger activation in the downstream
area with adequate synaptic transmissions. Therefore, the utilization of the distribution
of APS amplitudes as an index to design varying IPI sequences is a feasible strategy and
provides a novel approach to adjust the strength of stimulation effects without altering the
pulse intensity, i.e., without altering the scope of stimulation action.

4.2. Mapping Model Correlating the Neuronal Reactions to the Varying IPI of Stimulation Pulses

During the steady-state period of persistent stimulation of A-HFS with varying IPI in
5–10 ms, each pulse was not able to induce an APS as large as the original one induced
at the initial period of A-HFS, but to induce APS varying substantially with amplitudes
below 35% of the initial amplitude (Figures 1–3). Previous studies with constant IPI in
the similar range (i.e., 5–10 ms) have also shown a decrease of APS amplitudes in the
steady-state period to approximate 6.1–16.2% of the initial value [24], which conformed
with the prediction in the present study with gradually varying IPI (Figure 3D). The
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attenuation of APS amplitudes may be caused by a putative mechanism of intermittent
axonal block induced by HFS [30–32]. However, pulses of A-HFS with a constant IPI
generate small APS with similar amplitudes, whereas pulses with varying IPI generate
varied APS in an enlarged amplitude range because of the non-linear dynamics of neuronal
excitations [13,26]. The variations of APS provide an opportunity for designing stimulation
sequences for various neuronal reactions. To fulfill the design, we created the linear
mapping model (Equation (2)) of APS amplitudes by simply utilizing the two preceding
IPIs (IPI1 and IPI2).

Because of the intrinsic nonlinear mechanisms of neuronal activation as well as other
background inputs to neurons in addition to the applied stimulation, the predicted APS
amplitudes had some errors. Nevertheless, the mapping model was able to correctly follow
most of the real APS amplitudes (Figure 3).

Other mapping models including more preceding IPIs and/or with more complex
mathematical expressions may not significantly improve the prediction accuracy, because
they may introduce more potential errors from additional processes such as more coef-
ficients to be estimated. Moreover, the derivation of the design algorithm could be too
complex to realize. In addition, the immediate reaction of neurons following a pulse is
mainly correlated with the closest IPIs and is weakly correlated with the IPIs in a longer
time distance.

Although the mapping model was established by using the experimental data of
varying IPI with a uniform distribution, the model was able to predict the experimental
data with other distributions of IPI varying in the identical range of 5–10 ms (Figure 3).
Especially for the gradually varying IPI with a relatively long cycle time of tens of seconds,
the adjacent IPIs were almost the same. This means that the model was suitable for A-HFS
even with constant IPI in the range of 5–10 ms.

Essentially, the aim of the mapping model was to derive the algorithm for designing
pulse sequences with varying IPI from a pre-defined APS distribution for desired neuronal
responses (Figure 4). Although the mapping model is linear, solving the inverse problem
from an APS distribution to an IPI sequence was a challenge because of infinite solutions.
In addition, every IPI must be limited in the range of 5–10 ms. The algorithm developed
here was simple, yet skillfully obtained one of the solutions meeting the requirements. The
algorithm as well as the mapping model was verified by the results that the distribution
of experimental APS induced by a designed pulse sequence conformed to the desired
distribution (Figure 5). We used two typical types of desired APS distribution (bimodal
and unimodal) with each repeated in the experiments of seven rats. More types of APS
distributions are needed to further confirm the robustness of this algorithm.

4.3. Implications of the Designs for Different Distributions of Evoked APS Amplitudes

In this study, we limited the varying IPI in the small range of 5–10 ms based on the
fact that the commonly used pulse frequency range of brain stimulations (e.g., DBS) is
within the range of 100–200 Hz [3,5]. Previous studies have shown that HFS of pulse se-
quences with a frequency in this range may prevent the propagation of pathological neural
signals through possible mechanisms of axonal conduction block and synaptic transmis-
sion failure [24,31,33], because continuous HFS can cause the accumulation of potassium
outside the axons and result in depolarization block of axon membrane [34,35]. Under this
situation, the intrinsic neuronal activity from upstream is masked and replaced by new
neuronal activity induced by HFS pulses, which further propagates to the downstream
areas [19,20].

Pulse sequences with a constant IPI can generate a mild effect, as each of the pulses
only recruits a small portion of neurons [32,36]. However, pulse sequences with varying IPI
may synchronously activate a relatively larger portion of neurons with certain randomness
as represented by random larger APSs [13,26]. The amount of larger APSs relates with the
strength of HFS activation to neurons, acting as a “dose” of stimulations [9]. We showed
here that the distribution of APS amplitudes may be designed according to demands
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by varying IPI in a fixed range but with a variable distribution and a variable order of
arrangement (Figure 5). Although the maximum amplitude of varied APS during steady-
state period was much smaller than the initial APS amplitudes at the onset of stimulation
(Figures 1–3), previous studies have shown that the attenuated activation is strong enough
to activate the downstream neurons intensely [13]. Additionally, the attenuation may avoid
generations of epileptiform activity caused by excessive activation [37]. Presumably, with
properly designed sequences of varying IPI, various levels of activations may be obtained
below the strength threshold inducing epilepsy.

In addition, randomness is an important feature in our designs of sequences with
varying IPI. Synchronous firing of a larger population of neurons may be otherwise induced
by pulses with a regular longer IPI (i.e., a lower pulse frequency) without the need to design
specific distribution. However, the stimulation with a lower frequency may fail to mask
the intrinsic pathological activity, and would also induce rhythmic activity of neurons,
which may cause or aggravate pathological symptoms such as epilepsy and Parkinson’s
disease [38,39]. Instead, a high-frequency stimulation with randomness can not only mask
the intrinsic neuronal activity, but also modulate neuronal activity to achieve various
responses without inducing unwanted rhythmic activity.

The IPI range could be enlarged to include IPI shorter than 5 ms or longer than
10 ms. A larger IPI range may provide more opportunity for generating different APS
distributions as long as a new mapping model would be established. However, previous
studies have shown that pulses with randomly varying IPI in a range of 5–15 ms may
induce the most variable APS events (see Figure 1E in Feng et al., 2019) [13]. A shorter or
longer IPI outside this range would result in a smaller or larger APS with more certainty
thereby losing the random modulation effects. In addition, long IPIs (i.e., long pauses)
may facilitate the conduction of pathological oscillations between brain regions, thereby
decreasing the stimulation efficacy [40–42]. Nevertheless, previous studies have shown that
stimulations with specific low pulse frequencies could also be effective for treating some
brain diseases [43,44]. Therefore, it may be worthwhile to further develop the stimulation
paradigms of varying IPI with enlarged ranges.

4.4. Limitations of the Study

Although the APS may indicate the original neuronal reactions immediately in the
stimulation locations, the final outcomes and clinical efficacy of stimulations relate with
the spread of induced neuronal activity and depend on the pathological mechanisms of
different brain diseases. Therefore, this study only proposed a potential method to adjust
the excitation strength of HFS by varying IPI, which may guide the trials of new stimulation
paradigms with varying IPI in animal experiments and in clinical studies. Further studies
are needed to reveal the final outcomes of the HFS with different types of varying IPI.

In addition, the study was performed with rats anesthetized by urethane, an anes-
thetic that has been commonly used in studies of the nervous system in animals [45,46].
The urethane may affect synaptic currents, such as increasing GABAergic currents and
decreasing glutamate currents [47], thereby decreasing the firing rate of neurons mildly.
Although the antidromic activation used in the present study does not involve synaptic
transmissions, the change of neuronal excitability by the anesthetic could affect the evoked
APS. Therefore, the parameters of the mapping model as well as the algorithm may need
some adjustments for an awake state. Further studies are needed to confirm our results
with awake animals.

5. Conclusions

The present study firstly showed that the neuronal response to each pulse of HFS
can be designed by changing the inter-pulse-intervals in a small range, which provides a
potential approach for programming stimulation patterns to meet the various demands in
the application of brain stimulations.
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